
WASM
Assembler/Disassembler

For Wang Programmable Calculators
November 26, 2023

Table of Contents
INTRODUCTION...1
ASSEMBLER...1
DISASSEMBLER...2
COMMAND LINE..2
OPERAND FORMATS...3

ALPHA...3
REGISTER DIRECT..4
PRINT / WRITE...4
MARK / SEARCH...4

ASSEMBLER ERRORS...4
ASSEMBLER PSEUDO-OPS..5
EXAMPLES..6

INTRODUCTION
‘wasm’ is an Assembler and Disassembler for Wang 600/700 Programmable Calculators. It recognizes,
but does not require, certain file type suffixes. Any suffix of the form “.w6x” (where ‘x’ is any letter)
indicates Wang 600 code. Similarly, any suffix like “.w7x” indicates Wang 700 code. A suffix with the
last letter ‘t’ is recognized as a tape image, which has additional codes to handle the end of the image.

ASSEMBLER
The assembler converts opcodes (and operands where appropriate) into instruction codes. Comments
begin with a semicolon character and extend for the rest of the current line.

The special pseudo-op “ENTER” is used to make entering numbers easier. The operand for “ENTER”
is a string of decimal digits with optional ‘E’, ‘-’, and ‘.’ characters. This string represents the sequence
of keystrokes to enter the number, and NOT a standard number. In many cases the string representation
will be the same as the number, but it need not be. For example, “1.1-”, “-1.1”, “1.-1” all represent the
number -1.1. Additionally, the operand may be “&symbol” to reference a symbolic register number (see
.REG and .SREG), in which case a 3-digit entry sequence is coded for the register number.

Errors in assembly are noted by a letter in the first column of the listing output. The lines containing
errors are also sent to stderr in the case that no listing is being printed to stdout. The error letters and
their meanings are in the “ASSEMBLER ERRORS” section. The assembler uses two passes in order to
resolve symbolic labels, but note that syntax errors may result in step numbers that are different from
successful assembly.

Wang Assembler/Disassembler Manual 1

DISASSEMBLER
The disassembler may be used to convert program or tape images into source code, allowing existing
programs saved from a Wang Programmable Calculator Simulator to be turned into source code, or
simply viewed (listed) in a symbolic form.

The disassembler looks for sequences of number entry commands and combines those into a single
“ENTER” pseudo-op. It also converts ALPHA text sequences into more-natural strings.

COMMAND LINE
The following command line options are used to control the behavior of ‘wasm’:

600
Use Wang 600 instruction codes and mnemonics. Also allows 601, 602, 611, 612, 607, or 606 to
specify the default output device.

700
Use Wang 700 instruction codes and mnemonics. Also allows 701, 702, 711, 712, 707, or 706 to
specify the default output device.

docs
Do not assemble/disassemble, only print a list of codes and mnemonics for the specified
machine type.

tape
Treat image file (input or output) as a cassette tape image, adding extra codes to mark the end of
the image. Each End Program (END) code will appears as two successive END codes, and the
end of a data image will have END followed by 15-15.

rom
Treat image file (input or output) as a Wang 600 Expansion ROM image, padding with STOP
codes to fill the remainder of the ROM. This also affects the assignment of subroutines to
symbols.

asm=file
Assemble file using the (implied or specified) machine type mnemonics and syntax. By default,
a listing is produced on stdout and the object code is written to a file named “a.out”.

nolst
Do not produce any assembly listing.

list=file
Produce an assembly listing written to file, instead of sending to stdout.

Wang Assembler/Disassembler Manual 2

out=file
Write assembled object code (or tape image) to file, instead of “a.out”. Or write disassembly
output to file instead of stdout.

path=dir...
Use the list dir… to search for .INCLUDE files if they are not found relative to the current
directory. Directories may be colon or semicolon separated, and will be searched in the order
specified.

dat=file
Assemble file into data using the (implied or specified) machine type. By default, output is
written to a file named “a.out”. file contains a list (one per line) of numbers. Prefixes the data
with one register block containing the count of data items. May be used with raw (only data, no
count or END) or tape (add extra END byte for tape format) to alter output format.

dis=file
Disassemble the program image file and send to stdout. By default, this produces a listing-style
output (containing step numbers and object code).

raw
The disassembly output is source code, not listing. This code should be ready for re-assembly.

Note that it does not make sense to specify both “dis=” and “asm=” in the same command. If both are
specified, “asm=” will be ignored.

OPERAND FORMATS

ALPHA
The “ALPHA” mnemonic, which represents the “α” key on the Wang 600 or the “WRITE ALPHA”
key on the Wang 700, takes an operand that may be a single specific key (mnemonic) or a numeric
code (e.g. 00-00), or a string enclosed in double quotes. In the case of a string, the ALPHA command is
coded as a variable-length command that is automatically terminated by the appropriate code based on
machine type. Within the string, shift codes are handle automatically. The following special codes
(escapes) are used to represent special characters:

“\r” RETURN-INDEX (carriage-return line-feed)
“\b” BACKSPACE
“\t” TAB
“\i” INDEX (line-feed)
“\v” REVERSE INDEX
“\h” “½” (OutputWriters)
“\h” Move pen to home position (flatbed plotter)
“\q” “¼” (OutputWriters)
“\c” “¢” (OutputWriters)

Wang Assembler/Disassembler Manual 3

“\n” DC2 a.k.a. PUNCH-ON (Teletype)
“\f” DC4 a.k.a. PUNCH-OFF (Teletype)
“\p” Draw line to new position (flatbed plotter)
“\m” Move pen to new position (flatbed plotter)
“\z” Set character size (flatbed plotter)
“\s” Set character spacing (flatbed plotter)

Not all output devices support all these characters.

Prefixing a printable character with “|” encodes the plot variation of the character, for use with plotting
devices (Plotting OutputWriter or flatbed plotter).

REGISTER DIRECT
Register direct instructions use the decimal value of the register index, the same number that would be
used for indirect register access (not the coded value placed in the program step). For the Wang 700,
this includes automatic handling of the “register + 100” cases. In conjunction with .REG and .SREG
symbolic register names, the notation &name may be used in place of a decimal value.

PRINT / WRITE
The PRINT (Wang 600) or WRITE (Wang 700) instruction is followed by a code that indicates the
format used to print the number. The Wang 600 uses a format that specifies a letter “tag” and the
number of decimal places separated by a slash, for example “X/02”. The Wang 700 uses a format that
specifies the number of places to blank-pad in the whole-number portion and the number of decimal
places, represented as a standard program code, for example “05-02”.

MARK / SEARCH
Instructions that use a statement label may specify the label as either a standard code (“00-00”) or by
the key mnemonic (“E0”). The disassembler favors the key mnemonic. In addition, a symbolic label
may be used, of the form “&string”. One-step subroutines may be referenced symbolically using
“$string”. Symbolic labels are assigned values after the first pass, and will exclude any labels explicitly
defined, as well as the END PROG code. In the case of the Wang 600, symbolic subroutines will use
either the normal program range or the ROM range, depending on the context of the assembly.

ASSEMBLER ERRORS
The following error letters are used:

V Invalid characters in ENTER operand.
O Invalid opcode mnemonic.
S Syntax error (missing operand).
P Operand error.
R Register value error.
F Printer format error.

Wang Assembler/Disassembler Manual 4

I I/O operand error.
X Register data defined in ROM or .PROG not first.
U Undefined symbolic label/register.
M Multiple definitions of symbolic label.
Z Overflow of program memory.

ASSEMBLER PSEUDO-OPS
The following pseudo-ops are recognized:

.PROG start[end[regs]]
Define program space to be used. The starting program step is specified by start. The last
program step is specified by end (default to memory size of machine). The starting step for
registers outside the program is specified by regs. The default if no regs is specified is to use the
space after the last program code. This directive is mainly used for program overlays and to
specify where registers are allocated. For most programs that do not use embedded registers, the
actual program step numbers don’t matter.

.REG [symbol] [“string” | value]
Define register space inside the program. The program is padded with STOP instructions to the
next register location. If symbol is specified, it will be assigned the register number
corresponding to the location in the program. It may be used by prefixing with “&” in register-
direct instructions. If the machine stores two registers in a program block (as the 700 does), then
a second symbol and second value may be specified, separated by a comma. If symbol is “-”
then no symbol is generated (but the value field is still recognized). The string is a hexadecimal
string of 16 digits, representing the codes to be stored in each digit location in the register. The
value is a floating point value in standard notation, for example “1” or “1.2e6”.

.SREG symbol[,symbol] [count]
Define uninitialized register space outside the program. The default count is one register block
(two registers on the Wang 700). The symbol will be assigned the lowest register number of the
space, and may be optionally followed (comma separated) by another symbol which is assigned
the highest register number of the space. A symbol name “-” is used to assign no symbol (place
holder for specifying count). This register space is not part of the saved program image, but will
be assigned space immediately following the image (in the order that the .SREG directives
appear). The start of this register space may be overridden using the .PROG directive.

.OUT device
Specify the output device type that applies to subsequent ALPHA text instructions. This
determines the character set available and how strings are converted to Wang character codes.
The device value must match a valid output device for the Wang machine family, for example
the model 601 is the Output Writer for the Wang 600, while 701 is the Output Writer for the
Wang 700. The following models are supported:

601/701 Basic Output Writer
602/702 Plotting Output Writer

Wang Assembler/Disassembler Manual 5

611/711 Input/Output Writer
612/712 Flatbed Plotter
607/707 Teletype

.INCLUDE file
Include the specified file at the current location in the program. File may be absolute or relative
to the current directory when running “wasm”. In addition, the command argument path= may
be used to specify a search path. Note that file is appended whole to each dir in the search path,
so if file contains a directory component, that will also be used in the search.

.EXT label...
Declare label(s) as being defined outside of the program module being assembled. Labels are
separated by blanks/tabs. Symbolic labels are not supported as external references, however
symbols may be assign to external labels using the .DEF directive.

.EXTROM label...
Declare ROM label(s) as being defined outside of the program module being assembled. This is
only valid for Wang 600 programs.

.DEF symbol label
Pre-define symbol to be value label. Use “&string” or “$string” notation for symbol. label is
either an instruction opcode or numeric code value. This is mainly used for entry points that
require a consistent user or program interface, for example the expansion ROMs on Wang 600.
another use case would be for modular/overlay program sections. There must still be a “MARK
symbol” somewhere in the program, or a .EXT directive for label.

In addition, a Wang 600 assembly may use the instruction mnemonics @SEARCH and @CALL to
automatically produce the correct opcode for expansion ROM or program memory, depending on the
rom command line option.

EXAMPLES
This example uses the .REG psuedo-op to create a register within a program that contains a pattern for
a blank display on the Wang 600:

...
RECALL &blank
ALPHA STOP
ALPHA STOP

...
.REG blank “FFFFFFFFFFFFF00A”
END

There is currently no way to tell the disassembler about sections of a file that contain register data.

(end of document)

Wang Assembler/Disassembler Manual 6

	INTRODUCTION
	ASSEMBLER
	DISASSEMBLER
	COMMAND LINE
	OPERAND FORMATS
	ALPHA
	REGISTER DIRECT
	PRINT / WRITE
	MARK / SEARCH

	ASSEMBLER ERRORS
	ASSEMBLER PSEUDO-OPS
	EXAMPLES

