

I
I

•

© WANG LABORATORIES, INC., 1970
Tewksbury, Mass. 01876

Telephone (617) 851-7all
TWX 110 343-6769

REFEREN~EM:ANUAL

,,
t,

FOREWORD

This reference manual is designed to provide the user with
a basic understanding and practical guidance in the use of
Wang's 700A/B Electronic Calculators.

The aim has been to assist the user by presenting the most
useful technique, concept and method for utilizing the 700 to
its best advantage.

For further information, contact your local sales office or
Wang Laboratories, Inc., 836 North Street, Tewksbury,
Massachusetts 01876.

SECTION I - INTRODUCTION

SECTION II - EXPLANATION OF KEYS

SECTION III - PROGRAMMING

SECTION IV - PROGRAM CONCEPTS

SECTION V - DECISION COMMANDS

SECTION VI - PROGRAMMING TECHNIUUES USING A TAPE CASSETTE

SECTION VII - ADDITIONAL COMMANDS NOT FOUND ON THE 700 KEYBOARD

SECTION VIII - TRIGONOMETRIC PACKAGE PROGRAM, STATISTICAL PACKAGE PROGRAM

SECTION IX - SAMPLE PROGRAMS

SECTION X- WARRANTY, SERVICE AND MAINTENANCE

Table of Contents

TABLE OF CONTENTS

SECTION I - INTRODUCTION

Introduction • 1-1

• • • •

SECTION II - EXPLANATION OF KEYS
Modes of Operation. .
Run Mode .. .
Learn Mode'. .'
Learn-Print Mode. .
List-Program Mode .
Turning the 700 ON. .
Non-Programmable Key .
Prime .
Program Counter and Set PC .
Step.
Verify Program .
Record Program .
The Display. .
X-Register .
Entering aNumber .
Set Exp .. .
Y-Register .. .
Program-Error Indicator .
Data Storage Registers. .
Direct Addressing .
Toggle Switches and Special Function Keys
Store Direct. .
Recall Direct .
Exchange Direct .
Add, Subtract, Multiply, and Divide Direct.
Indirect Addressing.
Indirect Keys .
Advantages of Indirect Addressing
Recall Residue. .
Addition, Subtraction, Multiplication.
Division .. .
Write Commands. .
Group I - Group 2. .

SECTION III - PROGRAMMING
Coding. .
Generating a Code Using Special Function Keys and Toggle Switches
Core Memory .
Number of Registers Occupied By a Program

SECTION IV - PROGRAM CONCEPTS

Programming Concepts .
Mark and Search Commands .
Subroutine .
Double-Level Subroutines (or a Subroutine within a Subroutine)

v

2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-2
2-3
2-3
2-4
2-4
2-4
2-5
2-5
2-5
2-6
2-8
2-9
2-9
2-9
2-12
2-12
2-13
2-13
2-14
2-14
2-16
2-16
2-17
2-18
2-20
2-21

3-1
3-2
3-3
3-5

4-1
4-2
4-5
4-7

Table of Contents

TABLE OF CONTENTS (Continued)

SECTION V - DECISION COMMANDS
DECISIONS. 5-1

Skip if Y = X . 5-1
Skip if Y > X . 5-2
SkipifY<X 5-3
Skip if Error . 5-3

PROGRAMMING TECHNIQUES 5-4
Looping Using a Counter. 5-4
Looping Without a Counter. 5-6
Scanning a Table. 5-8
Go 5-9

SECTION VI - PROGRAMMING TECHNIQUES USING A TAPE CASSETTE
Tape Cassette . 6-1
Tape Drive Operation . 6-2
Machine-Error Indicator . 6-2
Protection of Program on Tape 6-3
What is a Program Block? . 6-3
End Program . 6-4
How to Learn a Program Into Core From the Keyboard. 6-5
How to Transfer a Program From Core to Tape, 6-6
How to Load a Program From Tape into Core. 6-7
Bypassing Program Blocks 6-8
Procedure for Correcting Single Program Step. 6-8
Procedure for Inserting Extra Program Steps 6-9
Programming Techniques Using Tape Cassette. 6-9
Creating a Multi-Block Tape . 6-11

SECTION VII - ADDITIONAL COMMANDS NOT FOUND ON
THE 700 KEYBOARD

Pause Command . 7-1
Write Alpha Pause 7-1
Storage Commands (Direct Access to and from the V-Register) 7-2
Decisions.'. 7-2

X-Register . 7-3
V-Register . 7-3

Shifting Commands. 7-4
SECTION VIII - TRIGONOMETRIC PACKAGE PROGRAM

STATISTICAL PACKAGE PROGRAM
Trig Pack. 8-1
Speed and Accuracy . 8-2
To Load the Trig Package . 8-2
Using the Trig Package . 8-3
Program Use . 8-4
Design of the Trig Pack . 8-4
Statistical Package . 8- 5
Assignment of Special Operations Key for a User's Own Subroutines. 8-6

•
VI

!'.- ",
1,_-

C
o

to,
,
,

t.

t:->·
~:<:
o

Table ofContents

TABLE OF CONTENTS (Continued)

SECTION IX - SAMPLE PROGRAMS
Algebra of Complex Numbers (Program) . • • • • • • • • • • • • • • • 9-1

SECTION X - WARRANTY, SERVICE AND MAINTENANCE
Warranty. • 10-1
Post-Warranty Service Availability • • • • • • • • • • • • • • • • • • 10-1
Annual Maintenance Contract. • • • • • • • • • • • • • • • • • • • .10-1
Post-Warranty Service Call Without Maintenance Contract • • • • • • • • • 10-1
In-House Maintenance Capability • • • • • • • • • • • • • • • • • • 10-2

APPENDIX
Typing Conventions • A-I
Index • A-4

..
Vll

RUN LEARN
LEARN LIST
PRINT PROGRAM

i ,

I RELEASE II FORWARD I ITAPE Rl!ADY I I REWIND I

o 0
PROGRAM MACHINE

ERROR ERROR

,

0000
BC 40 20 10

00 01 02 03 04 05 06 07 06 09 10 11 12 13 14 15

0 DEGREE RADIANS SINX COSX TANX SIN-1 COS-I TAN-1 TO POLAR TO RECT SINHX COSHX TANHX SINH-1 COSti~ TANW' 0TO RADIANS TO DEGREES X X X X X

,. ,. ... SKIP
WRITE END RECALL ~

,. ,. RECALL CHANGE {X CLEAR LOAD
ALPHA ALPHA INDIR DIRECT SIGN X' X PROG IF MARK PRIME

INDIR DIRECT ERROR

... • SKIPSTORE • • STORE END VERIFY• 7 B 9 RETURNWRITE l/X INDIR INDIR DIRECT DIRECT - PROG IF• PROG
Y~X

INTEGER RECALL X X l SKIP
Ixi RESIDUE INDIR DIRECT X 4 5 6 STOP IF GROUP SET

X
Y=X 1 PC

-+

- - SKIP
lOx LOG,.X 1T INDIR DIRECT - 1 2 3 IF GROUP RECORD

Y<X 2 PROG

GO

eX 0 + + 0 SET SEARCH STEPLOG.X INDIR DIRECT + • EXP

700A/B KEYBOARD ILLUSTRATION

Section I
Introduction

SECTION I
INTRODUCTION

•

The Wang 700 is the ultimate solution to many calculating needs. Simple or complex
calculations can be done right at the desk. The 700 keyboard is extremely simple to
operate. Once the fundamental operations have been mastered, programming the 700 is
easy.

The Wang 700 is a self-contained programmable electronic calculator constructed with
integrated circuits on snap-in replaceable printed circuit modules. The 700 is composed of
three basic elements:

1. The Central Processing Unit
2. Read-Only Memory
3. Core Memory

The Central Processing Unit (CPU) is the hardware which performs the arithmetic
operations. The Read-Only Memory guides the CPU in all its operations. In effect, the Read
Only Memory is "the brains" of the Wang 700. It directs all arithmetic and logical operations
on the 700 and has been programmed to perform all the functions found on the 67 keys
of the 700 keyboard.

The 700 Core Memory is organized into 121 or 122 data registers; plus a nixie display of
the two work registers X and Y; 120 registers can be used for data storage or program
storage. All user programs are executed from core memory. The trig functions are also
executed from core memory.

Section II explains the modes of operation on the 700, as well as the five non-pro
grammable keys; discusses the dual nixie-type display readout and the basic arithmetic
operations; explains direct and indirect addressing of the data storage registers; explains
the RECALL RESIDUE key _. a unique Wang feature that makes double-precision
arithmetic a simple operation on the 700.

The usefulness of the Wang 700 comes from its programming capabilities. A program is
simply a logical sequence of steps which the calculator can perform automatically over and
over again on different variables. If the calculation is to be performed only once, it probably
is simple enough to do it manually on the keyboard. However, if the same calculations are
to be done repeatedly, it is beneficial to record and save the steps of the calculation in the
form of a program and let the calculator perform these repeated operations. The program
is loaded into core and executed from core. Programs can also be stored on magnetic tape
for later use.

Sections III, IV, V, VI, and VII discuss various techniques to use in programming the
Wang 700. They explain how to introduce a program into core memory and how to save it
for later use on tape cassettes. Also, they explain how several parts of a program can share
the same part of core memory. Section VIII discusses the TRIG functions of the Wang

1 - 1

Section I
Introduction

INTRODUCTION

700. Section IX gives an example of a 700 Program and further illustrates the concept of
indirect addressing. Section X contains warranty, service, and maintenance information.

An appendix is included in this manual which covers typing conventions and contains an
index to help the user locate with ease certain items of interest.

700A -7008

700A

700B

PROGRAM
STEPS

960

960

. REGISTERS

000-119
120-121 * (Scratch Pad Only)
2 Level subroutine
Drives 701 output writer

000-119
120* (Storage Only)
5 Level subroutine
Drives 701 Output writer

702 Plotter

*The 700A register 121 and the 700B register 120 may be used as scratch pads only if sub
routine 00-00 thru 01-15 are not accessed. When these subroutines are called upon the Y
register is automatically stored in these registers.

1-2

Section II
Explanation of Keys

o 0

!lflllllI •••
0000

LEARN LIST
PRINT PROGRAMLEARNRUN

MODES OF OPERATION

The 700 has four different modes of operation. The four lock-in switches located above the
toggle switches on the 700 keyboard are used to put the 700 into a certain mode of
operation.

RUN MODE

The RUN MODE is used for most 700 operations. All keyboard calculations are done in
the RUN MODE. In fact, practically all operations except introducing a program into core
memory from the keyboard are performed on the 700 in the RUN MODE.

SECTION II
EXPLANATION OF KEYS

LEARN MODE

The 700 is put into LEARN MODE when a program is to be written into core. Every
programmable key which is indexed while the 700 is in LEARN MODE is "learned" or
recorded in core. In LEARN MODE the Y-Register is blanked and the X-Register displays
the program step number and the program code stored at that step.

LEARN-PRINT MODE

The LEARN-PRINT MODE and the LIST PROGRAM MODE are used only when the
output writer is available. In the LEARN-PRINT MODE,each key indexed is "learned" into
core and is also listed Or the output writer. As each key is indexed, the program step
number and the program code of the key is listed on the output writer, giving the user a
hard copy of his program as he writes it!

2-1

Section II
Explanation of Kevs

LIST-PROGRAM MODE

When the 700 is put in the LIST-PROGRAM MODE and the GO key is depressed, it
automatically lists the program steps and program code in increments of 100 steps until
it encounters an END PROGRAM code. The LEARN-PRINT and LIST-PROGRAM modes
are discussed in greater detail in the 70 1 OUTPUT WRITER MANUAL.

TURNING THE 700 ON

The procedure for turning the 700 on consists of three steps:

1. Turn power switch ON.
2. Index PRIME to initialize the system.
3. Select mode of operation. (In most instances the R UN mode will be selected.

Depress R UN button.)

The Wang 700 is now in RUN MODE ready to perform your calculations.

NON PROGRAMMABLE KEYS

Because of their function, there are five keys which cannot be programmed on the Wang
700. Each of these commands is discussed briefly in this section. All of their functions and
uses will become clear after reading the entire manual.

The five non programmable keys on the 700 are:

PRIME

DODD I II II II I

0000 0 0

G EJ

,,

PRIME

VERIFY
PROG

SET
PC .

RECORD
PROG

STEP

The PRIME key initializes the 700 system and should always be depressed when the
700 is first turned on. It also performs the following operations:

1. Clears V-Register to zero.
2. Clears X-Register to zero.
3. Sets the program counter to Step 000.
4. Resets program-error and machine-error indicators.

2-2

Section /I
Explanation of Keys

The PRIME key should be depressed when the 700 is first turned on.

NOTE

The PRIME key should not be depressed when any operation is being executed. If
the program is to be stopped during execution, the STEP key should be used. This
will stop the program after the current step is executed. Also indexing the PRIME
key when RECORD PROGRAM or LOAD PROGRAM commands are being
executed will cause difficulty with the tape. If the PRIME key is indexed
accidentally during a RECORD PROGRAM or LOAD PROGRAM operation, the
operation will be terminated immediately. However, the tape should be rewound
before executing any other tape operations.

PROGRAM COUNTER AND SET PC

The program counter or PC is a counter which counts from 000 to 959. It indicates which
program step is about to be executed. At all times, it always points to the next program
step. Thus, when the machine is performing step 108, the PC is already on step 109.

The SET PC key allows the user to address and set the program counter with the next
three keystrokes.

SET PC 018

This instruction sets the program counter to program step number 018. To set the program
counter requires four keystrokes: SET PC followed by three numeric keys. PRIME auto
matically sets the program counter to step number 000.

STEP

The STEP key allows the user to step through his program one step at a time. If the
program is running when the STEP key is indexed, the program stops at the step it is about
to execute. In the RUN MODE, depressing the STEP key will cause the 700 to perform the
next step in the program. Each time the STEP key is indexed, the next program step will be
executed.

The GO key will take the 700 out of the stepping mode and put it in the continuous
mode executing the remaining steps in the program until a STOP command is encountered.

NOTE

In any 2-step command such as DIRECT ADDRESSING and WRITE ALPHA
commands, the GO key should not be depressed in the middle of the 2-step
command. The entire 2-step command should be executed in step mode before
switching to the continuous mode.

This stepping feature is of tremendous value for debugging programs. The programmer
can step through his program and locate his difficulty immediately. By switching to LEARN

2-3

Section II
Explanation of Keys

MODE he can see the step number and the code of the operation he is about to execute.
When stepping through a program in LEARN MODE, the program step number (the PC) and
the program code of the operation is displayed in the X-Register. However, in LEARN
MODE the operation is not executed.

VERIFY PROGRAM

The VERIFY PROGRAM key decimally adds the high-order and low-order digits of the
program codes in core beginning at step 000 until it encounters an END PROGRAM code.
The sum is displayed in the right-most digits of the mantissa of the X-Register.

EXAMPLE

STEP #
000
001
002
003
004

KEY

MARK
0700
x2

STOP
END PROG

CODE

0408
0700
0713
0515
0512

If this program is located in core and the VERIFY
PROGRAM key is depressed the sum displayed in
X is 59.

04
08
07
00
07
13
05
15-
59

After performing this operation, the PC is set at the step where the END PROGRAM
command is located. (Step 004 in this example.) Notice the code for END PROGRAM is
not added into the sum generated by the VERIFY PROGRAM key.

RECORD PROGRAM

This key transfers a program from core to magnetic tape. The PC is set to a specific
step and the program steps starting at this step are transferred to the tape until an END
PROGRAM command is reached. The END PROGRAM command is the last step trans
ferred to the tape. After transferring the program to tape, the PC is set to where it was
originally set (i.e., the first program step to be transferred to the tape).

The five keys, PRIME, SET PC, VERIFY PROGRAM, RECORD PROGRAM and
STEP are the only keys on the 700 which cannot be used in a program. Therefore, when
any of these keys are indexed it doesn't matter whether the machine is in LEARN or RUN
MODE.

THE DISPLAY

The display consists of two work registers, X and Y. Both the X and Y Registers are
displayed simultaneously by easily readable half-inch nixie-type tubes. Each register has a +
sign and twelve digit mantissa followed by a two-digit exponent with a range of -99 to +99.

2·4

+. XXXXXXXXXXXX
+. XXXXXXXXXXXX

\ I mantissa I

floating decimal
sign of mantissa

Section /I
Explanation of Keys

+ X X (Y-Register)
+ X X (X-Register)

\ 'exponent
sign of exponent

For numbers in the range .1 ~ INI < 1 000000000, the decimal point retains its natural
position. When a number lies outside this range, the decimal automatically relocates to the
extreme left, and the exponent of the power of lOis indicated correctly in modified
scientific notation. This property will become clear after a few minutes familiarization with
the keyboard.

(A few numbers and how they appear in the display are given below.)

X-REGISTER

The keys 0, 1, 2, ...9 and decimal point (.) are used for entering a number into the
X-Register. The SETEXP key is used to set the exponent value of X. The CH SIGN key
changes the algebraic sign of the mantissa or exponent of X.

Indexing a number into the 700 keyboard is as simple as writing the number down on
paper. The normal sequence of steps is to key in the mantissa followed by the SETEXP
key and the value of the exponent.

ENTERING A NUMBER

Index the following few numbers on the 700 keyboard. After indexing the number into
the X-Register. move it to the Y-Register by depressing the t key.

NUMBER SEQUENCE OF STEPS DISPLAY

a) .152 x 1021 1 5 2 SETEXP 2 1 t .
.152000000000 + 21-- - ---

b) 6.62517x 10 -27 6 6 2 5 1 7 SETEXP CHS 2 6 t .662517000000-26------ ---
c) -2534.5 2 5 3 4 . 5 CHS t------ --

Or - 2534.50000000

2 5 3 4 5 CHS SETEXP 4 t----- --
d) .0075 .0075t------

Or +.750000000000-02

7 5 SETEXP CHS 2 t-- --

Index c and d both ways. Does the display appear differently? Notice example b. Why is 26
entered as the value of the exponent?

SET EXP

The SETEXP key is used to set the exponent value of X with the next two successive
keystrokes. The SETEXP key automatically aligns the decimal point in the left-most
position of the X-Register: however, it does not blank out the mantissa. This allows us to
change the value of the exponent of a number without having to key in the entire number

•agam.

2-5

Section II
Explanation of Keys

EXAMPLE

Index 1.75 x 1023

Suppose the following sequence of steps is used:

1 . 7 5 SETEXP 2 3

Notice what happens to the decimal point when the SETEXP key is indexed. It is not
necessary to index the decimal point, as the SETEXP key automatically aligns it in the left
most position. The value of the exponent will also have to be indexed correctly. If the
number is in proper scientific notation, the value of the exponent is simply increased by 1.
Thus, the correct sequence of steps would be:

CLEAR X 1 7 5 SETEXP 2 4

All numbers indexed after the SETEXP key simply changes the value of the exponent. Since
the range of the exponent is -99 to +99, normally only I or 2 numbers are indexed after
the SETEXP key. However, if more than 2 numbers are indexed, the exponent takes on the
value of the last 2 numbers entered.

EXAMPLE

If the following sequence of steps is performed:
1. 1 2 SETEXP 2 3 4, the value of the exponent is 34.
2. For SETEXP CHS 3 57, the value of the exponent is -57.
3. For SETEXP 5 0 2, the value of the exponent should be 2. However, on the

display the exponent would be blanked out and the decimal point would assume
its natural position.

The 700 will remain in the SETEXP mode until a non numeric key or the decimal point key
is depressed.

V-REGISTER

The Y-Register is another work register used in conjunction with the X-Register for basic
arithmetic operations and data transfers. A number in the X-Register can easily be trans
ferred to the Y-Register by indexing the t key or ~ t key.

KEYSTROKE

CLEAR X
f
~

U
+

x

OPERATION

Clears X-Register

X into Y, X unchanged

Y into X, Y unchanged

X and Y exchanged

Y+X into Y, X unchanged

Y-X into Y, X unchanged

Yx X into Y, X unchanged

2-6

2-7

Step through the following examples to familiarize yourself with these keyboard
operations.

Y+X into Y, X unchanged

Absolute value of X into X, Y unchanged

Disregards decimal part of number in X and
puts integer part of number in X, Y unchanged

1/X into X, Y unchanged

x2 into X, Y unchanged

v'X into X, Y unchanged

LOG lo X into X, Y unchanged

lOx into X, Y unchanged

LOGeX into X, Y unchanged

eX into X, Y unchanged

rr into X, Y unchanged

Section 1/
Explanation of Keys

•
•

rr

!XI

INTX

l/X

EXAMPLE 3. Calculate 51 x 6.2 = + 62.0119219307
y'26'

1.51 t 1.51 t
2. 6 . 2 x 2. 2 6 vx +
3. 2 6-vx + 3.6 . 2 x
(Answer in Y,v126 in X) (Answer in Y, 6.2 in X)

EXAMPLE 2. Calculate (5)2 - (20)2 + (1/15)2 +V'70 = - 366.628955291

1. CLEAR X
2. 5 x 2 t
3.20 x 2 -

4. 1 5 l/x x2 +
5.70 vx + (Answer in Y,v'70 in X)

EXAMPLE 4. A=rrr2 r=.568x 10-6 = +.101355318827-11

1.5 6 8 SETEXP 6 CHS
2. x2 t rr
3. X (Answer in Y, rr in X)

EXAMPLE 1. Calculate.083+ 17.86+32.2= +50.1430000000

1. PRIME
2.·.083~

3. 1 7. 8 6 +
4.3 2 . 2 + (Answer in Y, 32.2 in X)

vx
LOGloX
lOx

LOGeX
x

e

,
\,
,

;i

.
•

Section II
Explanation of Keys

EXAMPLE 5. Calculate (12.8)?/3 = + 383.256852976

1. 1 2 . 8 LOGeX 1. 1 2 . 8 LOG! 0 X
2. t 7 x or 2.' 7 x
3.3 + 3.3+
4. t eX (Answer in X) 4. ~ lOX (Answer in X)

EXAMPLE 6. Reduce t~e angle 865 0 to an equivalent angle less than 3600 .

Formula 865 - INT ~865'; 360 = equivalent (145)
360 360 value

'. - - /
1. 865 t
2.3 6 0 +
3. tINT (X)
4.-
5.3 6 0 x (Answer in Y, 360 in X)

EXAMPLE 7. Calculate the following:

a. c = 2 T(r where r = .347 X 10-5 = .21802 .. xlO-4

b. M = 90 + 87 + 68 + 77 = 80.5
4

c. y'"M + 1 where M is the answer of 7 (b)
y'M

Answer = 8.984 ...
Hint: Use +t key

d. e5.3 + 105.7 + T(2 = 501397 .4 ...
e. Log (-.2) What happens? Why? PRIME and find

vC3. What happens? Why?

PROGRAM-ERROR INDICATOR

There are two lights located to the right of the Special Function Keys on the 700
keyboard. These two lights are used as error indicators. The one on the right indicates
MACHINE ERROR; the one on the left PROGRAM ERROR. The MACHINE ERROR
INDICATOR is discussed later.

The PROGRAM ERROR INDICATOR is turned on whenever an illegal operation is
performed (i.e., taking the logarithm or square root of a negative number, or dividing by
zero). Also, if a calculated result is greater than 1099

, the PROGRAM ERROR INDICATOR
will be turned on. Whenever the indicator is on, the arithmetic sign of the X-Register
also flashes.

OPERATIONS WHICH TURN PROGRAM ERROR INDICATOR ON

Calculated result greater than 1099

Division by 0
y:::x
LOG! oX where x< 0

(Overflow condition)

2·8

Section II
Explanation of Keys

Log e where x< 0
Searching Non-Existent Flag (See page 4-3).
Addressing An Illegal Data Register (Any Register Greater than 121)
Program Overlaps Core (See BYPASSING PROGRAM BLOCKS page 6-8)
Program Block is Missing An END PROGRAM Instruction (See
Definition of PROGRAM BLOCK (page 6-4)

The PRIME key is used to turn the PROGRAM ERROR INDICATOR off. In program
Illing, a SKIP IF ERROR command is available to test for this condition. Performing this
il'st will also turn the indicator off.

DATA STORAGE REGISTERS

[n addition to the X and Y work registers, the Wang 700 has up to 122 storage registers.
I ':ach register has a 12-digit mantissa with sign and a two-digit exponent with sign. The
registers are numbered consecutively from 000 to 121 and can be addressed both directly
;Ind indirectly for maximum convenience. Numbers are stored from and recalled to the X
Register. Each register can be used to add, subtract, multiply and divide. Any number in
storage can be exchanged or swapped with any number in the X-Register.

DIRECT ADDRESSING

Direct addressing of registers requires a two-step command. The first keystroke indicates
lile operation (i.e., to Store, Recall, Add, Subtract, Multiply, Divide, or Exchange). The
second keystroke indicates the register in which the operation is to be performed. To store a
nllmber, simply index the control key STORE DIRECT followed by a second keystroke
Identifying the register number.

TOGGLE SWITCHES AND SPECIAL FUNCTION KEYS

Eqch register is represented by a combination of toggle switch settings and special
III nction keys.

0000
80402010

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

••••
DODD

2-9

It

o 0

.... -_ ~-- -" .. ''- " .. -- '

2-10

Section II
Explanation of Keys

151412 13

o 0

o 0

1 109 10

IltllllJ

I Ii II II •
•, ,

~ . a -~...,

DODD

DODD

••••

••••

:;:::::;::::::::::
00 01 02 03 Wf 05 06 07 08 09 1 0 1 1 1 2 1 3 1 4 1 5

;.:.;.:-:.:.:<.:.

gg 01 02 03 04 05 06 ••.•·.0.••. :.1.................. 08
.................. _---L_-'--_I....-..--L_--l.-_~=_---L_-'--_I....-__l._----L_..l.-----'L---'

0080
80402010

BoBO
80402010

Notice the toggle switch setting. When the 07 key is indexed the register designated is 117
(80 + 20 + 10 + 7). When the 00 key is indexed the register designated is 110 (80 + 20 + 10
+ 0).

The toggle switches are set to the OFF (down) position. When the toggle switches are
in the down position, the special function keys designate the registers 000 to 0 15. The 4
toggle switches are labeled 80, 40, 20 and 10. When one of these toggle switches is switched
to the ON (up) position and a special function key is indexed, the register designated is the
sum of the values of the toggle switches and the special function key.

(1)

Depressing the special function key 04 while switch setting (20) is flicked ON designates
register 24 (20 + 4).

(2)

o 0

o 0

CI:::J£=Ji 11 1

I I[II Il~
.. . - ',., .

~ . . .

DODD

0000
••••

••••

00 01 :j!,III! 03 04 05 06 07 08 09 1 0 11 12 13 14 15

00 01 02 03 04 05 06 07 08 09 10 1 1 i~~[·i:1 13 14 15

oong
80402010

Section /I
Explanation of Keys

2-11

oogo
80402010

(3) Designate Register 32 in two different ways:

One way of doing this would be to set toggle switches 20 and 10 to the ON (up) position
and press the special function key 02.

Another way is the following:

Set toggle switch 20 in the up position and press the 12 key. Notice both combinations
20 + 10 + 2 and 20 + 12 designate register 32. Thus, different combinations of toggle switch
settings and special function keys can be used to identify a particular register. However. in

J:'
- _.',,,. -
';~ ,

-,< '-

Section II
Explanation of Keys

LEARN MODE the program code designating Register 32 would be 0302 or 0212, depend
ing on which method was used.

STORE DIRECT

To store a number in a register, simply index the number into the X-Register, press the
STORE DIRECT key followed by the register number.

EXAMPLE 1:

EXAMPLE 2:

Store 1r 2 into register 14

* Toggle switches down

Index 1r x2 STORE DIRECT 14

1r 2 is now stored in register 14 and is still
displayed in the X-Register.

Store .57 x 10 18 into Register 32

*Toggle switches 20 and 10 UP

Index 5 7 SETEXP 1 8---- --

STORE DIRECT 02

.57 X 1018 is now stored in Register 32 and
is still displayed in X.

i

* NOTE

For problems requiring less than 17 storage registers and for general usage, the
toggle switches are kept in the OFF (down) position and the Special Function
Keys are used to address Registers 000 to 015.

RECALL DIRECT

RECALL DIRECT recalls the number from the designated register into the X-Register.
The number appears in the X-Register and also remains in the storage register. The sequence
of steps to follow is the same as with STORE DIRECT.

I

EXAMPLE: Recall1r 2 from register 14

Index RECALL DIRECT 14

1r 2 appears in the X-Register and is still
in storage register 14.

2·12

Section 1/
Explanation of Keys

~

-..... DIRECT,

The -: DIRECT key is a handy command which allows the operator to exchange
a number in the X-Register with a number in any of the storage registers. The command
simply swaps the values of the X-Register and the internal register. Again the sequence of
steps to follow is -: DIRECT followed by the desired register.

EXAMPLE: Suppose 27.8 is in the X-Register and 1f2 is
in Register 14. To store 27.8 in Register 14 and
reca1l1f 2 to the X-Register in one operation:
Index ~ DIRECT 14

•

+DIRECT Adds number in X-REGISTER to value stored in register designated by
next keystroke. The X and Y Registers remain unchanged.

-DIRECT Subtracts number In X-REGISTER from value stored In register designated
by next keystroke. The X and Y Registers remain unchanged.

XDIRECT Multiplies number in X-REGISTER by value stored in register designated
by next keystroke. The X and Y Registers remain unchanged.

-:-DIRECT Divides number in X-REGISTER into number stored in register designated
by next keystroke. The X and Y Registers remain unchanged.

What happens if the same operation is performed again?

ADD, SUBTRACT, MULTIPLY, AND DIVIDE DIRECT (The X and V Registers Remain Unchanged.)

In addition to storing a l2-digit mantissa and a 2-digit exponent, the registers can be
lIsed as accumulators to add, subtract, multiply and divide. With each of these operations
the result is stored in the designated register and the X-Register and Y-Register remain
ullchanged.

The four arithmetic operations are'

A simple example will illustrate how each of these commands works.

EXAMPLE: Perform the following in Register 001

(13 x2) + 4
-3=7

3

1. 1 3 STORE DIRECT 01 Places 13 in Register 01--
and the X-Register

2. 2 X DIRECT 01 This sequence of steps- -
places the product equal
to 26 in Register Oland
2 remains unchanged in the X-Register.

3. 4 + DIRECT 01 Adds 4 to the Answer.-
30 is now in Register 01,
4 is in X-Register.

2-13

Section II
Explanation of Keys

4. 3 -;.-DIRECT 01-

5. - DIRECT 01

6. RECALL DIRECT 01

Divides result by 3
putting lOin Register 01,
3 remains in X-Register.

Since 3 is in X when
the command is given,
3 is subtracted from
10 putting 7 in
Register 01, 3 in X-Register.
Recalls final answer
to X. = 7

The fact that the result is put in the storage register rather than the X-Register can be
extremely useful if we are using a constant multiplier or divisor.

INDIRECT ADDRESSING

In addition to providing direct access to the internal storage registers, the Wang 700
offers an indirect mode of address. Both display registers are utilized for indirect addressing.
The Y-Register designates the register being addressed. As with direct addressing, the
X-Register is used as the work register. The command is performed on the number in X and
the result is placed in the internal storage register.

Indirect addressing is a valuable programming tool for saving program steps, especially in
repetitive matrix-type operations. Remember, indirect addressing requires only one step
the operation itself. The register on which the operation is performed is identified by the
number in Y.

INDIRECT KEYS

The indirect commands are identical to those used in direct addressing. They consist of
the following:

KEY OPERATION

STORE INDIRECT Stores number in X into Register
designated by number in Y.

RECALL INDIRECT Recalls number to X from register
designated in Y. Number also remains
in register.

:> INDIRECT Swaps number in X with number in,
register designated by Y.

+ INDIRECT Adds number in X to number in register
designated in Y. The sum is placed in
internal register. Number in X remains
unchanged.

2-14

- INDIRECT

X INDIRECT

-;- INDIRECT

Section /I
Explanation of Keys

Subtracts number in X from number in
register designated in Y. The
difference is placed in internal
register. Number in X remains
unchanged.
Multiplies number in X by number in
register designated in Y. The product
is placed in internal register.
Number in X remains unchanged.
Divides number in X into number in
register designated in Y. The quotient
is placed in internal register. Number
in X remains unchanged.

The following example illustrates how each of these commands would be used.

Example

Perform the following in Register 002 using Indirect mode of address.

7(5.8)-7.2 2+ 3 = 126.951111110
3

KEY
,

2 t--

7 ST INDIR-

5 . 8 X INDIR-------

7 . 2 - INDIR---

3 -;- INDIR-

~ ~INDIR

OPERATION

Places the register number in Y (The
register number is usually computed
in the program)

Stores 7 in register 002. The value is
now in both register 002 and the X
Register.

Multiplies the value (7) in Register
002 by 5.8,putting the result in 002
and 5.8 remaining in X.

Subtract 7.2 from the value in Register
002 and places result in Register 002.
7.2 remains in X.

Divides the value in Register 002 by 3.
The result is put in Register 002 and
3 remains in X.

Exchanges 7(5.8) - 7.2 in Register 002
3

with 3 in the X-Register.

Squares the value in X.

2-15

•

:;.::-'

•

STEP KEY CODE

000 MARK 0408
1 0700 0700
2 0 0700
3 STIND 0504
4 1 0701
5 + 0600
6 1 0701
7 0 0700
8 0 0700
9 SKIP Y=X 0509

10 SEARCH 0407
11 0700 0700
12 STOP 0515

2-16

:t... ~-.-,-"

RECALL RESIDUE

The RECALL RESIDUE key is a unique Wang 700 feature which can be of great value
to users who need greater than 12 digit accuracy. The RECALL RESIDUE key gives the

· .
.}

,-~...
-"'~
~,

~ ..

.'.).
~k'·.,......- .

".- .

- ~.

· or·

·
~.

' .
., .''.. "

•, ..,..
"~

".,

·

OPERATING PROCEDURE' PRIME GO
•

·,.'
FIGURE 1

+ INDIR Adds 7(5.8) - 7.2 2 to 3 in Register
3

002. The result is placed in Register
002 and 7(5.8) - 7.2 2 remains in X.

3

ADVANTAGES OF INDIRECT ADDRESSING

Two advantages of the indirect mode of addressing are:
1. It requires only one keystroke to perform the indicated operation.
2. By ,constructing a loop, a given program step sequence can operate on many different

setll of registers. A saving of many program steps can result from this technique.
~.o:

RECALL INDIR Recalls final answer = 126.951111110

·-;,.,
<

Section II
Explanation of Keys

,< "

Figure L is a simple program which illustrates the advantage of indirect addressing. The
, .e.

program stored 0 in the first 100 registers. Using direct access a minimum of 200 steps
- .".:

would betequired. (Two keystrokes per register - STORE DIRECT followed by each
register nufnber.) In contrast, this program requires only 13 steps to accomplish the same
thing. A savings of 187 steps!

,

Section 11
Explanation of Keys

user the option of double precision arithmetic for addition, subtraction, multiplication, and
division performed in any of the storage registers or the X and Y registers. By indexing
the RECALL RESIDUE key directly after performing one of these operations, another
12 digits of accuracy is acquired.

ADDITION, SUBTRACTION, MULTIPLICATION

When the RECALL RESIDUE key is indexed after performing an addition, subtraction
or multiplication, a residue is displayed in the X-Register, which if added to the first 12
digits of the result, gives an additional 12 digits of accuracy. Examples are given to show
how the RECALL RESIDUE key is used for addition, subtraction, and multiplication.

EXAMPLE 1:

OPERATION DISPLAY .

ADD ON 700

5024873058.28 5024873058.28 "+5024873058.28-------------
t +6.8520987
-

+ 6.8520987 6.8520987------- --
5024873065.1320987

+ "+.502487306513 +10-
•

~6.8520927

RESIDUE +.502487306513 +10
+.209870000000 -02

By indexing the RECALL RESIDUE key, the significant digits which would ordinarily
be lost in the shifting process are retained. The final result is always the algebraic sum of
the values displayed.

In subtraction, however, the residue might be opposite in sign to the answer. This should
not cause any difficulty since the residue is always algebraically added to the result.

EXAMPLE 2:

SUBTRACT OPERATION DISPLAY
ON 700

,. '. "

45024873058.28
.

5024873058.28 5024873058.28- - - - - - - - - -- - -
t ~6.8520987

-
- 6.8520987 6.8520987---------

tf..502487305143 +105024873051.4279013 --
~6.8520987

2-17

Section II
Explanation of Keys

RESIDUE +.502487305143 +10
-.209870000000 -02

In this example, the residue is opposite in sign to the result. If these two numbers aIT
added together, the correct result is generated. An easy way of performing this addition is to
decrease the 12th digit of the result by 1 (.502487305143 becomes .50248730512),
subtract each digit of the residue from 9 so .20987 becomes. 79012, and add 1 to the last
significant digit (.79013).

Multiplication works the same way as addition.

EXAMPLE 3:

OPERATION
MULTIPLY ON 700 DISPLAY

31415.9254998 3 141 5.9254998 +31415.9254998-------------
.728645297326 +.728645297326

t-

.728645297326-------------
/+22891.0663764

+.728645297326

The •answer IS x-
/+22891.0663765

22891.0663765732361535348 RESIDUE +.732361535348 -07
I

~ . ~ ~

The first twelve digits of the product are in Y; the last 12 digits are in X.

DIVISION

Using the RECALL RESIDUE key in division is slightly different from addition,
subtraction, and multiplication. In division, indexing the RECALL RESIDUE key gives
us a remainder. Using this remainder and the original divisor, 12 more digits of accuracy can
be obtained by performing the division again. Study the following example illustrating the
technique:

2-18

f?,'i
"

Section II
Explanation of Keys

I \;\MPLE 4:

DIVIDE 22
7

I 3.14285714285
/ /220000000

21
10
7
30
28

20
14
60
56

40
35

50
49

10
7
30
28

20
14
60
56

40
35

.___lII
Remainder

OPERATION
ON 700

22--
t-
7-

•
•-

RESIDUE

DISPLAY

/+22.000000000
+7

+3.14285714285
+7.00000000000./

"+3.14285714285
~.500000000000 -11

The +.500000000000 - 11 displayed in X after the RECALL RESIDUE key is pressed
indicates a remainder of 5 after the first 12 digits of the quotient are generated. Notice the
proper decimal position is retained (i.e., .5 x 10- 11

). Since the decimal position is retained
automatically, the original divisor should be expressed with the decimal point in the left
most position and an exponent value of 0 before performing the second division. Thus, .7 is
divided into the remainder .5 xl 0-11 and 12 more digits of the quotient are generated. To
preserve the first 12 digits of the quotient, the second division is performed in Register 000.

2-19

Section II
Explanation of Keys

Since the remainder is now in X

STDIR 00-
7 SETEXP* 7DIR 00-
RE DIR 00

*This command automatically aligns the decimal point and exponential
value of the divisor.

Read .714285714285 - 11 in the X-Register which if added to 3.14285714285 yields
24 digit accuracy for 22/7. If greater accuracy is desired, simply touch the RECALL
RESIDUE key to obtain the remainder (.5000000000000 - 23) and repeat the process.

This example illustrates the fact that the RECALL RESIDUE key performs the same
function when any of the 120 internal registers are used to add, subtract, multiply and
divide. The RECALL RESIDUE key is NOT limited to use solely with the X and Y registers.
IT SHOULD ALSO BE NOTED THAT THE RESIDUE MUST BE SAVED AFTER EACH
OPERAnON IF IT IS TO BE USED IN FURTHER CALCULAnONS.

WRITE COMMANDS

The 701 Output Writer provides the user with completely formatted alpha-numeric
output of his calculated results.

NUMERIC output consists of a two-step command. The WRITE key followed by a
format command will print the contents of the X-Register.

The format command specifies the number of digits to be printed out before and after
the decimal point

EXAMPLE

The HIGH ORDER digit
of the code specifies
the number of digits
before the decimal point.

'.

WRITE

02 03
~~. -.

The LOW ORDER digit
of the code specifies
the number of digits
after the decimal point.

The above command would print two digits before the decimal point arid three digits
after the decimal point.

An option to always print in modified scientific notation is available.

2·20

Section /I
Explanation of Keys

EXAMPLE

Display:

Command:

Output will appear as:

+.12345678123 - 40

WRITE

0015

.123456789l23ex - 40

ALPHABETIC output can be printed under program control by using the WRITE
ALPHA command. Indexing the WRITE ALPHA key places the 700 in alpha mode so that
:i1pha characters can be printed. The END ALPHA command takes the 700 out of alpha
11l0de.

EXAMPLE

WRITE ALPHA

H 0101
E 0205
L 0109
L - 0109
o - 0209

END ALPHA

(Places 700 in alpha mode)

(Takes the 700 out of alpha mode)

•

The above example would print the word '"HELLO."
Other control commands such as shifting to upper and lower case, carriage return, line

feed, spacing, backspace, and tabulation are all available on the Output Writer. All these
features are discussed in the 701 OUTPUT WRITER MANUAL.

GROUP1-GROUP2

These two keys are reserved for addressing optional peripheral equipment.

2-21

Section 11/
Programming

SECTION III
PROGRAMMING

CODING

All programmed operations are represented by a 4-digit code. A list of the keyboard
operations and their respective codes is given below:

700 PROGRAM CODES

CODE KEY CODE KEY

0400 + DIRECT 0600 +

0401 - DIRECT 0601 -

0402 x DIRECT 0602 x

0403 7 DIRECT 0603 •-•

0404 STORE DIRECT 0604 t
0405 RECALL 01 RECT 0605 t
0406 ~DIRECT 0606 (j
0407 SEARCH 0607 Ix I
0408 MARK 0608 INTEGER X

0409 GROUPl 0609 'IT

0410 GROUP2 0610 L09! oX

0411 WRITE 0611 L0geX

0412 WRITE ALPHA 0612 VX
0413 END ALPHA 0613 lOx

0414 STORE Y * 0614 eX

0415 RECALL Y * 0615 l/x

0500 + INDIR 0700 0

0501 - INDIR 0701 1

0502 x INDIR 0702 2

0503 7 INDI R 0703 3

0504 STORE INDIR 0704 4

0505 RECALL INDI R 0705 5

0506 C'INDIR 0706 6

0507 SKI P if Y;;;" X 0707 7

*ENTERED BY TOGGLE SWITCH SETTING

3·1

Section III
Programming

0508 SKIPifY<X 0708 8

.0509 SKIP if Y = X 0709 9

0510 SKIP if ERROR 0710 SET EXP

0511 RETURN 0711 CHANGE SIGN

0512 END PROG 0712 DECIMAL POINT

0513 LOAD PROG 0713 X2

0514 GO 0714 RECALL RESIDUE

0515 STOP 0715 CLEAR X

,I

I
I)

!

The four-digit code consists of 2
2-digit number.

halves: a high-order 2-digit number and a low-order

x X X X----- ----
HIGH

ORDER
LOW

ORDER

Each of these halves can assume the values 00, 01, 02, ... up to 15. Thus there are 16
different high and low-order digits and a total of 16 x 16 = 256 codes.

The 64 codes used in the above table are set aside for the keyboard operations. They
consist of all possible combinations that can occur when the high-order digit assumes the
values 04, 05, 06 and 07 and the low-order digit assumes the values 00 to 15 - a total of 64
codes (16 combinations are in each of the 4 categories).

GENERATING A CODE USING SPECIAL FUNCTION KEYS AND TOGGLE SWITCHES

While this procedure is not recommended for any of the "operation keys," any legal code
can be generated using the toggle switches and the special function keys. The special
function keys are used to define the low-order digit and a combination of toggle switches is
used to define the high order digit.

0000
80402010

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

••••
DODD

3-2

o 0

•

CORE MEMORY

o 0

XX
. .v

LOW
ORDER

:::::::::I'I II II:::::::::::J

XX
'-.;-"

HIGH
ORDER

DODD
••••

00 01 02 03 04 05 06 07 08 09 10 1 1 ::l~:::\ 13 14 15oDgo
80402010

Core Memory is organized into 121 or 122 data registers numbered consecutively from
000 to 121 or 122. Registers 000 - 119 are used for storing either program steps or data.
16 program steps occupy 2 data-storage registers. Register 120 and 121 are used exclusively
for data storage .(700B data register 121 not available.)

As stated previously, each programmed operation is represented by a four-digit code. The
four-digit code consists of two halves: a high-order two-digit number and a low-order
two-digit number.

Section" I
Programming

If the toggle switches are set as in the above figure and the special operation key 12 is
indexed, the square root of the number in the X-Register will be generated since the code
for square root is 0612. Naturally, the square root of a number would rarely be found
using this technique, however, this example is included to explain how to generate any of
the 256 codes. This technique is used most often with the Store Y and Recall Y commands.

. -

The toggle switches are labeled 80, 40, 20, and 10 for convenience in selecting the
data storage registers discussed in Section II. THEY CAN ALSO BE VISUALIZED AS
REPRESENTING THE NUMBERS 08, 04, 02,AND 01 FOR THE PURPOSE OF GEN
ERATING THE HIGH-ORDER DIGIT OF ANY LEGAL CODE. When a special function
key is indexed, the operation executed by the calculator is the command whose high-order
digit is defined by the setting of the toggle switches and whose low-order digit is the special
function key indexed.

~:,

'",
t

~-

,
f
(,

The program code forV"X is 06
'-.;-"

HIGH
ORDER

12
'-.;-"

LOW
ORDER

3-3

•
PROGRAM STEP NO.

Section III
Programming

•
PROGRAM STEP NO.

3 3
1 0
9 4
3 2
0 8
3 8

2 2
8 7
7 2

2 2
7 5
1 6

2 2
5 4
5 0

2 2

1 3 2
9 4

2 2
2 0
3 8

2 1
0 9

17 2
1 1
9 7
1 6
1 1
7 6
5 0

1 1

1 5 4
9 4

1 1
4 2
3 8

1 HIGH ORDER 1
2 1
7 LOW ORDER 2
1 0
1 9
1 6

0 0
9 8
5 0
0 0

1 7 6
9 4

0 0
6 4
3 8

0 0
4 3
7 2

0 0
3 1
1 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

088
089

096
097

084
085

086
087

098
099

092
093

082
083

090
09

094
095

102
103

104
105

100
10

110
11

108
109

106
107

118
119

114
115

116
117

112
113

'080
081

REG
NO.

3-4

•
PROGRAM STEP NO.

CORE STORAGE

6 6
3 2
9 4
6 6
2 0
3 8

6 5
0 9
7 2

5 5
9 7
1 6

5 HIGH ORDER 5
7 6
5 LOW ORDER 0

5 5
5 4
9 4

5 5
4 2
3 8

5 5
2 1

17 2
5 4
1 9
1 6

4 4
9 8
5 0
4 4
7 6
9 4

4 4
6 4
3 8

4 4
4 3
7 2

4 4
3 1
1 6
4 4
1 0
5 0

3 3
9 8
9 4

3 3
8 6
3 8

3 3
6 5
7 2

3 3
5 3
1 6

3 3
3 2
5 0

066
067

074
075

068
069

060
061

076
077

072
073

056
057

062
063

064
065

054
055

078
079

052
053

050
051

046
047

070
071

048
049

058
059

042
043

044
045

040
041

REG
NO.

9 9
5 4
9 4
9 9
4 2
3 8

9 9
2 1
7 2

9 8
1 9
1 6

8 8
9 8
5 0

8 8
7 6
9 4

8 8
6 4

~ 8
8 8
4 3
7 6
8 8
3 1
1 6
8 8
1 0
5 0

7 7
9 HIGH ORDER 8
9 LOW ORDER 4

7 7
8 6
3 8
7 7
6 5
7 2
7 J

5 3
1 6

7 7
3 2
5 0

7 7
1 0
9 4
7 6
0 I;

3 8
6 6
8 7
7 2

6 6
7 5
1 6

6 6

5 4
5 0

008
009

004
005

006
007

002
003

038
039

036
037

000
001

REG
NO.

I 010
(; 011, ,
•
!
• 012I

013

014
015

!
!

016,,, 017

!
j , 018
, 019
I,
i :,

020i
I 021,'
I !
!
! :
i ; 022
I
, 023
j

024
025

026
i i 027
!,
I i
i :

! 028
029

II
I :
i i
i 1
li
• •I •, '
i j
i i
j j

i i
I ;
'Il l, ;,,
-' j, ,
1 !: ,, ,
! !
• •i)

11i ,
, i
; j
j i
i 1
j !
I 1
ij
: j, .;, ,
ij

!I
I ;
• •i 1

i :
i '
i !
I :, ,
! ;,

j ;
i ;
i 1
I i
I •
• •
• •I 1

) i

I

030
031

i i
I;, ;,

0321 i

033
! '

034
035

Section III
Programming

FIGURE 1

STEP KEY CODE

000 2 0702
001 t 0604
002 + 0600
003 STOP 0515
004 END PROG 0512

I~, A Program code step occupies two digits of storage, one digit in each of two adjacent
'iii) registers; the high-order digit of a code occupying one register; the low-order digit the othn10i; register.
I Program steps 000 to 015 occupy registers 118 and 119. The following routine to add
~/ 2 + 2 is loaded into Registers 118 + 119 as illustrated.
ff·.··
~:::', '

rj"? "
t~·
<,~'--

~,

f'-'
5~;::
l/)'0>.
ltt

~l,-~-__
~'T

~t:
,c"

if'"•... '."
0,

~:::
;;;/',c_ -,
r'
F

r:j::
;::. -

~\,
•

"t Registers

118

119

05 05 06 06 07

12 15 00 04 02

015 014 013 012 011 010 009 008 007 006 005 004 003 002 001 000

PROGRAM STEP NUMBERS

high
order
low

order

The high-order digit of the program code is loaded into Register 118, the low-order digit
of the code in Register 119. Each pair of registers can accommodate 16 program steps. The
program steps are numbered 000 to 959. Step 000 is located in Data Registers 119 and
118, Step 959 is located in Data Registers 000 and 001. (See Page 3-4) It shows exactly
what program steps are located in each register. It is advisable to use registers 000, 00 1, 002
003, etc. for data storage and registers 119, 118, 117, etc., for program storage. In this way
data will be stored in one end of core and program operations will be stored in the opposite
end of core.

NUMBER OF REGISTERS OCCUPIED BY A PROGRAM

If a program is 7 steps long, 2 data registers are being utilized for storing the program. If
the program is 35 steps long, 6 data registers are being used for program steps. To determine
how many registers are being utilized:

1. Divide the number of program steps by 16.
2. Round the answer to the next whole number.

Example:
33
16 = 2.0625 becomes 3

3. Multiply the whole number by 2 to find the equivalent number of registers being used.

3-5

CORE MEMORY

Accommodates
Prog. Steps
000 to 015

Accommodates
Prog. Steps
016 to 031

7006 (register 121 not available)

•

-" 6 (2) = 12 registers

Example

Program Step Numbers

Program of 88 steps occupies 12 registers

+ 1I1111111

9
12 Digit Mantissa + EX

5
9

9 9
4 2
3 8

Data

+

t
Program

0 0
3 1
1 6

0 0 0 0 0
1 0 0 0 0
5 3 2 1 0

003

121

118

001

116

000

002

117

120

119

88
16=5.5

See Section V, Page 5-4 (for short program to perform this calculation.)

Section 11/
Programming

1

i:
):
ii

I:
F
ii
"

,I;
,!

il

3-6

4-1

Section IV
Programming Concepts

20x2 + 5x in y

20x2 + 5x + 7.2 in y

20x2 in y

REMARK
Key in x0404

0000
0713
0604
0702
0700
0602
0705
0402
0000
0405
0000
0600
0707
0712
0702
0600

CODE·

2
+

•

x
5
XDIR
REG 00
REDIR
REG 00
+
7

STDIR
REG 00
x2

t
2
o

OPERATION

SECTION IV
PROGRAMMING CONCEPTS

Notice "the program" is simply the steps the user would perform if he were doing the
calculation manually on the keyboard. However, the program needs some sort of command·
to tell the calculator where to start and where to end its calculation. This is the purpose of
the SEARCH and MARK commands.

PROGRAMMING CONCEPTS

To exploit the full programming capability of the 700, a few basic programming concepts
must be discussed. These are the concept of a branch, a subroutine, a loop and a decision.

Usually, the main part of a program advances one step at a time in a linear and
continuous fashion. Each operation is performed consecutively one after the other. A
program to evaluate the polynomial y = 20x2 + 5x + 7.2 for different values of x would be:

Section IV
Programming Concepts

MARK AND SEARCH COMMANDS

Flags (names or marks) in a program are set by the MARK key followed by a second
keystroke. To set a flag requires 2 keystrokes: MARK followed by any of the 256 legal
codes. Thus, there are 256 different "names" or flags which can be used in a Wang 700
program. For the simple program we have written to evaluate Y = 20x 2 + 5x + 7.2, the
number key 1 is used as a distinguishing flag. Thus, the program is preceded by the 2
keystrokes MARK 1. To end the calculation simply add a STOP command. The complete
program thus becomes:

OPERATION CODE REMARK
MARK 0408
1 0701
STDIR 0404
REG 000 0000
x 2 0713

t 0604
2 0702
0 0700
x 0602
5 0705
XDIR 0402
REG 00 0000
REDIR 0405
REG 00 0000
+ 0600
7 0707
• 0712
2 0702
+ 0600
STOP 0515

Flags tell the 700 where to start its calculations. They indicate the destination of a
SEARCH command. In the SEARCH command, 2 keystrokes are required: SEARCH
followed by a second keystroke which identifies the flag or mark to find. Thus, the
operating procedure for the above program would be:

Key X; SEARCH 1

and the operations between MARK 1 and the STOP command would be executed in
sequence.

4-2

Section IV
Programming Concepts

Generally, the numeric keys 0, 1, 2, ... 9 are used as flags or markers for starting
general programs. However, any programmable key on the 700 keyboard can be used as a
name or marker. A program can start with a MARK eX and to locate this mark, simply
SEARCH eX. It should be clear that when the MARK and SEARCH keys are indexed the
calculator interprets the next· keystroke as a name or flag and not as any other type of
operation. When a SEARCH X command is given the 700 searches through core to locate
the designated marker. If on scanning core it doesn't find the mark, the program stops and
the PROGRAM ERROR INDICATOR goes on indicating there is no such mark in core.

x

2

STOP

1T
/

------- MARK

,

t

x

2

2

SEARCH

3

MARK

t
SEARCH

2

MARK

1The program for evaluating the poly
nomial follows a linear sequence of
steps. The program executes step 000,
then 001, then 002, and so on through
to the last step. However, the Wang 700
does not have to follow a linear sequence
of steps. ltis possihle for the 700 to
start executing commands from step 025
and go through to step 052, then jump
to step 075 ignoring all· the commands
between step 052 and 075. To break out
of a linear sequence of steps and to jump
about in a program is called branching.
Both conditional and unconditional
branching are possible on the 700. The
SEARCH and MARK commands are
used respectively for branching and for
defining the destination of a branch.

4-3

Section IV
Programming Concepts

..

:;

1. PRIME; SEARCH l
2. Key X, GO

Repeat 2 for all x
3. SEARCH 2-

Read ~x in X
Read N in Y

4. GO
Read ~X2 in X

OPERATING INSTRUCTIONS

4-4

1
0

s:: t0...... STDIR......
C':l
N REG 00...........
C':l

STDIR..............
s:: REG 01.......

MARK
0808
STOP
+DIR
REG 00 ~x

x2

0.. +DIR0
0 REG 01 ~X2....:l

1
+ n

.. --
SEARCH
0808
MARK
2
REDIR
REG 00

VJ STOP ~x...........
;:l REDIRuo
Q)

~ REG 01
STOP ~X2

A.To find A == 1Tr2 : Index r SEARCH 1
The program starts by squaring r and putting the result in Y, it then branches to
MARK 2 ignoring all commands until it encounters the designated flag, and then
multiplies r2 by 1T for the final result in Y.

B. To find C == 21Tr: Index r SEARCH 3
The program ignores the commands preceding MARK 3 and starts by putting r in Y
and multiplying it by 2. It then branches to MARK 2 ignoring all commands until it
encounters the designated flag, and then multiplies 2r by 1T for the final result in Y.

As this program demonstrates, the SEARCH command can be part of a program, or can
be keyed in by the operator, or both. In either case, upon encountering this command the
program branches immediately to the designated k. MARK and SEARCH commands can
be located at any point or step in the program.

The program on the preceding page evaluates A == 1fr2 or C == 21fr, depending on which
steps are executed in the pro~ram.

MARK

",,,,,,",,,_'-"' __~"'.'''-:';~' __ ':~'' "-,-c,-,y'- ""''- '_'..-_'-~.-'''~-':~'' :.. ,..:.,.~':;: ,:,-- _ '-"_-"~~-;-;-;:.-'; - ._~'.:", -,-_.._--~- .. - .- •••.. _.•_.-._,,-- _~--_ ..,.- --.---~--- -'-"-- .-~ ..""---'"----'
." .. "'~--~.,."'"'.,;_.,.,,._ ..."' ",--', _., "'.'.-,>," - --'' ..

--~

':
'-',,:
f
L;,..

l

Section IV
Programming Concepts

The program on the preceding page further illustrates the idea of branching and intro
duces the important concept of looping. The program computes the statistical sums; ~x and
~ x2 for any number of x values. The first set of instructions initializes the registers by
storing 0 in Y, Register 000, and Register 001. The second part of the program forms a loop
which accumulates the ~ x in Register 000, ~ x2 in Register 001, and the number of points
entered in the V-Register. The same operations are performed on each x-value. The program
exits from the loop when a SEARCH 2 command is given. The final set of instructions
recalls the answers to the displaY.

SUBROUTINE

Another idea closely related to branching is the concept of a subroutine. A subroutine is a
part of a program (a sub-program) which appears several times within the overall program.
Subroutine capability allows the program to branch to a specified routine, perform the
calculations, and then return from where the program originally branched.

On the 700, a single keystroke is needed to branch to a subroutine. A set of 64 operation
codes is reserved for this purpose. They consist of the 64 combinations which occur when
the high-order digit of the 4 digit code assumes the values 00, 01, 02, and 03. A complete
list of these codes is given in Table 1.

~

0000 0100 0200 0300
0001 0101 0201 0301
0002 0102 0202 0302
0003 0103 0203 0303
0004 0104 0204 0304
0005 0105 0205 0305
0006 0106 0206 0306
0007 0107 0207 0307
0008 0108 0208 0308
0009 0109 0209 0309
0010 0110 0210 0310
0011 0111 0211 0311
0012 0112 0212 0312
0013 0113 0213 0313
0014 0114 0214 0314
0015 0115 0215 0315

TABLE 1

EXAMPLE: Calculate the following for Z

5x2 + 6x + 3Z = ~ ~-

v!5y2 + 6y + 3

OPERATING INSTRUCTIONS:

INDEX X SEARCH 0

Y GO

Read Z in Y

4-5

Section IV
Programming Concepts .

SUBROUTINE

,

STEP KEY CODE MARK
0200

000 MARK 0408
STDIR

001 0 0700
REG 00

002 SR 0200 0200
x2

003 t 0604
ST DIR

004 CLEAR X
REG 01

005 STOP
5

006 SR 0200
XDIR

007 n
REG 01

008 •-•
6

009 CLEAR X
XDIR

010 STOP
REG 00
REDIR
REG 00
+DIR
REG 01
3
+DIR

I REG 01

iRE DIR
REG 01
RETURN

When the first 0200 command is encountered at step 002, the program branches to
MARK 0200. At the RETURN command, the program branches back to step 003 and
continues on with the program. At the second 0200 command, the program again branches
to the subroutine defined by MARK 0200. However, at the RETURN command the
program branches back to step 007. There is no limit to the number of times a subroutine
can be addressed and executed. The SR preceding the command in the KEY column is
simply a mnemonic device indicating to the reader that a subroutine is being addressed.

It should be noted that the subroutine addressed through one of the 64 designated codes
in Table 1 is preceded by a MARK XXXX of that same code and terminated by a RETURN
command; otherwise, the calculator will not know when to return to the spot from which
it originally branched.

The 64 codes listed in Table I do not necessarily have to define a subroutine. They can be
used as regular marks and would then be addressed by the 2-step command SEARCH
XXXX. However, it is generally considered wiser to reserve these codes exclusively for
defining subroutines.

4-6

Section IV
Programming Concepts

MULTI-LEVEL SUBROUTINES (Or a Subroutine within a Subroutine)

On the WANG 700, multi -level subroutines are possible. What does this mean? An
example will best illustrate this concept. In the polar conversion in the TRIG PACK, the
following formula is used to find

e = tan-I y
-x

Therefore, the polar conversion subroutine addresses the TAN-I X subroutine. This means
the 700 must remember what step to branch back to after each of the two RETURN
commands are executed.

The 700A is capable of remembering 2 return addresses. Thus, it has a double - level
subroutine capability. 700B is capable of 5 return addresses, thus it has a five level sub
routine capability. Figure 2 illustrates this concept graphically. The program branches to
subroutine, it immediately branches to this routine, executes it and on encountering the
RETURN command, branches back to the polar conversion routine which it continues to
execute. When the second RETURN command is encountered, control branches back to the
main program and the remaining steps are executed.

USER PROGRAM

To Polar Subroutine

MARK

o
MARK

TO POLAR

4-7

MARK
TAN-I X

SUBROUTINE
WITHIN

SUBROUTINE

,'-
1
;-
,,

Section V
Decision Commands

SECTION V
DECISION COMMANDS

DECISIONS

The Wang 700 has four decisions it can perform. They are used to check for the existence
of certain conditions. If the condition is met, the program skips the next two steps. If the
condition is not met, the program executes the next step. The four commands are SKIP IF
Y = X, SKIP IF Y ;;;, X, SKIP IF Y < X, and SKIP IF ERROR.

11) SkipifY=X

This command checks to see if the value in the Y-Register and X-Register are equal. If Y
= X the program skips the next two steps. If Y does not equal X the program continues with
the next step.

As a simple example:

Path for STEP KEY Path for
Y*X 000 MARK

Y=X

001 0

002 SKIP Y = X

Executes 003 3 SKIPS STEPS
Steps 3 & 4 004 STOP 3&4

005 4

006 STOP !
This program will put 3 in the X-Register if Y is not equal to X, and a 4 in X if Y = X.

NOTE

In testing for the condition Y = X, the programmer should keep in mind the
necessity for absolute equality of the numbers in X and Y. A condition which is
not ordinarily found in analytical cqmputations. Discrepancies often occur
between the true value and the calculated value of a number.
Illustration:

Calculate Y =B]x 3 ; 1

5 -1

Section V
Decision Commands

If a I is placed in X and the command SKIP IF Y = X is given, the calculator
will treat the numbers as being unequal. Any good book on numerical analysis
gives a full discussion on these discrepancies which occur in approximation
theory.

(2) Skip if Y ;" X

This command checks to see if the value in the V-Register is equal to or greater than the
value in the X-Register.

In the program below: ~~_~
If Y ;;. X the value j y 2 + X2 is calculated.
If Y < X the value (Y + Xl2 is calculated.

Path MARK Path MARK
ForY;" X

0 Y< X 0800

SKIP y;;> X +

SEARCH)
0800 x'

x' STOP

()
x'

+

)
-.IX

STOP

5-2

Section V
Decision Commands

13) Skip if Y < X

If the value in Y is less than the value in X, the program skips the next two steps.
I r the value in Y is equal to or greater than X, the next program step is executed.

Loop

MARK

o
)
I

ST DlR

REG 00

MARK

0800

)
XDIR

REG 00

I

Calculate N' for N > a
Key N; SEARCH a

This program calculates the
value N! for all N > O. N is used
as a counter and is also used to
generate the product N (N-I)
(N-2) .. 1 ~ N!

SKIP Y < X--,

SEARCH

'----0800

REDIR ----'

REG 00

STOP

When
Y<X
Exits
from
Loop

(4) Skip if Error

The final decision command SKIP IF ERROR can be used in a variety of ways to check
for certain conditions (see page 2-8 to review what operations turn the PROGRAM ERROR
INDICATOR on). Testing for these conditions turns the program indicator off. The
following program distinguishes between positive and negative numbers. If the number in X
is positive, the program will branch to MARK 0800. If it is negative, the program finds the
IXI and stops.

5·3

Section V
Decision Commands

MARK

o

If x < 0 value in x
remains unchanged,
JX command simply
turns PROGRAM
ERROR INDICATOR

Note:

SEARCH

0800

SKIP IF ERROR Path for x ;;. 0
Branch to MARK 0800

IXI

STOP

Path
for
x<O

011.

The following program uses the SKIP IF ERROR command to calculate the number of
data registers a program occupies on the Wang 700. It also illustrates the INTEGER X
command.

MARK

o
I

6

OPERATING INSTRUCTIONS

I. Key number of program steps,
SEARCH O.

2. Read number of data registers
occupied, in Y.

I
INT X

x

STOP

()
\/x

SKIP IF ERRORIf there is
a remainder I
after divid- { +
ing by 16, 2
the number
in Y must
be increased
by I.

Path if there is a remainder
of 0 after dividing by 16.
Division by 0 turns PROGRAM
ERROR INDICATOR on.
Indicator is turned off when
SKIP IF ERROR command is
executed.

PROGRAMMING TECHNIQUES

Looping Using a Counter

Looping is an important programming tool. The decision commands are most frequently

5-4

Section V
Decision Commands

used to set up loops within programs. Counters are set up to "count" the number of times a
calculation is performed.

Suppose the sum Y = x + x 2 + x 3 +....+ xn is to be calculated for various values of x. The
program below sets up a loop to calculate this sum for any number of terms. The value of n
determines how many terms in the sum will be calculated.

MARK Key X OPERATlNG INSTRUCTIONS

0 Key x SEARCH 0

ST DlR Ini tializes KeyN GO

REG 00 Registers Read x in V-Register
~ xn in X-Register

I
To un derstand the method used

ST DlR in the program, Rewrite the
REG 01 sum as Y = To + T j + T 2 + ... Tn
0 where To = x

ST DJR T j = xTo
T, = xT jREG 02
Tn=xTrn

STOP Key n The program starts the sum with x
t counter in Y and uses the recursive formula
MARK x (xn- l) to calculate each successive
0800 term. N is used as a counter. The

RE DIR x program performs the same calculation

REG 00
n times. Each time the loop is executed
the counter is decreased by 1. When

XDJR N = 0 the loop is terminated and the
REG OJ x(x n- 1) final sum is displayed.

~ RE DlR<1)

E " REG 01.~ x~

" Vol +DJR-0 -0
<1)

" REG 02 ~xnE '"~

"<2 x 1 Decrease N
~

~

" <1) by J0- -
~

~ '".- - SKIP Y<X Exits from"0- u
0 - loop when0 '" SEARCH
-l u

N=O0800

RE DlR

REG 00

)
REDIR

REG 02

STOP

5·5

Section V
Decision Commands

Another slightly different counter is found in the program which stores O's in the first
100 storage registers. In this example, the counter is constantly increasing until it reaches
a value of 100. It also serves to designate the storage register being addressed.

I,

~-MARK

o
o
ST INDIR
I
+
I
o
o
SKIP Y = X
SEARCH

L---O
STOP__-'

PRIME
SEARCH 0

Looping Without a Counter

Often there is no way to predetermine exactly the number of times a loop is to be
performed. Other criteria have to be used.

EXAMPLE

In calculating the following sum for X > I

1+ l
x 2

+ _1
x4

+ _I
x 6

+ + I
x 20 '

for specified accuracy the number of terms to be calculated depends on the value of x.
However, it is obvious that each successive term gets smaller and smaller and eventually
approaches zero. If 12 digits of accuracy are needed, the calculation can be carried out until
the last term gets so small that it does not materially affect the overall sum. This occurs'
when the term becomes smaller than 10 - 11 and the overall sum on the 700 no longer
changes its value when a term is added to it.

To write the program. it is convenient to rewrite the series as

S=To +T 1 +T2 + +TnwhereTo = 1

T,=-'zTox

5-6

Section V
Decision Commands

MARK PRIME. Key X, SEARCH 0
. -

0

X
2

ST DIR
REG 02

I

ST DIR
REG 01

I
MARK

0800
• REDIRU"l

0 REG 02~

~.- .;. DIR~

-0
-0 REG 01'"-0 REDIR"'"" REG 01 Exchanges TnE-

()~ and S to save
"~ previous S.'" +-;:l
'" SKIP Y = X Exits-'"U from loopSEARCH

0800 when addition
of term no

STOP longer affects
sum.

The program calculates the sum
k I
~ to 12 significant digits

Xn
n=O

for any value of x. The loop is performed many more times fat a smaller value of x than it
would be for a larger value of x, simply because the series converges faster for large values of
x. In all cases when Tn < 10- 1

I, the loop is terminated and the final sum is displayed in x
and y. If only three digits of accuracy were needed, each successive term could be compared
to 10-3 ; and when Tn < 10- 3, the loop could be terminated.

5·7

Scanning a Table

Section V
Decision Commands

When given the number of items to be purchased, this program calculates the discount
figure which if multiplied by the unit price calculates total cost.

0%
10%
13%
15%

DISCOUNT

Read discount figure in Y, number
of items in X.

Key N = number of items to be
purchased SEARCH 0

oto 10
11 to 25
26 to 50
over 50

QUANTITY

BRANCH
For 11 <;; N <;; 25

BRANCH
For 26 <;; N <;; 50 ---1

5-8

BRANCH
ForN <;; 10

MARK
o
t
I
ST DIR
REG 00
I
1
SKIP Y;;;' X
SEARCH
0800

o
3
- DIR
REG 00
5
I
SKIP Y;;;' X
SEARCH
0800

I
-DIR
REG 00
2
6
SKIP Y;;;' X
SEARCH
0800

Another frequent use for the decision command is to scan a table or schedule. In many
situations, calculations or formulas vary with the class or range the input variable lies in.

A typical example is the pricing of articles. Discounts are often allowed according to the
number of articles purchased. Below is a schedule for quantity discounts.

N> 50

Go

o
2
- DIR
REG 00
MARK
0800 -----------'
REDIR
REG 00

()
x

STOP

Section V
Decision Commands

The GO key is used to continue the program at the next step after the STOP
instruction. One important technique that should be pointed out is the idea of
using the GO command as a do nothing or no-operation instruction.

EXAMPLE

If two angles are unequal, we want to find the sine of the angle in X and use the
sine of this angle in future calculations. If the two angles are equal, the angle itself
will be used for future calculations. The program would be similar to the
following:

Executes
subroutine
if y l' x and
returns to
Step 004

STEP

000

001

002

003

004

005

006

007

008

009

KEY

MARK
0700

SKIP Y = X ---,

SR 0002 (sinx)

GO

IX I -------'

t
7T

x

5·9

Jumps to Step 005
ify = x

Section V
Decision Commands

If the angles are unequal, the command SR 0002 tells the program to execute the
sine subroutine. Upon completion of the subroutine, the program branches back
to step 004. At this point, we do not wish to perform any operation because the
SKIP command will skip two program steps if the condition is met. We want 10
perform the same calculation on the variable in X whether it is the sine of the
angle or the angle itself. Therefore, a GO command is placed in step 004 which
simply tells the program to continue on to the next step. In this way, the GO
command can be used as a no-operation command which simply causes the
program to continue on without changing or destroying any values.

'1

I
J

•,
.
J
~,
0,

,,

::

,

j

Section VI
Programming Techniques

SECTION VI
PROGRAMMING TECHNIQUES

USING TAPE CASSETTE
TAPE CASSETTE

Programs are saved on standard 4" x 2 1/2" x 1/2" magnetic tape cassettes for later use.
Up to 20 blocks of programs can be saved on one tape cassette. The tape cassette consists of
two tracks and each track can accommodate ten "program blocks."

INSERTING TAPE CASSETTE

6-1

Section VI
Programming Techniques

TAPE DRIVE OPERATIONS

I R'I.'''' II 'OfI"ASIb I I<••,n RlAby II l\£M'm I

0000 ----
0000 I I I I I I I I I I I I I I I I I 0 0

G B

There are four basic buttons associated with the tape-drive mechanism.
I. The RELEASE button allows the operator to remove or insert his tape cassette.
2. The FORWARD button moves the tape in a forward direction when depressed.
3. The TAPE-READY button should be pushed when the 700 is to execute a tape

instruction. This button places the head of the tape readcr in contact with the tape.
4. The REWIND button rewinds the tape when depressed.

MACHINE ERROR INDICATOR

A MACHINE ERROR INDICATOR is located just to the right of the PROGRAM
ERROR INDICATOR. If data is not transferred properly from or to the tape, the light will
go on and the sign of the X register flashes. This indicates that the information has not been
transferred properly and the operation should be repeated. This flashing light should NOT
be confused with the PROGRAM ERROR INDICATOR located just to its left (See page
2-8). PRIME will turn both error indicators off.

6·2

Section VI
Programming Techniques

HOW CAN A PROGRAM BE PROTECTED ONCE IT IS PUT ON TAPE?

There is no need to "erase" the tape. A new program will simply write over the old
program. To insure that a good program stored on tape is not written over or lost accidently.
each track of tape can be protected.

TAPE PROTECfOR FOR SIDE I

REMOVAL OF PLASTIC INSERT
PROTEC.'S SIDE I OF THE TAPE.

TAPE PROTECTOR FOR SIDE 2

REMOVAL OF PLASTIC INSERT'~~~
PROTECTS SIDE 2 OF THE TAPE.

Figure I

Figure I shows a top-view of the tape cassette. There are two small openings with a small
plastic covering shown in Figure 1. When this small plastic covering is removed, nothing can
be recorded onto or erased from one side of the tape.

Once the plastic is removed, a piece of tape can be used to cover the opening if the tape is
to be used for recording other programs.

WHAT IS A PROGRAM BLOCK?

A program block consists of any part of a program (Up to 960 steps) which can be loaded
into core at one time. It must be terminated by an END PROGRAM instruction. If an END
PROGRAM instruction is not given and the RECORD PROGRAM key is indexed, the
PROGRAM ERROR INDICATOR will go on after transferring all of core to the tape.

In this instance, the PROGRAM ERROR INDICATOR goes on because there is an error
in programming (Le., no END PROGRAM) and not a machine malfunction.

A program block must contain:
1. 960 program steps or less.
2.An END PROGRAM as a final instruction.

NOTE

If a program is 960 sleps, Ihe END PROGRAM is located at step 959. Even
though the END PROGRAM command is not missing. the PROGRAM ERROR
iNDiCA TOR will go on when this program is transferred to tape. if this is the
case (i.e., a 960 step program), simply PRIME and ignore the PROGRAM ERROR
iNDiCATOR.

6-3

~, .",.
. ' Lc

Section VI
Programming Techniques

END PROGRAM

The END PROGRAM key defines a "program block." It is used to signal the end of a
RECORD PROGRAM or LOAD PROGRAM operation. An END PROGRAM command is
the last instruction to be transferred in a RECORD PROGRAM or LOAD PROGRAM
instruction. Therefore, each program must be terminated by an END PROGRAM command
if it is to be transferred onto tape.

It is recommended that only one END PROGRAM instruction be loaded into core at any
one time. The primary reason for this is due to the VERIFY PROGRAM instruction. When
the VERIFY PROGRAM key is indexed, the 700 always starts summing at step 000 and
continues until an END PROGRAM instruction is encountered. Therefore, if additional
programming instructions are located after the END PROGRAM, they will not be included
in the sum generated by the VERIFY PROGRAM instruction. Therefore, when adding
additional programming steps, write over the END PROGRAM instruction. This can be
accomplished quite easily if it is remembered that the PC is set to the step that the END
PROGRAM instruction occupies after a VERIFY PROGRAM has been executed. Therefore,
after indexing VERIFY PROGRAM, simply index LOAD PROGRAM to load the additional
steps or switch to LEARN MODE and start indexing them.

Always remember to end your program with an END PROGRAM instruction. This
instruction is required for transferring the program from corc to tape.

NOTE

An END PROGRAM command must not be preceded by a program code
whose high-order digit is 04. Logically, an instruction whose program code is
04XX would never precede an END PROGRAM command. (See code listing
page 3-1.) One instance which might occur is the following:

PROGRAM
•••

MARK
0402

•••
SEARCH
0402
ENDPROG

If the above program were loaded in core, the program would execute properly.
However, if the program were to be transferred from core to tape the END
PROGRAM instruction would not be recognized as an "END PROGRAM"
command. All of core would be transferred to tape and the PROGRAM ERROR
INDICATOR would be turned on indicating there was no END PROGRAM
terminating the program block.

6-4

r
!
i
f

I
t
[
I,

t
!

Section VI
Programming Techniques

HOW TO "LEARN" A PROGRAM INTO CORE FROM THE KEYBOARD

A program is recorded into core by the following:
I ..Place the 700 in LEARN MODE.
2. SET PC at the desired step where the first program command will be stored.
3. Index the program commands.

Remember to always end your program with an END PROGRAM instruction. This
instruction is required for transferring the program from core to tape.

EXAMPLE

Program to find C: C ~ .ja' + b' (Pythagorean Theorem)

i'

STEP KEY CODE

000 MARK 0408 Key a
l' 001 a 0700 SEARCH a
•

002 x' 0713 Key b GO
"~ 003 t 0604 Read c in X','
',c. 004 STOP 0515
, 005 x' 0713
•
· 006 + 0600

.

j•• 007 0605'-

008 VX 0612
009 STOP 0515
010 END PROGRAM 0512

The following instructions will introduce the above program into core:
1. Place 700 in LEARN MODE.
2. SET PC to the step you want the first program command to occupy. (To put the first

program command at Step 000, SET PC 0 0 0.)

NOTE

An easy way to set the PC at 000 is by depressing the PRIME key.

6·5

...

Section VI
Programming Techniques

3. Now simply index the program commands

MARK
o
x'
t
STOP
x'
+

I
vx
STOP
END PROGRAM

Notice while the program is introduced into core the PC displays the program skI'
number and program code currently located at this step. Indexing a key causes the progr;1I11
code of the keystroke to replace the existent code. The PC is increased by one and displ"y·.
the next step and current code. To see what is now loaded into core beginning at step OUII.

PRIME and step through your program.

KEYSTROKE

PRIME
STEP
STEP

000
001
002

READ IN X

04
07
07

08
00
13

The above indicates that MARK is now stored at Step 000, 0 at Step 001, x2 at OU'.I

To execute the program, place the 700 in RUN MODE

Key a = 3 SEARCH 0
Key b= 4 GO
Read c = 5 in X

By stepping through the program in RUN MODE, each step will be executed Olll' ski' .1

time. In LEARN MODE the program is not executed. While stepping through th" I"· .. ·' .
in RUN MODE, one can see the step number and program code of the instructiol1 :Ii,,·,,' .
be executed if the 700 is placed in LEARN MODE. Simply remember to put the' ilill 1

in RUN MODE before indexing the STEP key; otherwise, the instruction will 11 .. 1

executed.

HOW TO TRANSFER A PROGRAM FROM CORE TO TAPE

RECORD PROGRAM

A program can be stored for later use on a magnetic tape.
To transfer a program from core to tape:

I. Place 700 in RUN MODE.
2. Insert the Tape cassette; push TAPE READY button.

6·6

t.
!

Section VI
Programming Techniques

3. SET PC to the first step of the program.
(For the above example simply depress PRIME key.)

4. Index RECORD PROGRAM key, and all the steps from where the PC is set up to and
including END PROGRAM will be loaded onto the tape. (For this example, Steps 000
to 010 are transferred to tape.)

NOTE

RECORDING DATA
Pairs of data storage registers can be recorded on magnetic lape for later use. See
diagram (page 3-4). To transfer data from core to tape:

(J) Place700RUNMODE
(2) Insert Cassette, push TAPE READY
(3) SET PC to program step number corresponding to the data registers. An END

PR OGRAM command must be located immediately following the data.
(4) RECORD PROG

The same procedure to load the data in any pair of registers is used, except LOAD
PROG replaces RECORD PROG in step (4).

HOW TO LOAD A PROGRAM FROM TAPE INTO CORE

The LOAD PROGRAM key transfers a program block on magnetic tape to core.
The procedure is to set the PC and index the LOAD PROGRAM key. The first program

command located on the tape is then stored in the step designated by the PC and the
program continues loading until an END PROGRAM instruction is encountered. The END
PROGRAM instruction is the last step to be loaded into core. When the loading is termi
nated, the PC is automatically set to the first step just loaded into core.

In general, four steps are required for loading a program:
1. Place 700 in RUN MODE.
2. Insert Tape Cassette, push TAPE READY button.
3. SET PC to first step in core that program will occupy.
4. Index LOAD PROGRAM.

Since ten program blocks can be saved on one side of a tape cassette, what happens if the
third block is desired?

If the third block is to be loaded beginning at Step 000:

1. Place 700 in RUN MODE.
2. Insert tape cartridge, REWIND tape completely, push TAPE READY button.
3. PRIME (Sets PC to Step 000).
4. Index LOAD PROGRAM (loads I st block and sets PC to 000).

LOAD PROGRAM (loads 2nd block and sets PC to 000).
LOAD PROGRAM (loads 3rd block and sets PC to 000).

The third block on the tape is nOw loaded into core and is ready to be executed.
Normally, the sequence of steps to follow in loading the nth block of the tape into core

I' (0 index the LOAD PROGRAM key "n" .times. As a final check, the VERIFY PROGRAM

6·7

+DlR

PROCEDURE FOR CORRECTING SINGLE PROGRAM STEPS

BYPASSING PROGRAM BLOCKS

,
;.;,

J

1
'4

1
1
"

•

I
J

The correct step + DIR is now located
at Step 023. In a similar way, any
step in core can be directly assessed
using the SET PC key and the correct
step keyed in.

The fourth block of tape is now stored in core and only registers 000 and 00 I have
been altered.

Section VI
Programming Techniques

In some instances, loading the preliminary program blocks on a tape will destroy parts of
core which must be saved. The problem arises as to how to bypass a program block without
loading it into core and destroying data which will be needed for later calculations.

If the PC is set to 944 and the LOAD PROGRAM key indexed, the program will only
load into Steps 944 to 959. If the program is greater than 16 steps, it will continue loading
within those steps (944 to 959). In other words, when a program exceeds Step 959 in
core, the remaining part of the program is simply loaded over itself in the first two data
registers 000 and OOL The PROGRAM ERROR INDICATOR will go on when this occurs.

Therefore, by destroying only the contents of Registers 000 and 001, the first three
blocks of tape can be bypassed.

L Load tape and place 700 in RUN MODE:
2. SET PC 9 4 4.
3. LOAD PROGRAM (bypasses I st block)

LOAD PROGRAM (bypasses 2nd block)
LOAD PROGRAM (bypasses 3rd block).

4. PRIME (to turn off PROGRAM ERROR INDICATOR).
5. SET PC to first step that the desired program will occupy.

NOTE
If the program is to be loaded beginning at Step 000. PRIME will have already set
the PC to 000.

key can be indexed and the verify program number checked to be completely sure the
correct program is loaded. The VERIFY PROGRAM key starts summing from Step 000
until it encounters an END PROGRAM instruction.

It is quite easy to correct any part of a 700 program. Suppose the following program to
accumulate the sum Lx in Register 28 and Lx' in Register 29 is loaded into core as shown.
STEP KEY CODE Notice at Step 023 the - DIR key has
020 MARK 0408 been entered by mistake. Correcting
021 I 0701 this error requires three steps:

022 STOP 05J5 1. Place 700 in LEARN MODE.
023 - DlR 0401 7. Set PC at step to be corrected:
024 REG 28 0708 SET PC 0 2 3
025 x' 0713 3. Index correct-key:
026 + DlR 0400
027 REG 29 0209
028 SEARCH 0407
029 I 0701
030 END PROGRAM 0512

Section VI
Programming Techniques

PROCEDURE FOR INSERTING EXTRA PROGRAM STEPS

Suppose a 400 step program has been introduced into core and three steps which occur in
the middle of the program have been omitted. These steps can be inserted without having to
key in the entire program again. Using the same program as on the previous page, suppose
the two steps I + should appear between Steps 021 and 022 to indicate which x is about to
be entered. The procedure for inserting the steps is as follows:

1. Insert a tape cartridge. REWIND tape completely, and push TAPE B-EADY.
2. SET PC 0 2 2 RECORD PROGRAM. (This instruction saves the second half of the

program, Steps 022 to 030, by transferring these steps to tape. The PC is set to Step
022 when the instruction is completed.)

3. Be sure 700 is in LEARN MODE and index the steps to be inserted:
1 (Loaded at Step 022, PC increases to 023.)

+ (Loaded at Step 023, PC increases to 024.)

(Notice that the added steps are loaded into core at the proper place because the PC is
set to the first instruction transferred to tape by the RECORD PROGRAM instruction.)

4. Put 700 in RUN MODE, REWIND tape, and push TAPE READY.
5. LOAD PROGRAM (The steps saved on the tape are now loaded into core beginning at

Step 024.)

The extra steps have been inserted and the program is ready to be executed. The program
appears in core as illustrated:

STEP KEY CODE

020 MARK 0408
021 1 0701
0)2 1 0701
023 + 0600
0)4 STOP 0515
025 +DlR 0400
026 REG 28 0208
027 x' 0713
028 + DlR 0400
029 REG 29 0209
030 SEARCH 0407
031 1 0701
032 END PROGRAM 0512

PROGRAMMING TECHNIOUES USING TAPE CASSETTE

An interesting feature of the LOAD PROGRAM key is that it is programmable. This
allows different parts of a program to use the same place in memory at different times.
When a LOAD PROGRAM instruction is encountered in a program, the next program block
is loaded into core beginning at the step immediately following the LOAD PROGRAM
command. Immediately after the END PROGRAM instruction is loaded, control switches to
the first instruction loaded and the program is executed.

To take advantage of this command a loop has to be formed. An example illustrates this
idea.

6·9

Section VI
Programming Techniques

EXAMPLE

-'-'Wf,

PROGRAM IN CORE PROGRAM ON TAPE

Step #

000
001
002
003
004
005
006

COMMAND

MARK
a
LOAD PROG
END PROG

2

t
+

I
ST DIR
REG 00
SEARCH
a
ENDPROG

3

t
+

I
+ DIR
REG 00
STOP
ENDPROG

This program will illustrate how to use the LOAD PROGRAM instruction in
programming and also points out the importance and need for the END PROGRAM
instruction. The program consists of three parts or blocks. The first part is loaded into core
and consists of four instructions.

The program is started by a SEARCH 0 from the keyboard. The LOAD PROGRAM is the
first instruction. The 700 immediately starts loading the next program block into core.
After the LOAD PROGRAM instruction is executed, core will look like the following:

STEP COMMAND

000 MARK

001 0

002 LOAD PROG

003 2

004 t
005 +
006 j
007 STDIR

008 REG 00

6·10

009

010

011

SEARCH

o
END PROG

Section VI
Programming Techniques

The program will immediately add 2 + 2 and store the sum in Register 000. The program
then encounters a SEARCH O. Control switches back to MARK 0 and the LOAD
PROGRAM instruction is encountered causing the next block to be loaded in replacing the
last block. Notice the END PROGRAM instruction was never used in executing the
program: however, it was needed when the LOAD PROGRAM instruction was first
executed. If an END PROGRAM command had not been located after the SEARCH 0
command, the 700 would have continued to load programming steps into core. The END
PROGRAM instruction tells it where to stop.

STEP

000
001
002
003
004
005
006
007
008
009
010

COMMAND

MARK
o
LOADPROG
3
t
+

•+DlR
REG 00
STOP
ENDPROG

The program adds 3 + 3 and adds the sum to Register 000 and stops.
The program is only used to demonstrate how to program the LOAD PROGRAM

instruction. This technique of a LOAD PROGRAM within a program should only be used in
long programs which require many program steps and data registers. A valid example might
be in a multiple regression analysis where registers are needed for storing sums. In addition,
a program for generating the sums and solving simultaneous equations is needed. Therefore,
the first program block could initialize all registers and generate the numerous sums needed.
When the routine was finished, the second block to solve the simultaneous equations and
find the coefficients could be called and loaded into the same part of memory that the first
block occupied. In this way, memory can be shared and utilized to its fullest extent.

CREATING A MULTI-BLOCK TAPE

The idea of sharing core storage presents the problem of creating a multi-block tape. The
simplest way to explain this procedure is by creating the 3-block program.

6-11

Section VI
Programming Techniques

I. To create the first block:
A. Key the first program block into care.

I. Set LEARN mode
2. PRIME (more generally SET PC to location of first program step)
3. MARK

o
LOAD PROG
END PROG.

B. Transfer this block to tape
I. Insert tape cassette, REWIND
2. Set TAPE READY
3. PRIME (or SET PC to first step)
4. RECORD PROG

II. To create the second block:
A. Key second program block into core

I. PRIME (or SET PC to first step)
2. 2

t
+
I
ST DIRECT
00
SEARCH
o
END PROG

B. Transfer this block to tape
1. PRIME (or SET PC to first step)
2. RECORD PROG

III. To create the third block:
A. Key third program block into core

I. PRIME (or SET PC to first step)
2. 3

t
+

I
+ DIR
00 (Toggles down)
STOP
END PROG

B. Transfer block to tape
I. PRIME (or SET PC to first step)
2. RECORD PROG

6-12

6-13

NOTE

The t-test for paired variates is now recorded as the fourth block on this tape.

Section VI
Programming Techniques

PRIME
REWIND the tape to beginning
Set TAPE READY
LOADPROG
SEARCH 0

To run the program: \.
2.
3.
4.
5.

The tape is not moved manually while creating the multi-block tape. If an entirely
unrelated program were to be added to this tape as the fourth block, initializing
the tape would consist of bypassing the first three program block as discussed in
Section VI, page 6-8.

EXAMPLE

Suppose a program for calculating the t-test for paired variates were located in core from
step 100 to 155 and it is to be recorded as the fourth block on the multi-block tape just
created.

\. Insert tape cassette, REWIND
2. Set TAPE READY
3. Set RUN mode
4. SET PC 9 4 4
5. LOAD PROG (bypasses first three program blocks)

LOADPROG
LOADPROG

6. PRIME (to turn PROGRAM ERROR INDICATOR off)
7. SET PC 1 0 0
8. RECORD PROG

The program will stop with a 6 in X and Y. To recall the sum, RECALL DIRECT 00 and
10 will appear in X.

S(II:tioll VII
J' ddl (/111 wl ('Ollllllill1f/~

SECTION VII
ADDITIONAL COMMANDS NOT FOUND

ON THE 700 KEYBOARD
PAUSE COMMAND

One remaining function not previously discussed is the 700 pause command.

WRITE A PAUSE

The WANG 700 has a pause command which allows the user to display the X and Y
Registers for.5 seconds at any predetermined point within a program.

The command is a two-step instruction. Since it should only be used within a program, it
has not been assigned a regular key on the 700 keyboard.

The two-step command is:

WRITE A followed by the code 0615 which corresponds to the I/x key.

The following program will count from 0 to 10 displaying each integer in Y for .5
seconds.

KEY

MARK
o
I
+
WRITE A
I/x
I
o
SKIP IF Y = X
SEARCH
o
STOP

CODE

0408
0700
0701
0600
0412}
0615
0701
0700
0509
0407
0700
0515

COMMENT OPERATING INSTRUCTIONS
SEARCH 0

2-Step command
causes.5 second
pause

Multiple PAUSE commands can be used if a longer pause is required.
Simply repeat the two-step command for each half second pause.

The pause command is only operational under programming mode. It cannot be used to
cause a stop or pause in a program that is executing. If a program is executing and the user
desires to stop it at any point, simply index the STEP key and the program will stop
instantly (See Section II, page 2-3) .

7· ,

!

,
•

0414

XXXX

0415

XXXX

I 00 I 01 I 02 103 104 I 05 106 107 1 08 1 09 1 10
1'1 1'21'31'4 !;~ji;1

RECALLY

DATA REGISTER

STOREY

DATA REGISTER

7-2

The program codes 0414 and 0415 must be entered by using the toggle switches
and special [unction keys.

Section VII
Additional Commands

Stores the number in Y into the data
register designated by the next key
stroke. Y unchanged, X unchanged.

Recalls to Y the number from the
rcgister designated by the next key
stroke. Designated register unchanged,
X unchanged.

Since the results of the arithmetic operations using X and Yare placed in Y. the STORE
Y command saves the program step (,) of moving the number down into the X-Register
when the result is to be saved.

NOTE

~¥o~~ 100 101 1021031041051061071081091'0 1'1 1121131\j.~~!ijl'51

It is possible to transfer data directly to and from the Y-Rcgister and any of thc 122 data
storage registers. The two-step command is similar to the RECALL DIRECT and STORE
DIRECT commands except that the V-Register is used in the data transfer rather than the
X-Register. The first instruction specifies whether to store or recall, the second instmction
designates the internal data register.

In addition to the various commands found on the 700 keyboard, there are several
powerful commands which have not been assigned special keys on the Wang 700. These
commands arc used primarily in programming applications. One of these commands,
PAUSE, was discussed above.

These special programming commands can be divided into three basic categories:

1. Storage commands

2. Decision commands

3. Shifting commands

STORAGE COMMANDS (DIRECT ACCESS TO AND FROM THE V-REGISTER)

ogoo80402010
DECISIONS

In addition to the four decisions available from the keyboard (See Section V, page 5- J),
there 'Ire eight other conditions which can be tested. These commands require two
instructions. They are each preceded by a WRITE ALPHA command and use an existing
key on the 700 keyboard for the second half of the command. They are listed as follows.
They test for a positive, negative, zero, and non-zero value in the X and Y Registers.

Section VII
Additional Commands

X-REGISTER

WRITE ALPHA
SET EXP

WRITE ALPHA
LOG 10 X

WRITE ALPHA
CHANGE SIGN

WRITE ALPHA
LOG,X

Skips next 2 instructions
if X is negative

Skips next 2 instructions
if X is positive

Skips next 2 instructions
if X is not zero

Skips next 2 instructions
if X is zero

Y-REGISTER

WRITE ALPHA
SKIP IF ERROR

WRITE ALPHA
GROUP II

WRITE ALPHA
RETURN

WRITE ALPHA
WRITE

Skips next 2 instructions
if Y is negative

Skips next 2 instructions
if Y is positive

Skips next 2 instructions
if Y is not zero

Skips next 2 instructions
if Y is zero

If the condition is met, the next 2 programming instructions are skipped. If the condition
is not met, the program continues with the next step.
EXAMPLE:

The following program calculates 2" and illustrates the two-step command WRITE
ALPHA, WRITE which checks for Y equal to zero.

RECALLS ANSWER

TOX

OPERATING PROCEDURE
Key N; SEARCH 0

Read 2N in X

REDIR

REG 00

STOP

017
018
019

2 Step Command

SKIP IF ¥ = X

Exits When

¥= 0

Initializes

Register

Inner Loop

Calculates

2N

WRITE A

WRITE

SEARCH

0800

MARK
(:)

t
I N in Y

STORE DIR

REG 00

MARK

0800
2
XDIR

REG 00

I

000

001

002

003

004

005
~----<~006

007

008

009

010
011

!
012

013

014
015

016

7-3

SHIFTING COMMANDS:

Divides X by 104

Divides X by 102

Divides X by 10 I

Divides X by 103

Divides X by 105

Divides X by 106

Multiplies X by 103

Multiplies X by 10 I

Multiplies X by 102

Multiplies X by 104

Multiplies X by 105

Multiplies X by 106

Multiplies X by 107

Multiplies X by 108

Multiplies X by 109

Multiplies X by 10'0

WRITE ALPHA
I

WRITE ALPHA
2

WRITE ALPHA
3

WRITE ALPHA
4

WRITE ALPHA
5

WRITE ALPHA
6

WRITE ALPHA
7

WRITE ALPHA
8

WRITE ALPHA
9

WRITE ALPHA
o

WRITE ALPHA
- DIRECT

WRITE ALPHA
X DIRECT

WRITE ALPHA
';-DIRECT

WRITE ALPHA
STORE DIRECT

WRITE ALPHA
RECALL DIRECT

WRITE ALPHA
EXCHANGE DIRECT

Section VII
Additional Commands

The following two-step commands give the user an easy way to shift the decimal point of
the X-Register from I to 10 places, left Or right.

The first group shifts the decimal point n-places to the right and effectively multiplies the
X-Register by 10".

The second group shifts the decimal point n-places to the left and effectively divides the
X-Register by 10".

WRITE ALPHA
SEARCH

WRITE ALPHA
MARK

WRITE ALPHA
GROUP 1

WRITE ALPHA
+ DIRECT

Section VII
Additional Commands

Divides X by 10
7

Divides X by lOS

Divides X by 109

Divides X by 1010

EXAMPLE

If X contains 12.3456781245 and the command WRITE ALPHA 3 is given X will then
contain 12345.6781245.

If the command WRITE ALPHA SEARCH is given, X will contain .123456781245-02

These commands are extremely nseful in applications where sealing of input and/or
output must be accomplished.

7-5

Section VIII
Trig and Stat Programs

SECTION VIII
TRIGONOMETRIC AND STATISTICAL

PACKAGE PROGRAMS
THE TRIG PACK

The TRIG PACK 011 the WANG 700 consists of the following 16 trigonometric functions:

SPECIAL OPERATION
TRIG FUNCTION INPUT RANGE

KEY

00 DEGREES TO RADIANS Ixl < 10'9

01 RADIANS TO DEGREES Ixl < 10 98

02 SINE X Ixl < 1099
•

03 COSINE X Ix I < 1099

04 TANGENT X Ixl< 1099

05 SIN-l X Ix I ,;;; I

06 COS- l X Ixl';;; I

07 TAN-l X Ix I < 1099

08 A'O POLAR Ixl < 10
50

; Iyl < 10S0
, *0

09 TO RECTANGULAR 0,;;; R < 1099 lei < 10"

10 SINHX Ixl < 227.9

I 1 COSHX Ixl<227.9

12 TANHX Ix 1< 227.9

13 SINW l X ._ 107 < X < 1050

14 COSW l X Ix I ;;;, I

15 TANW l X Ix 1< 1

These functions are loaded into core memory from a tape cassette which is provided with
the machine. The standard TRIG PACK consists of 384 program steps (or 48 Data Registers).

NOTE
The TRIG PACK also uses five data regislers:700A are 000, 001, 002, 120 and
121, 700B are 000, 001, 002, 003 and 120 registers. Care should be taken in using
these registers - information stored in these five registers would be lost after all
execution of one of the trig functiolls.

B·'

STORAGE ONLY

Three Storage Registers Used
for Data Storage

Used for TRIG PACK Programs

Steps or Registers available for
the user

000

001
002 I'-.L--.L...---"_"---.L--.L...---"-j

069
070 Ir-y--y-r-:r-:r-:r-:r--I

J 18

I I 9 I"--r---r-r'--,"--r---r-r'-l
170

tL--:,L--,,L--,,L--,,L--,,L--,,L--,,L-f
17 I L<:-...L---< ~...L----L:.----"~'---'

SPEED AND ACCURACY

Thc spccd for cach function varies. In the worst case, it is no longer than 250 milliseconds.
Accuracy is 10 significant digits.

FIGURE I

CORE MEMORY USAGE BY THE TRIG PACK

TO LOAD THE TRIG PACKAGE

Like any other tape-to-core operation, the TRIG PACK is loaded as follows:

I. Insert trig-tape, REWIND
7. Set RUN
3. Set TAPE READY
4. PRIME, LOAD PROGRAM

8-2

By following these steps, the TRIG PACK is loaded into core starting at Step 000 and
utilizes core as indicated in Figure 1. It is recommended that the TRIG PACK always be
loaded starting at Step 000.

In addition to the TRIG PACK, most users will want to load their own programs into
core. In order not to erase any of the TRIG PACK, other programs should be introduced
into core beyond the TRIG PACK. The VERIFY PROGRAM key allows us to bypass the
TRIG PACK quite easily. After depressing the VERIFY PROGRAM key, the PC is set to the
step the END PROGRAM instruction occupies.

Since it is advisable to have only one END PROGRAM instruction in core at anyone
time, additional programs should start at this stcp where the END PROGRAM instruction
is located.

The Y-Register is always preserved and remains unchanged except in the POLAR and
RECTANGULAR conversions. When the entire TRIG PACK is loaded into core, core
storage for the 700A is as follows:

Section VIII
Trig and Stat Programs

Section VIII
Trig and Stat Programs

TWO CASES exist:
1. Indexing additional programming steps from the keyboard.
2. Loading another program into core from another tape.

In each case the procedure is basically the same.

CASE 1: Adding Steps from the Keyboard.
1. After loading the TRIG PACK, place 700 in LEARN MODE
2. VERIFY PROGRAM.
3. Key program steps desired.

The first step indexed, most likely a MARK, will replace the END PROGRAM command
of the TRIG PACK. Therefore, after completing your own program, an END PROGRAM
command has to be given. This will complete a new block consisting of the TRIG PACK
plus your own program. The VERIFY PROGRAM number will then total the codes of the
TRIG PACK and your own program.

CASE 2: Loading Another Program into Core from Tape
I. After loading the TRIG PACK, insert TAPE CASSETTE which has desired

program.
2. Leave 700 in RUN MODE, Set TAPE READY
3. VERIFY PROGRAM (bypasses TRIG PACK).
4. LOAD PROGRAM.

The program will be loaded into core directly following the TRIG PACK.

USING THE TRIG PACKAGE

The TRIG PACK consists of 16 subroutines which can be addressed from the keyboard or
under program control (See page 8-6).

KEYBOARD USE: BE SURE THE TOGGLE SWITCHES ARE IN THE OFF (DOWN)
POSITION WHEN ADDRESSING THE TRIG FUNCTIONS FROM
THE KEYBOARD.

0000 1·1" 1·1·1·1·1·1·1·1·1 .. 1" I" I" 1" I" I• • ,
"

0 0000'_ ...0 ,", ". r_'" "',,-: = .. aN'; ~O ""CoR TOR«T .~,

_. ,-, ..""-: -: ,.........: 0'00__
TO ".0.... •

DODD
o 0

8-3

,- -, - - ,

Section VIII
Trig and Stat Programs

PROGRAM USE

It should be clear that the TRIG PACK is using the special function keys to address the
first 16 subroutine codes discussed in Section IV, page 4-5. For instance, the SINE routine
is prefixed by a MARK 0002 and terminated by a RETURN command. If the subroutine is
addressed within a program, the RETURN command transfers control back to the main
program. If the subroutine is addressed from the keyboard, control is transferred back to
the keyboard. The following shows a user's program utilizing the SINE and COSINE
routines.

EXAMPLE: Find Y = 2 sinO cosO

KEY CODE

MARK 0408 OPERATING INSTRUCTIONS
0 0700 Key 0 in Degrees

+ 0604 STORES 0 in Y SEARCH 0
SINX 0002 FINDS SINE 0 Read 7 cosO sin 0 in Y

t 0606 SINE 0 in Y 0 in X
COSX 0003 FINDS COS 0
X 0602 Y - sinO cos 0
? 0702
X 0602 Y - 2 sine cos e
STOP 0515

The program makes use of the fact that the Y-Register is preserved by storing 0 in Y and
then the SIN e in Y.

DESIGN OF THE TRIG PACKAGE

The TRIG PACK has been designed to give the user greater f1exibiIity. Since the TRIG
PACK resides in core memory and is not a "hardware" feature, certain functions which are
not used often can be easily deleted. For example, a user may only need SINX. COSX. and
TAN" X for his calculations.

By setting the PC to thc step number following these functions, the rest of the TRIG
PACK can be deleted and more core storage for other programs and data storage can be
gained.

8·4

""

Section VIII
Trig and Stat Programs

STATISTICAL PACKAGE PROGRAM

In the same way, statistical users will load into core the STATISTICS PACK ralh,'I' tll:111
the TRIG PACK. The STATISTICS PACK will consist of the following functions and will be'
loaded into core in the same way as the TRIG PACK.

FUNCTION

Mean, Variance, Standard Deviation (ungrouped)
Mean, Variance, Standard Deviation (grouped)
Normal Distribution
Inverse Normal Distribution
X2 Statistic
X2 Distribution
Error Function
Binomial Distribution
N'
Linear Regression
Gamma Function
Negative Binomial Distribution
Poisson Distribution
Random Number Generator

8-5

KEY

00
01
02
03
04
05
06
07
08
09
10
11
12
13

Section VIII
Trig and Stat Programs

ASSIGNMENT OF SPECIAL OPERATION KEYS FOR A USER'S OWN SUBROUTINES

The concept of a subroutine was discussed briefly in Section IV, page 4-5. Sixty-four
codes are reserved for subroutines on the WANG 700. A subroutine is addressed by a single
keystroke or a single program step. It is prefixed by a MARK XXXX chosen from the 64
reserved codes and terminated by a RETURN command. The TRIG and STATISTICS
packages use the first 16 subroutine codes listed on page 4-5, and are easily addressed by the
SPECIAL FUNCTION keys when the Toggle Switches are all in the OFF (DOWN) position.

If Toggle Switch 10 were placed in the ON (UP) position, indexing the 03 key would
cause the 700 to look through core for the subroutine beginning with MARK 0103.
Remember there are 64 codes which can be used as subroutines - not merely 16.

The SPECIAL FUNCTION keys can be used to address the user's own custom-made
functions rather than those found in the TRIG and STATISTICS PACKS. Any subroutine
which requires only one piece of input data can be addressed by any of the SPECIAL
FUNCTION keys.

While in LEARN MODE, the user simply presses MARK followed by one of the SPECIAL
FUNCTION keys. This will set the MARK flag in core for direct access to the assigned
routine. At the end of the subroutine a RETURN is given.

For example, assigning 12 to y = 7fr'

KEY CODE

MARK 0408
12 0012
x' 0713
t 0604
7f 0609
x 0602
RETURN 0511

To call for this function simply index r into X, and press 12. The answer will be given in
Y. The subroutine can also be addressed under program control in the same way as the TRIG
functions. In this way the user may assign and label any of his own functions to the special
operation keys.

8·6

PROGRAM TITLE NUMBER
lOO4A!MA6

ALGEBRA OF COMPLEX NUMBERS +, - , x, + PROGRAMMED BY

PROGRAM ABSTRACT C, M. TANG

x, and + complex numbers DATE
+, - ,

SEPTEMBER, 1969
BLOCKS NO. OF STEPS

NO, NO. OF STEPS DATA REGISTERS MARK USED 08',

VERIFY NUMBER

08' 000, 005 0201, 0600, 0601, 636
0603, 0602 SET P.C.

i 000

TO "LEARN" PROGRAM TO RECORD PROGRAM TO LOAD PROGRAM
Ikeyboard to core) (core to tape) (tape to core)

1. Set LEARN mode. 1. Insert tape cartridge. 1. Set RUN mode.
2. SET PC to desired step. REWI N 0 if necessary. 2. Insert tape cartridge.
3. Index keys in program. 2. Set TAPE READY. REWIND if necessary.

4. Index END PROGRAM as last step 3. SET PC to first step of program. 3. Set TAPE READY.
in program. 4. Index RECORD PROGRAM. 4. SET PC to desired step numbec".

5. Index LOAD PROGRAM.

PROGRAM DESCRIPTION:

This program can perform simple +, -, x, and .;. as well as chain operations. This is because
the answer of the previous operation is saved, the real part in storage 001 and imaginary part
in storage 000. \\'hen reading the answer, the real part is in Y register and imaginary part in
X register. Same formula is used for entering the complex numbers.

OPERATING PROCEDURE: EXAMPLE:

L PRIME; VERIFY PROGRAM L PRIME; VERIFY PROGRAM

2, Index first number, real part 2, ~!§..;CHSIGN
in y and imaginary part in x Set the Toggle Switches to 20 ,
Set the Toggle Switches to 20 , Key 01
Key 01

3, Index second number the same way 3, 4H., SEARCH + if addition 4 . SEARCH +-
- if subtraction-
~ if multiplication

+ if division-
5, Read answer 5, Read

If (2 - 5il + (4 + 3i) y +6.00000000000
X -2.00000000000

PROGRAM DESCRIPTION

836 NORTH STREET. TEWI<;SBURY. MASSACHUSETTS 01876
700·0243

10·69

9,1

LABORATORIES, INC.

Sectio/7 IX
Sample Programs

SECTION IX
SAMPLE PROGRAMS

Printed;n U.S.A.
-0 WANG

700

ALGEBRA OF COMPLEX NUMBERS +, -, x, +

Section IX
Sample Programs

I
--------·~-------------------.-------.,
PROGRAM TITLE NUMBER

1004A!MA6

PAGE 2\----- -------.--------------~l-'::::::--=----___t

If (2 - 5i) - (4 + 3i)

If (2 - 5i) x (4 + 3i)

(2 - 5i)
If (4 + 3i)

For chain operations repeat steps 3, 4, and 5

EXAMPLE,

4. SEARCH-

5. Read

Y -2.0000000000
X -8.0000000000

4. SEARCH x

5. Read

Y +23.0000000000
X -14.0000000000

4. SEARCH +

5. Read

Y -.280000000000
X -1.04000000000

.[(1 + 2i) (3 + 4i)] + (6 - 9i)
3 + 4i

2. !.t 2; Key 0201

3. 3 !4; SEARCH"

4 k 5. Read

Y -5.00000000000
X +10.0000000000

3. Key 0201

6 t 9 ; CH SIGN---
4. SEARCH +

5. Read

Y +1. 00000000000
X +1. 00000000000

3. Key 0201

31 4

4. SEARCH +

5. Read Y +.280000000000
X -.400000000000-01

-9WANG
LABORATORIES, INC. 136 HORTH ST., TEWKSBUIlY, MASS. 01115, TEL. (117)151-1'11

9-2

Section IX
Sample Programs

LABORATORIES, INC. 836 NORTH STREET, TEWKSBURY. MASSACHUSETTS 01876

Page 1 of 2NO 1004A/MA6.
Step Key Code. Comment

040 + OIR 0403

1 eo

2 RE DIR 0405

3 REG 03 0003

4 MARK 0408

5 x 0602

6 ST DIR 0404

7 REG 003 0003

8 RE DIR 0405

9 REG 00 0000

050 ST DIR 0404

1 REG 04 0004

2 t 0605

3 X DIR 0402

4 REG 00 0000

5 RE DIR 0405

6 REG 01 0001

7 ST DIR 0404

8 REG 02 0002

9 -lr 0605

060 X DIR 0402

1 REG 01 0001

2 RE DIR 0405

3 REG 03 0003

4 -t- 0604

5 X DIR 0402

6 REG 04 0004

7 RE DIR 0405

8 REG 04 0004

9 - DIR 0401

070 REG 01 0001

1 RE DIR 0405

2 REG 01 0001

3 1<1') 0606

4 X DI 0402

5 REG 002 0002

6 RE DIR 0405

7 REG 02 0002

8 + DIR 0400

9 REG 00 0000

.

Step Key Code Comment

000 MARK 0408

1 0201 0201

2 ST DIR 0404

3 REG 00 0000

4 STORE Y 0414

5 REG 01 0001

6 CLEAR X 0715

7 t- 0604

8 STOP 0515

9 MARK 0408

010 - 0601

1 CH SIGN 0711

2
~"

0606

3 CR SIGN 07l!

4 \i."i 0606

5 MARK 0408

6 + 0600

7 + DIR 0400

8 REG 00 0000

9 RE DIR 0405

02 0 REG 01 0001

1 + 0600

2 RE DIR 0405

3 REG 00 0000

4 STOP 0515

5 MARK 0408

6 T 0603

7 CR SIGN 07l!

8 ST DIR 0404

9 REG 03 0003

03 0 x2 0713

1 ST DIR 0404

2 REG 05 0005

3 f 0605

4 x2 0713

5 + DIR 0400

6 REG 05 0005

7 RE DIR 0405

8 REG 05 0005

9 + 0603

700 PROGRAM TITlE· ALGEBRA OF COMPLEX NUMBERS

"9 WANG
9-3

Section IX
Sample Programs

LABORATORIES, INC. 836 NO~TH STREET. TEWKSBURY. MASSACHUSETTS 01876

.

Step Key Code Comment

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

ALGEBRA OF COMPLEX NUMBERSNO 1004A/MA6 p,.. 2 of 2700 PROGRAM TITlE·.
Step Key Code Comment

08 0 RE Dill 0405

1 REG 00 0000

2 RETURN 0511

3 END PROG 0512

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

-9 WANG
9-4

Section X
Warranty, Service and Maintenance

SECTION X
WARRANTY, SERVICE AND

MAINTENANCE
WARRANTY

Wang electronic equipment is warranted to be free from defects in workmanship and
materials for 90 days from delivery to the original purchaser; parts only are warranted for
one year, exclusive of labor. Readout tubes, transistors, and fuses are subject to the RETMA
guarantee (substituted tubes should be returned to Wang Laboratories). This warranty is in
lieu of all other warranties expressed or implied, except as specifically modified in writing
by a document signed by an officer of WANG LABORATORIES, INC. Except for such a
document, no representative or other person is authorized to represent or assume for WANG
LABORATORIES, INC. any warranty liability beyond that set forth herein. Use limits and
time between overhaul hours may be specified for mechanical and rotary elements of a
Wang system. During the warranty period, Wang equipment is serviced free of charge except
for occasional freight cost to and from a service center if equipment is located beyond a
75-mile radius.

POST·WARRANTY SERVICE AVAILABILITY

Wang Service Centers are located in many major cities throughout the world. It is a
product service policy to restore the operation of a customer's unit within 24 hours of the
service call. For remotely located users, equipment turnaround is normally within one day
after arrival at the center. Spare parts, as well as circuit board repair capability are available
at all service centers.

ANNUAL MAINTENANCE CONTRACT

An annual maintenance contract is available that consists of adjusting, replacing parts
when required and keeping the equipment in first class operating condition. The contract
includes all necessary service calls. It does not include repair necessitated by accident, fire,
current fluctuations, abuse, or negligence.

POST·WARRANTY SERVICE CALLS WITHOUT MAINTENANCE CONTRACT

All service calls made to customers' facilities not having service contracts will be charged
on an hourly basis point to point between the Wang Service Center and equipment location.
Automobile charges per mile and material costs will also be included.

10·1

Section X
Warranty, Service and Maintenance

NOTE
Users who attempt to repair Wang equipment, without receiving prior Wang
equipment training, run the risk of causing further damage to their equipment.
Also, and more important, internal equipment voltages are present that could
cause severe electrical shock.

IN·HOUSE MAINTENANCE CAPABILITY

Wang Laboratories offers free product familiarization lessons for customers who desire to
build up an in-house capability for maintaining their equipment. The customer, of course, is
expected to defray the travel and living expenses of his service representative while in
training at Wang Laboratories, Tewksbury, Massachusetts.

10-2

AppomJix

APPENDIX
TYPING CONVENTIONS

Program 1015A/MA3 VECTOR ANALYSIS is a sample of a 700 library program and is
included here to give an example of a program using indirect addressing.

TYPING CONVENTIONS FOR 700 PROGRAM LIBRARY

Certain keyboard instructions have been abbreviated for typing convenience. The follow
ing is a listing of the keyboard instructions and their abbreviations.

KEY

+ DIRECT
- DIRECT
X DIRECT
"'" DIRECT
STORE DIRECT
RECALL DIRECTo DIRECT
SEARCH
MARK
GROUP 1
GROUP 2
WRITE
WRITE ALPHA
END ALPHA
STORE Y
RECALL Y
+ INDIR
- INDIR
X INDIR
"'" INDIR
STORE INDIR
RECALL INDIR
CINDIR
SKIP IF Y ;;. X
SKIP IF Y < X
SKIP IF Y = X
SKIP IF ERROR
RETURN

ABBREVIATION

+ DIR
- DIR
XDIR

"'" DIR
ST DIR
RE DlR
EXDlR
SEARCH
MARK
GROUP 1
GROUP 2
WRITE
WRITE A
END A
STORE Y
RECALL Y
+ INDlR
-INDIR
X INDIR
"'" INDIR
ST INDIR
RE INDIR
EX INDIR 0506
SKIP IF Y ;;. X
SKIP IF Y < X
SKIP IF Y = X
SKIP ERROR
RETURN

A-1

CODE

0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0500
0501
0502
0503
0504
0505

0507
0508
0509
0510
0511

Appendix

ENDPROG END PROG 0512
LOADPROG LOADPROG 0513
GO GO 0514
STOP STOP 0515

+ + 0600
0601

x X 0602
• 0603• •

t t 0604
I I 0605

t I t I 0606
Ixi Ixi 0607
INTEGER X INT X 0608
11 11 0609
LOGjoX LOG j oX 0610
LOGeX LOGeX 0611
Jx Jx 0612
lOX lOX 0613
eX eX 0614
Ijx Ijx 0615

0 0 0700
I I 0701
2 2 0702
3 3 0703
4 4 0704
5 5 0705
6 6 0706
7 7 0707
8 8 0708
9 9 0709
SETEXP SET EXP 0710
CHANGE SIGN CH SIGN 0711

• 0712
x2 x2 0713
RECALL RESIDUE RESIDUE 0714
CLEAR X CLEAR X 0715

NOTE

For typing convenience the exchange keys, ::::DIRECT and8 INDIR, will be
typed as EX DIR and EX INDIR. SKIP IF ERROR has been shortened to SKIP
ERROR.

In desjgnating the 120 data registers in the KEY column, the register numbers will be
preceded by REG.

A-2

[
b
i

Appendix

EXAMPLE

To store into register 58 the coding sheet will appear as follows:

ST DIR
REG 58

A subroutine will be designated m the KEY column by a SR preceding the subroutine
code.

EXAMPLE

To address a subroutine beginning with MARK 0303 the KEY column will appear
as follows:

SR 0303

A·3

Bypassing Program Blocks 6- 8
Central Processing Unit 1-1
Change Sign 2-5
OearXl-l
Coding 3~1

Core Memory 3-3, 3~6
Data Storage Registers 2-9
Decisions 5-1

Skip if Y = X 5-1
Skip if Y ~X 5-2
Skip if Y <v 5-3
Skip if Error 2-9, 5-3

Direct Addressing 2·9
Display 2-4
Double Level Subroutines 4- '7

End Program 2-2, 6-4, 6·5
Exchange 2-13
Go 2-3 5-9,
Group 1 2-21
Group 2 2-21
High-Order Digit 3- 2
Indirect Addressing 2-14
Indirect Keys 2-14
Learn Mode 2~1, 2-4, 2-12,6·5,6-6
.Learn-Print Mode 2-1
Learn a Program Into Core From the Keyboard 6~5

List Program Mode 2-2
Load Program 2~ 3, 6~4, 6- 7
Looping With a Counter 5-4
Looping Without a Counter 5-6
Low-Order Digit 3-2
Machine~ErrorIndicator 2-8, 6-2
Mark 4-1, 4-3, 4-4
Mark Assignment 4~ 2
Mode of Operation 2-1
Non Programmable Keys 2-2
Number of Registers Occupied by a Program 3-5
Pause 7·1
Prime 2~2, 2-3, 6-5
Procedure for Inserting Extra Program Step 6- 8
Program Block 6 -3

INDEX

Program Counter and Set PC 2-3
Program·Error Indicator 2~ 8, 2~9, 4·1, 6- 2, 5 -3
Programming Concepts 4-1
Read·Only Memory 1 ~ 1
Recall Direct 2-12, 7·2
Recall Residue 2~16, 2-20
Record Program 2·3, 2·4
Return 4-6, 4· 7
Rewind 6-2
Run Mode 2~1, 6-6
Scanning a Table 5~8

Search 4-1, 4-3, 4-4
Set Exp 2~5

Shifting Commands 7- 4
Special Function Keys 2~9

Starting Address 8-4
Statistics Functions 8~6

Statistical Pack 8-6
Slep 2- 3
Stop 4-2
Storage Assignment 3~5

Storage Commands (Direct Access to and from the
Y-Register) 7-2

Store Direct 2~9, 2~12, 7-2
Subroutine 4-5
Tape Cassette 6-1
Tape~DriveOperation 6- 2
Tape Ready 6· 2
Toggle Switch 2-9
Trig Functions 8-5
Trig Pack 8-1, 8~3
Turning the 700 On 2 ~ 2
Typing Conventions A ~ 1
Verify Program 2-4, 6-4
Working Storage Area 3-5
Write Alpha 2-3, 2-21, 7·1,7·2
Write Alpha Pause 7-1
Write Command 2-20
X~Register 2-5
Y~Register 2-6

A-4

