PERMISSIONS

Wang 500 and 600 Instruction Manual is copyrighted by Rock Valley College. As an agent of the college, I grant permission for you to share the scanned copy of the original work with interested parties engaged in scholarly or leisurely inquiry. Publication in print or electronic form of Wang 500 and 600 Instruction Manual on a for profit basis without permission from an agent of Rock Valley College is a violation of copyright. Further inquiries can be directed to
INSTRUCTION
PACKAGE

$$
\begin{aligned}
& \text { Wang } 500 \text { and bou } \\
& \text { Operation Manual }
\end{aligned}
$$

Prepared as a Faculty Development Project

For

Rock Valley College

By
Gene A. Streitmatter
Associate Professor, Electronics

August, 1976
Rockford, Illinois

PREFACE

The Rock Valley College Technology Division has two types of Wang calculators available for use: the 500 series and the 600 series.

The purpose of this paper is to provide a condensed set of operating instructions to enable a person to become proficient on the wang calculator in the least amount of time. A person wishing to learn the proper operation of both machines would have to study and absorb the information contained in nine books totaling over one thousand pages which are provided by Wang Labs. This would consume many many hours of valuable time which an instructor can profitably use in other endeavors.

Hopefully, this manual will save the instructor an appreciable amount of the time normally needed to master these machines.

I would like to thank the following Rock Valley students who contributed greatly to the production of this manual by offering constructive criticism and serving as co-authors for some sections: David Dahlen James Dunlear George Fulop and Drew Reid.

Gene A. Streitmatter

Rockford, Illinois
August, 2976
I. Introduction to the Machine
II. Basic Arithmetic
III. Special Function Keys
IV. Math Group
V. Printer Capabilities
VI. Introduction to Programming
VII. Subroutines
VIII. Programmed Printing
IX. Loops and Decision Keys
X. Program Storage
XI. Tape Features \{bilot
XII. Introduction to the Plotter
XIII. Plotter Utility Package
XIV. Debugging a Program
XV. Special Addressing
XVI. Input Output Writer
XVII. Record Keeping
XVIII. Problem Supplement

I. INTRODUCTION TO MACHINE

A. Turn-on Procedure

B. Keyboard Description

1. Data entry
2. Scratch register
3. Math and algebra
4. Programming keys
5. Upper registers
b. Mode switches
6. Special function switches
B. Tape switches
C. Auxiliary Equipment
7. Auxiliary equipment 500
8. Auxiliary equipment 600

INTRODUCTION TO MACHINE

The wang calculators are extremely capable machines. The Rock Valley College Technology Division has two types available for use: the $50 \square$ series and the bOD series. The two machines have many similar operating procedures and features. It should be made clear at this point that the bal series is capable of all the operations performed by the 500 plus many additional features.

Some valuable statistics about the two calculators follows in a condensed form.

$$
\text { WANG } 500 \text { UANG bab }
$$

Type of Display
Number of Digits Scientific Notation Limit ± 99

Yes
Auto
Manual
Nixie
12

Mathematical Operation Similar on Both Machines

Language
Tape Cassette
Number of Programming Steps

Number of Storage Registers

Keyboard Registers
Type of Address

Segmented
12
± 99
Yes
Auto Manual

Scientific or Floating Decimal Point

Keyboard
Keyboard
Yes
Yes

319
823

	WANG 500	WANG 6 DG
Type of Peripheral Equipment Available	Card Reader Classroom Display	Card Reader Plotter ROM Pak Typewriter I/O
General Library Available	Yes	Yes
Multiple Function Keys	Yes	Yes
Overflow	Flashing Display	
Self Loading	No	Yes

The first eleven sections of this manual will deal only with the wang 500 and its use. The last nine will. deal with the b $\quad 0$ and its equipment features. Turn-on Procedure

Both machines are turned on in the same manner. As you sit facing the machine, the power switch is in the back on the left. Simply reach around the back with the left hand near the bottom and tip the switch in. As the machine turns on it can be seen that the program error light and the machine error light are on and the display is indicating a calculation overflow which is a flashing display. The correction for this situation is to depress the PRIME and CLEAR keys. Both error lights should turn off and the display should stop flashing. The machine is now ready for use.

Keyboard Description

3. If you are sitting in front of the machine, you should refer to the keyboard. If not, you should refer to the diagram included here.

The keys shown at the left will be -referred to as the data entry keys from now on. They are similar to any standard calculator or adding machine and are used in the same manner. There are three keys shown here that are different from those found on an adding machine: CHANGE SIGN, CLEAR DISPLAY, and SET EXP. The change sign key changes the algebraic sign of the displayed number or exponent. \{If the set exp key is depressed prior to the change sign, the sign of the exponent will be changed rather than the sign of the number itself.f

The set exponent key activates the scientific notation capability of the machine. When depressed, two additional digital displays and a sign display are made available and the power of 20 may be used in expressing the value. The power of ten must be expressed in two digits which establish a limit of 10^{+97} to 20^{-99}. Therefore, in order to express 3.576×10^{-5}, you would key the following sequence: $3, \cdot$ $5,7, b$, Set $E x p$, chage sign, 0,5 .

The clear display key is used to erase the displayed
value if an error is made in entering the number. DO NOT USE [PRIME OR USE THE RED

CLEAR BUTTON FOR THIS PURPOSE.

ㄹ.
The keys at the left and right of the

- 0314	total
	\div \vdots 0514
0214	$\mathrm{X}=$ 0414
$\begin{gathered} \text { RECALL } \\ 0714 \\ \hline \end{gathered}$	STORE 0614

LEFT REG \{ 1.5$\}$ Data Entry Keys are the arithmetic controls for the Left and Right SCRATCH REGISTERS. The Left Register is Reg 15, the Right Register is Reg l4. They will be called Scratch Registers when both are being referred to and by Left and Right if specific reference is made to one or the other. The specific use of

RIGHT REG \{ 3 4\}
these keys will be discussed in the section on arithmetic operations.
3.

PRIME		$\begin{gathered} \cos ^{-1} \\ 0907 \\ \cos \\ 0807 \end{gathered}$
OEG.RAD O909 RAD.DEG 0809	TAN $^{-1}$ 0908 TAN 0808	$\begin{gathered} \hline \text { RETURN } \\ \text { O915 } \\ 1 / X \\ 0815 \end{gathered}$
S H	$\begin{gathered} \log _{10} x \\ 0910 \\ 0^{09}{ }_{e} x \\ 0810 \\ \hline \end{gathered}$	$\begin{gathered} 10^{x} \\ 0911 \\ \mathbf{e}^{x} \\ 0811 \\ \hline \end{gathered}$
F	$\begin{gathered} \text { NTX } \\ 0912 \\ X^{2} \\ 0812 \end{gathered}$	$\begin{gathered} \quad \begin{array}{r} 1 x_{i} \\ 0913 \\ \sqrt{x} \\ 0813 \end{array} \end{gathered}$

The keys shown here will be referred to in the future as the Math keys as a group or by their function in a specific case. Notice that each of these keys except PRIME and SHIFT have a second function imprinted in the upper right hand corner. These functions can be performed by using the Shift key in conjunction with the Function key desired.

For example, in order to find L_{n} of $\exists 0$, enter 30 on the display and depress the LOGe X key. However, to get the

\{in the upper case\}. The Shift key gives access to the upper case functions in a way similar to the shift to capital in typing. Once used, however, the machine automatically returns to the lower case functions and does not stay in the upper case. The Prime key will eliminate an overflow indication $\{f l a s h i n g ~ d i s p l a y\} ~ a n d ~ t h e ~ p r o g r a m ~ e r r o r ~ i n d i-~-~$ cator.

THE PRIME KEY ALSO RESETS THE PROGRAM COUNTER
TO STEP "ח" SO UNTIL PROGRAMMING OPERATIONS
HAVE BEEN DISCUSSED, USE IT SPARINGLY.
4. All these keys, with the exception of the Recall and Print key, are used exlusively when dealing with programming and will therefore be referred to as the programming keys. The Recall key is used in conjunction with the Upper Registers and the special function switches to store data
 away in what will be called substorage and will be discussed along with the special function switches.

The Print key may be used any time a permanent record of the display is desired. \{The Printer on switch at the top must be on for the printer to operate under any circumstances.\} The Print key is also used for one other operation and that is to generate an a \{alpha\} code. This code, in turn, is used in several ways in programming. For
example, $\alpha 00$ generates $\pi\{P i\}$ on the display register. To get the value of π, key-Shift-Print-Register \{ad\} and pi will appear on the display.

NOTE: On the bal, the $f\{x\}$ special function key must also be depressed.
5.

00	01	02	03	04	05
00	01	02	03	08	05

11 11	12 12	13 13	14 14	15 15

UPPER REGISTERS
Registers 00 through 15
These keys give the operator direct access to the first sixteen Data Storage Registers which will be designated the Upper Registers. They are used basically for three functions: \{1\} access to Storage Register, \{2\} generation of low order portions of programming codes, \{ヨ\} decimal placement and movement in printing and display respectively. Function \{l\} will be discussed in the arithmetic section and $\{2\}$ and \{ $\}$ in their appropriate places in the programming section.

Notice the strip of tape below the keys laid out in blocks. These blocks can be labeled for use by the operator to facilitate and remember Register data such as what is stored in each one by symbol or what program it calls. In general, the tape is used to record register assignments and program numbers.
6.

These switches are referred to as the Mode Switches. They determine the way in which the machine is to be used. The run mode is the mode in which the machine will most commonly be operated. In this mode, the machine will operate as a standard desktop calculator and execute previously programmed operations when called upon to do so.

In both the Learn, and Learn and Print modes, the machine will "remember" or store away in memory the sequence of keystrokes made while in this mode. It might rightly be called the programming mode. The Learn and Print mode additionally gives you a written record of keystrokes as the program is developed.

The List Program mode will list out the keystrokes in memory from the step where it is, at the beginning until the end of program code is encountered.

These modes will be extensively discussed in the programming section.
7.

These keys, located in the top center of the keyboard, will be referred to as the function switches and the clear switch.

The Clear switch will clear all data stored in the upper registers and scratch registers but not the display.

All of these switches are multiple function switches and are used to accomplish basically four things: \{b\} provide arithmetic functions for the upper registers, \{2\} generate high order codes for programming $\{\exists\}$ determine alpha labeling, \{4\} determine display mode.

The Printer and Paper Feed switches are only used in manual operation. That is, the printer cannot be turned on from the keyboard and the paper can be advanced manually any time without affecting the programming or operation of the machine.
8.

The Tape Control switches are similar to those found on any normal tape cassette. RELEASE opens the cassette's compartment for insertion or removal of program tapes. FORWARD and REWIND are self-explanatory and need no comment. The TAPE READY switch means that the cassette drive motors are ready to respond to keyboard or programmed instructions. The different ways in which the tape can be used will be discussed in the section on tape storage of data and programs.

Auxiliary Equipment

1. The Wang $50 \square$ calculators were purchased with the following equipment features:
1\} Rotational drum printer
2\} Classroom display
37 Mark sense card reader
4] Cassette tape storage capability.
2. The Wang bal has all of the above features and additionally incorporates:
lu Capacity for a ROM \{read only memory\}
2\} Flatbed plotter
3\} Capacity for an input-output writer
4] Capacity for peripheral memory

II. BASIC ARITHMETIC

A. Arithmetic Key
B. Scratch Registers
C. Store, Recall, Total
D. Equation Handling \{Simple\}
E. Upper Register Technique

BASIC ARITHMETIC

The one common error that most people make when first starting to use the wang is in not beginning instructions to the machine in proper sequences. The STORE key seems to be the culprit. For example, in order to divide 4 by 2, the key strokes would be as follows: 4 , STORE, 2. \div.

Following is an analysis of what has just been done. First, a number was generated by keying the 4 . On the Wang, keying a number does not automatically put it into the machine's operating registers. The number, when keyed, only exists at one place in machine--on the display. You must now give that number to the machine for further arithmetic operations. This is done by pressing the store key. When STORE is keyed, the machine will take what is on the display at that time and write it into the memory register being keyed. If anything was in that register previously, it is automatically erased when the store command is generated. Another number $\{2\}$ was then generated on the display. Again, it exists only in the display. When you key the $\square:$, you are generating the arithmetic instruction [divide the number on the display into this register.] The machine does this and automatically re-stores the answer number back into the register. fLater, when programming the machine, it will save you steps if you remember that the machine always stores
the answers from arithmetic instructions back in the register.\} You do not have to store the answer to prevent it from being lost.

Arithmetic Key

The operator must always keep in mind that, when he generates an arithmetic instruction the machine will use the number on the display, operate on the register keyed and store the answer of the operation in the register keyed. This answer is then available for further operations.. In verbal form. the arithmetic keys generate the following instructions:

+ add the display to register keyed
- subtract the display from register keyed
: divide the display into register keyed
x multiply the display by register keyed
Remember, the answer is always stored in the register keyed.

Scratch Registers
Both the wang $50 \square$ and b \quad have sixteen registers available for arithmetic operations: Registers $\square \square \square$ Registers 14 and 15 , however, can be addressed and operated from two places on the keyboard. One method of addressing these registers is by using the Blue keys at the left and right of the Data Entry keys. $\{R i g h t=$ Reg 14 L Left $=$ Reg 15$\}$ These two registers, commonly called Scratch Registers, may also be operated using the function selectors at the top of
the keyboard in combination with the upper register keys 14 and 15 .

Store, Recall, Total
The STORE key in the scratch registers will store whatever is on the display into the register for which the key has been depressed. Very much like a tape recorder, it also erases anything previously stored in the register.

The RECALL key duplicates on the display whatever is in the register at the time the key is depressed. It is important to remember that using the recall key does not empty the register; the number is still in the register memory.

The TOTAL key removes whatever is in the register and transfers the number to the display. It must be remembered that the number is removed from the register and the register then contains "ロ."

The decision as to whether Recall or Total should be used hinges on two considerations: \{l\} Does that number need to remain in memory? \{2\} Does the operator need that register available for further use?

An example of when the Recall and Total keys would be used follows:

$$
A\{B / A\}+A=X
$$

Notice: A is going to be used three times.
PROCEDURE:
Key value B
B is now in Left Register
Key store left
Key value A
Key store right
Key : left
A now is in two places: on the display and in the Right Register
Display is divided into Left Register. The value B / A is in the Left Register.
Key recall right
Key $\{x\}$ left
Key total right
Key + left
Brings A to the display and also leaves it in Right Register for further use.
Display times Left. A \{B/A\} now in Left Register
Removes A from Right Register
Adds display to Left Register A \{B/A\} + A now in Left Reaister and Right Register has been cleared for future use.
The completes the introduction to the Scratch Register arithmetic keys and what they do.
Equation Handling \{Simple\}

Below are examples of how to handle some simple equations.
--Example 1--

$$
\frac{A B}{A+B}
$$

Procedure \{correct\} Procedure \{incorrect\}

Key value A Store left Store right Key value B \{x\} left Reg value B [+\} right \{:\} left

Key value A
Store left
Key value B
$\{+\}$ left
Key value A
Store right
Key value B
\{x\} right

Notice that the correct procedure is two steps shorter. Both procedures generate a correct answer. However, the shorter procedure will be the more desirable one later when minimum steps and most efficient handing are essential.
\{You should always strive for the most effeicient procedure.\}
Two more examples would be:
--Example ᄅ--
$A+B=C$
PROCEDURE:
Key A
Store left
Key B
$+\mathrm{L}$
Answer on display
--Example $3--$
$3\{A+2\}-B\{C+\exists\}$
PROCEDURE:
Key A
Store left
Key 2

+ left
Key 3
$\times \mathrm{L}$
Key C
Store right
Key 3
+ right
Key B
x right
- left

Answer on display

It is good to practice now for the programming section later. You should practice writing out the procedural steps of several simple equations provided in the supplement.

An attempt to solve problems using only the two scratch registers will lead to the discovery that there are many problems which cannot be handled at this point. Therefore, it becomes necessary to explain how the upper register can be utilized in conjunction with the special function switches.

Rock Valley College - ERC

to expand your ability to handle problems. Upper Register Technique

It may already be evident to you that the arithmetic keys of the scratch registers are the same commands as the first seven special function switches on the left end, To do arithmetic with the upper register, two key strokes are required. The switch sets up the machine command for what it is to do and keying one of the registers tells it on which register it is to operate. By using one switch and one register for each operational step, the same operations as done with the scratch keys can be accomplished.

Example: Add $A+B$ in the $\square \exists$ register:
Key A
STORE SUITCH PG Puts A in Register \exists Key B SWITCH \square Adds B to Register 3

You must remember that doing arithmetic in the upper register requires two key strokes \{one step\}.
\{1\} a special function switch $\{w h a t$ to do\}
[2] a register $\{w h e r e ~ t o ~ d o ~ i t\} ~$
You should now practice the problems provided for this section in the supplement.

The upper registers and scratch register may be used separately, together or in any number of combinations.

Following is a procedure to solve six problems at once for six different values of x.

$$
3 x+4
$$

First，depress the STORE SWITCH．Then key the values of x ，one after the other，and depress the register into which each one is to go as follows：

$$
\begin{aligned}
& \text { Key } \exists \rightarrow \square 3 \\
& \text { Key } 5.5 \rightarrow \square 2 \\
& \text { Key } 6 \rightarrow 07 \\
& \text { Key } 4 \rightarrow 06 \\
& \text { Key } 2 \rightarrow \square 4 \\
& \text { Key } .5 \rightarrow \square 5
\end{aligned}
$$

$$
\text { Key } 4 \rightarrow 06 \quad \begin{aligned}
& \text { Each number } 15 \text { now stored } \\
& \text { in its appropriate register. }
\end{aligned}
$$

Now depress the x \｛multiply\} SWITCH, then Key 3 and the registers one after the other：Key $\exists \rightarrow$ ロl，Key $3 \rightarrow$ ロ～， Key $3 \rightarrow$ 扫，etc．Each register has just been multiplied by 3 ．

Depress $\{+\}$ switch，key $4 \rightarrow$ la Key $4 \rightarrow$ D2，etc． Depress $\{\div\}$ switch，Key $b \rightarrow$ Ol，Key $b \rightarrow$ at etc．

All six problems have now been solved and the answers are in register l through b ．To see what they are，depress the Recall switch and key each register in turn and the answers will appear on the display．

The use of the registers \｛scratch and upper\} to solve problems is only limited by your imagination．

III. SPECIAL FUNCTION KEYS

A. Meaning of Codes

B. Other Switches
]. $\quad f L$ - SC
2. Deg, Rad
3. Printer
4. Paper Feed
C. Substorage Access

1. Memory layout
2. Addressing registers
D. Alpha Codes

SPECIAL FUNCTION KEYS

Meaning of Codes
Every key on the Ulang 500 and 600 ，with the exception of the modes switches and the tape control，generate oper－ ational codes．These codes are generated in four digits $\{x x y y\}$ ．The first two digits $\{x x\}$ are high order func－ tional commands．They，in essence，tell the machine what to do \｛store，add，total，etc．\}. The second two digits \｛yy\} determine where the operation is to be accomplished \｛Reg．lı己っヨッetc．\}.

The following is a listing of the machine codes and the switches，keys and registers necessary to generate those codes．

Special function switches generate high order codes．

Ql yy－Total	09 yy－SP	Total
口ᄅ yy－＋	10 yy －SP	＋
03 yy	11．yy－ $\mathrm{SP}^{\text {P }}$	－
04 yy－ x	he yy－SP	x
05 yy－：	13 yy －SP	：
听 yy－ S_{T}	14 yy－SP	ST
Q？yy－Re	155 y y －SP	Re

Register keys generate low order codes．

```
xx 00 - 00
xx 08 - 08
xx 0l - 0l
xx 09 - 09
xx ロ2 - ロ己
xx l0 - la
xx 0ヨ - ロヨ
xx 04 - 04
xx 05 - 05
xx 咙 - 姓
xx 07-07
xx ll - ll
xx l2己 - ll己
xx 13 - 13
xx 1,4 - 14
xx 1.5 - 15
```

Using these switches and keys in combination allows you to generate any code you wish．

The next three pages are a listing of the codes and their meaning to the machine. The first page is a layout of all the instructional codes you use when programming. You should be aware, however, that there are other codes that can be generated using the Print key and the Shift key to change the code meaning. The second page is a listing of the alphanumeric codes that the machine can print and their meaning. The third page is a code listing of codes generated by the keyboard keys.

PROGRAM CODES

COOE	KEY	CODE	KEY	CODE	KEY	CODE	KEV
0000	0	0015	CLD	0801	RECALL	0901	StORE
0001	1	0114	TOTALR	0802	PRINT	0902	α
0002	2	0115	TOTALL	0803	GO	0903	STOP
0003	3	0214	+ R	0804	J if 0	0904	J if $\neq 0$
0004	4	0215	+L	0805	J if +	0905	J if ERROR
0005	5	0314	-R	0806	SIN	0906	SIN ${ }^{-1}$
0006	6	0315	-2	0807	\cos	0907	$\cos ^{-1}$
0007	7	0414	$\times 8$	0808	TAN	0908	TAN ${ }^{-1}$
0008	8	0415	XL	0809	RAD - DEG	0909	DEG - RAD
0009	9	0514	$\div \mathrm{R}$	0810	$\log _{x} x$	0910	$\log _{10} x$
0010	\bullet	0515	$\div \mathrm{L}$	0811		0911	10^{210}
0011	SET EXP	0614	STR	0812	x^{2}	0912	INT \times
0012	CHSermon	0615	STL	0813	\sqrt{x}	0913	$\|x\|$
0013	SEARCH	0714	RE R	0814	LOAD PROG	0914	END
	\& STOP	0715	REL	0815	$1 / X$	0915	RETURN
0014	Clear	0800	SEARCH	0900	MARK		

Decimal Shifting Left - Decimal Shifting Right - Register Keys ${ }^{\dagger}$
Selector Switches ${ }^{\dagger}$

CODE	KEY	CODE	KEY	code	KEY	CODE	SWITCH
1101	$1 a^{-1}$ 0^{-2}	1001	10^{2}	$\times \times 00$	00	O1YY	TOTAL
1102	10^{-2}	1002	10_{3}^{2}	X×01	01	02YY	+
1103	10^{-3}	1003	10^{3}	$\times \times 02$	02	03YY	-
1104	10^{-4}	1004	10_{5}^{4}	$\times \times 03$	03	04YY	X
1105	10^{-5}	1005	10^{5}	$\times \times 04$	0.4	05YY	\div
1106	10^{-6}	1006	10^{6}	X×05	05	06YY	STORE
1107	10^{-7}	1007	10^{7}	$\times \times 06$	06	OTYY	RECALL
1108	10^{-8}	1008	10_{9}^{8}	$\times \times 07$	07	O8YY	SP
1109	10^{-9}	1009	10^{9}	$\times \times 08$	08	10YY	f(x)
1110	10^{-10} 10^{-11}	1010	10^{10}	X×09	09	IIYY	* $F(x)$
1111	10^{-11} 10^{-12}	1011	1011	$\times \times 10$	10	14YY	SP \& ST
1112	10^{-12} 10^{-13}	1012	1012	$\times \times 11$	11		
1113	10^{-13} 10^{-14}	1013	1013	$\times \times 12$	12		
1114	10^{-14} 10^{-15}	1014	1015	$\times \times 13$	13		
1115	10^{-15}	1015	10^{2}	$\times \times 14$ $\times \times 15$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$		* Shift

Alpha Characters ․ Decimal Setting . ${ }^{\text {. }}$ Miscellaneous

code	Switer	code	KEY	CODE	KEY
oory	All up	$\times \times 00$	00	0902	
017	SP up 1 down	$\times \times 01$	01	1000	00 \}
${ }_{0}^{02 Y Y}$	SP up + down	$\times \times 02$ $\times \times 03$	02 03 03	0902 0903	$\underset{\text { STOP }}{\alpha}\}$ Pause
O4YY	SP up Xdown	+ $\times \times 04$	04		
OSYY	SP up \ddagger down	x×05	05		
obry	SP up ST down	$\times \times 06$	06		
OPYY $08 Y$	SP up RE down	x×07	07		
ogyr	$\mathrm{SP}^{\text {SP }}$ down T down	x $\times \times 09$ $\times \times 09$	09.		
loy	$\mathrm{sp}^{\text {sp down + down }}$	x $\times 10$	10 FP		
1 YYY	SP down-down	${ }^{\times \times 11}$	${ }^{11}$ SNJ		
$12 Y Y$ $13 Y Y$	SP down X down SP down - down	0015	clo PF		
14 YY	SP down				
15YY	SP down RE down				

- Must be preceded by an α command.
tSelecior Switches (high order) Register Keys (low order).
- Must be preceded by a'Print command.
* Alpha character (high order) Decimal Setting (low order).

PRINTING CODES

All command preceded by a print command Require two additional strokes, a switch (High Order) and a register (low order).

High Order Code	Switch Position	Meaning		Low Order Code	Key Reg	Meaning	
00	all up	Label	X	00	00		decimal
01	T	Label	Y	01	01		decimal
02	$+$	"	z	02	02	2	"
03	-	"	A	03	03	3	11
04	x	"	B	04	04	4	"
05	\div	"	C	05	05	5	"
06	ST	"	D	06	06	6	"
07	Re	"	E	07	07	7	"
08	(SP down)	"	F	08	08	8	"
09	SP T	"	G	09	09	9	"
10	$S P+$	"	H	10	10	10	floating
11	SP -	"	I	11	11	11	scientific
12	SP x	"	J				
13	SP \div	"	K				
14	SP ST	"	L				
15	SP Re	"	M	15	15	15	paper feed one line

RESISTER KEY CODES

OO10	61	13	$1: \%$
－615	はこ	13	－：
$0 \ll 5$	$0:$	$1=$	\div
く02）	$\bigcirc 2$	13	＋
0022	134	15	\times－
0023	06	15	3 n
0.924	97	13	\＆ 5

MATH GROUP KEY CODES

DATA ENTRY KEY CODES

012\％	00	10	E．j
U02 0	0	3：	E3
Cu2	93	， 1	E 1
002	103	32	L2
U0くy	31	3	E 3
0630	05	114	$E 4$
Cu31	03	U2	\because
0032	03	Ot	E 0
0 CO	00	2.1	－7
0034	03	？	Es
0030	¢	$\therefore y$	E
1636	U3	11	¢－1
（1） 7	09	15	ᄃ！
0！3\％	00	12	E_{12}

PROGRAMING GROUP KEY CODES

Oero	0	14	＊	P
cod	05	19	＊	3
C002	us	93	＊	10
0405	Oj	14	＊	10
COO4	0.3	15	＊	\％
0665	08	21	＊	0
0006	06	02	＊	\％
00.07	09	03	＊	－
000e	09	00	＊	4
000\％	09	14	＊	p
0010	09	04	＊	a
C011	0%	05	＊	E
0012	0%	01	＊	T
0013	0%	02	＊	a

Having looked through the preceding pages y yau have probably noticed that the codes generated by the regular keyboard keys can be duplicated by some combination of the special function keys and the register keys.

Later, in the sections on printing and programming, you will find that the sequence of key strokes will also determine what is to be printed and how it is to be printed. Other Switches
I. fl-sc: In the up position the machine will give and receive numbers in standard decimal form and the answer will be displayed in floating decimal up to ten digits. Beyond that it will always automatically go to scientific notation.

When the switch is depressed, the machine will always give and receive numbers in scientific form. For examole:

Key 4567.4
STORE
The machine will store $4.5674 \times 10^{\exists}$
4.567400000 +03

All answers and operations will be handled in standard scientific notation.
2. Rad \rightarrow Deg: When handling trigometric operations, the machine will interpret the display in degrees when the switch is up and in radians when the switch is down. You should interpret any answers given by the machine in like manner.

NOTE: The switch position is not programmable.
3. Printer on: Depressing the printer on switch activates
the printer drum and readies the machine for printing. 4. Paper feed: This advances the paper by one printed row for each stroke of the kev.

The \{fl-sc, Rad - Deg, and printer onf keys are all two touch keys. That is, the first touch engages, the second touch releases them. All ohters are released when another key is depressed fsimilar to a car radiof. Substorage Access

1. The lang 500 provides, in addition to the sixteen upper storage registers, forty storage registers in its memory circuits which can be directly addressed for simple storage. These registers will be referred to as substorage registers. They can be used for storage by keying a particular sequence of keys for each register. Each storage register has an address just as you have a home address. When you wish to store a number into or take a number out of the registers, you must use this address. The address is composed of a command and a location.
2. The Command

Notice in the green programming keys a RECALL-STORE
KEY. This is the substorage command key. It tells the machine you are going to put a number in $\{S T O R E\}$ or take it out \{RECALL\}. To recall, simply touch the key. To store, key Shift/Recall \{Store\}, This procedure has used one step of programming as you will later discover. Then key the address: The address is composed of two key strokes: a
special function switch and a register key. The addresses for the registers are as follows:

SELECTION SWITCH REGISTER KEY
REG NO.

T	00	addresses	le
T	01	"	17
T	ロ2	17	18
	$+$		$\dot{\square}$
T	25	"	31
+	[1]	\cdots	$\exists 2$
+	01	$"$	33
+	[2]	\square	34
	\downarrow		1
+	15	\cdots	47
-	00	-	48
-	\square	"	49
	\downarrow		55
-	[7	\cdots	55

EXAMPLE: Store the number 3574 in Reg. 15.
Key the number
Shift Store \{Green key\}

\square	Selector switch
$\square \square \square$	Register key

The number is now located in the register for recall any time it is needed. To bring the number back, you touch Recall \{green key\} and the address $T\{0 \square\}$ and the number will be brought to the display.

Alpha Codes

There are two other codes that can be used directly from the keyboard without programming that allow some flexibility of operation.

Decimal Shifting: The decimal point of any number can be moved left and right on the machine without affecting the sequence of digits displayed.

With the $f\{x\}$ switch down:
Shift \rightarrow Alpha Reg \# tells the machine to shift decimal right
Shift \rightarrow Alpha \rightarrow shift \rightarrow Reg \# tells the machine to shift left.
The register \# selected tells how many digist to shift.
Calling r : The number r \{pi\} may be called up out of the machine's memory by keying \{shift \rightarrow Alpha $\rightarrow[\square \square$.
These operations may be used at your discretion when. needed.

SUMMARY OF ALPHA OPERATIONS

Shifting Decimal Point to the Right or Left

Shifting Right

$\left.\begin{array}{c}\text { SHIFT } \\ \alpha \\ 03 \\ \cdot\end{array}\right\} \quad \exists$ places

Shifting Left
$f\{x\}$ down
SHIFT
$\left.\begin{array}{c}\left.\begin{array}{c}\alpha \\ \text { SHIFT } \\ \square l\end{array}\right\} \quad \text { l place }\end{array}\right\}$

Calling π

Alpha commands are normally two step procedures and simply alert the machine for the next code to be handed differently than normal.

IV. MATH GROUP

A. Use of Shift Key
B. Trig Keys
C. Log Keys
D. Rad-Deg
E. Reciprocal
F. $\quad 1 \mathrm{a}^{\mathrm{x}}$
G. x^{2}
$H . \quad \sqrt{x} \quad \because|x|$
I. INT. x

By using the Rad to. Deg key, the calculator will inter pret whatever is on the display as deqrees of rotation and convert it to radians of rotation. With the use of the shift key, you will generate the second function of Des to Rad. The calculator will now interpret the display as radians and convert it to degree measurement. These keys are used in conjunction with a second leg to Rad switch. When the switch is up, all numbers are interpreted as degrees: when the switch is down all values are interpreted as radians.

Reciprocal

Use of this key will take the number on the display and divide it into I \{reciprocal\}.
10^{x}
To generate this function, you use the second function of the e^{x} key. To do this, you press the shift key and then e^{x}. This will raise 10 to the power of the number on the display.
x^{2}

The x ? key takes the number on the display and multiplies it by itself or squares it.

The \sqrt{x} key takes the displayed number and finds the square root. The second function of this key is x which takes the absolute value of the number on the display fmakes
all numbers positivet.
INT x
The INT x function is the second of the x^{2} key. This key truncates or subtracts the decimal part of the number. on the display. Following is a brief program to demonstrate one use of this key.

SHIFT MARK This program will convert a value of degrees 0 With its decimal counterpart into Degrees,
Re 00 Minutes and Seconds. It will also round off
ST L
SHIFT INT x
PRINT

- $10 \quad \longrightarrow \quad\{-s w i t c h$, and register la\} \{labels A\} \{scientific notation\}
- L

60
XL
SHIFT INT \times
PRINT
$\times 10$
$\{1$ abels $B\}$

- L

60
$\times \mathrm{L}$
SHIFT INT x
ST R

- L
-1
$\times \mathrm{L}$
.5
+ L

If decimal is greater than .5 , the seconds' value will be increased by l.
Re R
PRINT
: 10 \{labels c, in scientific notation\}
SHIFT END
For practice you should attempt the problems for this section in the supplement. Try writing out the key strokes for each problem prior to doing them on the machine.
v. PRINTER CAPABILITIES
A. Introduction.
l. Switches \{On, Paper Feed\}
2. Key -- \{Print\}
3. Mode \{Learn Print\} \{List Prooram\}
B. Automatic Printing
C. Manual Decimal Setting
D. Trace Capability

1. Program trace
2. Manual trace

PRINTER CAPABILITIES

Introduction

The $\begin{aligned} & \text { Wang } 500\end{aligned}$ is supplied with a rotating drum line printer which is very useful in several ways. There are basically four switches and one key used in connection with the operation of the drum printer.

1. PRINT-ON-SWITCH: This switch must be in the depressed position for the printer to operate in any manner.

PAPER FEED-SUITCH: Advances the paper by one line for each stroke of the switch.
2. PRINT, KEY: Causes whatever is in the display window to be printed on the paper tape.
3. LEARN-PRINT MODE SWITCH: When this switch is depressed, the calculator will automatically make a hard copy listing of the programming steps being entered by the programmer as he enters them.

LIST PROGRAM-MODE SWITCH: When this switch is depressed and the Ga is keyed, the machine will list out the program steps in its memory from the present pc position in groups of 100 . This may be stopped at any time by touching the step key. This feature is very useful in debugging and listing programs for record keeping.

Automatic Printina
You may instruct the calculator to print automatically all functional operations being processed. The instructions are as follows:

```
auto print "on"
shift
    *
print
```

```
auto nrint "offr
shift
    !
shift
    a
```

Two different orinting ooerations can occur in this mode: single or double cycle nrintina. For addition suktraction, storing recalling and total, only a single entry will be printed: either the number being entered or the number being extracted. A running total will not be entered. For all other operationst a double entry is printed: the number and the operation being nerformed and the result of the operation.

Manual Decimal Settina EManual Controlf
If a specific decimal settino is desired for manual print operations, the unit can be instructed to print in floating decimal, scientific notation or up to nine designated places. THE DECIMAL POINT SETTING FOR MANUAL PRINTING ALSO APPLIES FOR AUTOMATIC PRINTING AS UELL.

To condition the unit to read and print the desired decimal setting:

Set $P C$
For the 500, index a 3 digit number
For the 600, index a 4 digit number
The last digit determines the decimal setting $0=$ floating
$1=$ scientific
2
$\left.\begin{array}{l}1 \\ 9\end{array}\right\}=$ number of diaits following decimal
The instructions from this point on apply only to the bol calculator.

Trace Capability

1. If a programmer could open his calculator and watch his program being executed step by step, he would be able to correct his programming problems in half the time. Since he could see an error when it first occured, most of the problem of fixing a programming error would be eliminated. While it is not practical with today's high-speed electronic machines, the Wang bOD offers the next best thing-a step-by-step printout of each program operation showing all intermediate results. The program logic becomes clear as well since all MARK SEARCH and Subroutine branchings are shown as they oscur in the normal flow of the program. This allows the programmer to make on-the-spot changes and modification in a program.

The method of initiating a Proaram Step Trace is by means of a two-step ALPHA command, which programs control of the Column Printer. The two- step ALPHA $\{u\} \log _{e} X$ for Loglox\} signals the TRACE-ON, while ALPHA $\{x\} e^{x}$ for $\left.\ln ^{x}\right\}$ turns the Program TRACE-OFF. Output of the Printer includes a printout of the window contents, and the program symbol representing the program step being executed at the time of the printout.
2. The Step Trace feature can be initiated from the keyboard as well as by a program. Suppose you had a program in memory which you wanted to Step Trace through its entire operation. All you would have to do is turn the Trace Mode
$O N$ and then key the normal operating instructions. Depress the "PRINTER ON" Switch,

1. Key PRIME
2. Key ALPHA \{a\}, Log $_{\mathrm{P}} \mathrm{X}$ \{or Log $\mathrm{LQ}^{\mathrm{X}\}--\{t u r n s \text { TRACE ON\} }}$
3. Key in the data needed by the program if the normal program instructions require itt, and key 60.

RESULTS: The Printer will trace the entire program. If a "TRACE OFF" Command \{ALPHA $\{x\} e^{x}$ or ALPHA $\{x\}\left[\square^{x}\right\}$ is found within the program however, the Trace will end at that point.
VI. INTRODUCTION TO PROGRAMMING
A. Definition of and Reasons for Programming
B. Developing Programs

1. Common features
2. Flow diagrams
3. Saving steps
C. Utilizing a Program
I. Debugging
E. Record Keeping

INTRODUCTION TO PROGRAMMING

Definition of and Reasons for Programming
So far, we have been using the wang as a calculator. However, most of the Wang's usefulness lies in its ability to be programmed. This allows the wang to calculate automatically by utilizing a program stored in its memory, making the Wang more like a computer.

The program consists of complete set of instructions which enable the calculator to process the values given it to obtain the desired results. The program can eliminate all the time-consuming and repetitive keystrokes that would be performed manually for each set of keystrokes.

Thus programs:

> 1. Save time
> 2. Save work
> 3. Add to the versatility of the machine

Developing Programs

1. In every program there are certain features that are common.

The first item in a program must be some sort of identification. Just like defferent telephones ring when different phone numbers are dialed, each program has a different "number" called a fug. These identifications are necessary in more complex situations where several programs are stored simultaneously in the memory. On the wang any
programmable keyboard function can serve as an identification. To distinguish the function as an identification, it is preceded by the "Mark" command which "marks" the program. This is sometimes referred to as the index. The last item in a program is the "End Program" command. This tells the wang to stop calculating. This must absolutely be the final step after all calculations are made or the Wang will stop before completion of the program.

The program itself consists of the instructions given the Wang to do the necessary calculations. These are the same commands you would use if the calculations were being performed manually. Programs should be versatile enough so any values can be plugged in. Therefore a register may be recalled in place of a value funless it is a constant in the formula\}. The register then contains the value of the number and can be readily changed.

Let's consider the example:

$$
A=\pi r^{2}
$$

This formula is used to find the area of a circle. The variable would be "r" in this example. If we assign it a register ffor instance 0 ,, we can give it any value. The value of ${ }^{n} w^{n}$ itself should be inserted in the program since it is a constant.

The program needs a mark flag, in the example "l."
So the sequence of instructions given the tang would be:

INSTRUCTION
MARK 1
RECALL DO
ST L
3.14
$\times \mathrm{L}$
END PROGRAM

OPERATION

This is essentially the program to find the area of a circle. Although it may be simple, even the most comolex programs consist of smaller programs like these.

The program must not contain any illegal maneuvers or directions, such as dividing by zero or finding the tangent of 90 degrees, or any other undefined functions.

These are the basic rules to programing:

1. Every program must start with a Mark " x " command.
2. Every program must have an End Program command.
3. The program can be used for any set of values.
4. The program should not produce any undefined values.
5. To write a program it is necessary to plan the sequence of operations that the calculator is to perform. The relationships between the operations may become complex and difficult to keep clearly in mind. For this reason, programmers usually sketch out an outline of the program. The outline, called a flow diagram, gives the programmer a visual representation of the relationships involved.

A set of symbols are used to show the computer operations, and lines and arrows are used to show the flow of

Logic between them.
The following symbols are used in a flow diagram.

An oval box indicates a starting or stopping operation.

Arrows indicate the direction of flow through \longrightarrow the diagram. Every connecting line should have an arrow on it.

A rectangular box indicates any processing operation except a decision.

A diamond indicates a decision. The lines leaving the decision box indicate the possidle paths the program can follow.

A large circle indicates a connection in a program where a number may be indexed.

An example of the use of these symbols follows. This is the flow diagram for the example used earlier $\{A=\pi r 2\}$

This is the "mark" or index of the program.

This is the body of the program which does the processing.

This is the rind Program" command.
3. Although this flow chart shows a simple program ia flow chart could be invaluable in a more complex program. The program can be mapped out to show the flow through it. and steps can be saved by determining the most effecient way to design the program. These methods will be discussed in the sections concerning looping and subroutines.

Utilizing a Program
When doing the actual programming it is important to
remember that the process is the same as it would be if it were being done under manual control.

1. Depress the learn mode button.
2. Set the Program Counter at the step where the first program comand will be stored. In most cases, it will be at step 000 if no other programs are in memory. The program counter is set by depressing the SET PC key followed by a three digit number indexed by using the Data Entry keys. If you want to start at step 000 , depress the Frime key. This sets the P.C. at 000.
3. Introduce the program via the sequence of keystrokes the program requires. Do not forget the "Mark" command or the "End Program" command.
4. The program is now stored in the memory and can be executed by switching to the Run Mode.
5. Any values required should be stored in the proper registers.
b. To run the program, depress the Search command followed by the mark "Flag" at the beginning of the program.

Debugging

If it is necessary to alter or "debug" a program, a listing of the program stored in the memory can be retreived by pressing the list program switch and keying the go button.

By putting the wang in Learn mode and using the step key ${ }^{\prime}$ the display will show the same as the paper printout, minus the alphanumeric translation which is found on the right side of the paper.

000	0000	-
Step No.	Function being	Alphanumeric
	Processed	Translation
	NLY	PAPER ONLY

The listing or display will show a set of codes which tell what the program does. The step no. is indicated, and then the two-part code. A set of pull-out cards on the bottom of the calculator tell what the codes mean. The listing can be compared with the original program to see if there are any discrepancies.

With the machine in Run mode, the flow of values through the program can be monitored by using the step key. If the programmer has an idea of what the values should be at each particular step, he can determine where his error is.

If a step needs to be changed, the wang should be put in learn mode. Set the program counter to the step to be cahnged and key in the new step. Steps may be deleted on the Wang 500 by replacing them with $\underline{G 0}$ commands. Extra steps may be inserted or deleted on the wang boo.

Record Keeping

It is usually desirable to keep a record of a program once it is written in case it is necessary to use the program in the future. Forms such as those of the following
pages are ideal since they are set up to facilitate programming on the Wang.

Record keeping and methods of storing orograms will be covered in greater detail in later sections.

VII. SUBROUTINES

A. Reason for Subroutines
B. Use within Mainlines
C. Subroutine CodesD. Subroutine Considerations

SUBROUTINES

Subroutines are programs within a main program. Many times a program will contain many subroutines. The subroutines are called upon by the main program, whenever necessary, to perform a series of calculations. After these calculations are performed, the subroutine then returns control to the main program.

Reasons for Subroutines
Let's say you have a program that uses a fifty step calculation four times. Instead of writing this program four times, and using 200 program steps, it is written as a subroutine just once, taking fifty program steps, and is called upon by the main program when needed as shown in the example below.

Use within Mainlines
How do you write subroutines in a program? Let's say you have a program and at Step $1 \square$ you want to go to a subroutine, do the calculations, and return to your mainline. It would look like this:

Step	Command	Code	Step	Command	Code
0009	4.		70040	Mark	0090
0010	Search 20lu	10113	0042	1.113	1013
001]			0042	-	.
	\downarrow		0043	-	
			0044	-	\cdots
			0045	Return	0915

The command in the mainline used to search for the subroutine is the subroutine command itself. The machine searches for the subroutine $f\{13\}$, represented by a MARK command and then the subroutine command. When the machine finds the subroutine, it runs through it and then returns to the mainline program by means of a RETURN command. You may use subroutines within subroutines up to five deep.

Most subroutines are written in memory prior to the mainline program. Subroutine Coding

Most programs you urite will use no more than a few subroutines. However, to assure an adequate number, almost every key on the Keyboard can be used to address a subroutine. The basic set of thirty-two subroutine codes is given on the following page.

CODE	SYMBOL	CODE	SYMBOL
1000	$f(00)$	1100	$F(00)$
1001	$f(01)$	1101	$F(01)$
1002	$f(02)$	1102	$F(02)$
1003	$f(03)$	1103	$F(03)$
1004	$f(04)$	1104	$F(04)$
1005	$f(05)$	1105	$F(05)$
1006	$f(06)$	1106	$F(06)$
1007	$f(07)$	1107	$F(07)$
1008	$f(08)$	1108	$F(08)$
1009	$f(09)$	1109	$F(09)$
1010	$f(10)$	1110	$F(10)$
1011	$f(11)$	1111	$F(11)$
1012	$f(12)$	1112	$F(12)$
1013	$f(13)$	1113	$F(13)$
1014	$f(14)$	1114	$F(14)$
1015	$f(15)$	1115	$F(15)$

To generate the subroutine codes, the $f\{x\}$ switch must by down and the register key is pushed for the subroutine number. For example, f_{x} down and $\square 4$ will generate 104. Shift, f_{x} down and 94 will generate ll 04.

Subroutine Considerations
When using subroutines, remember that their main purpose is to reduce the number of steps required to accomplish a particular operation. If this is not accomplished, the program would be better done without the subroutine.

When using various subroutine levels, be very careful that the requirements of the program do not cause the subroutines to exceed five levels. If this happens, the calculator will not be able to find and return to its previous position. The machine is only capable of remembering five
prior step positions and would therefore lose track of its "train of thought."
VIII. PROGRAMMED PRINTING
A. When to Print
B. How to Print
c. Labeling
D. Paper Feeding

PROGRAMMED PRINTING

When to Print

Printing instructions in a program can be used to obtain a permanent record of a problem and to save time if the equation or program has multiple answers. In addition to printing the answers of a program you may want to have the progran include instructions to print the values in the input registers. This will give you a record of the variables used as well as the results.

If you want your calculated number to be printed in a specific order other than the order calculated, you can store the numbers in registers and recall them in the order desired. This can be a help if you are using a looping program which will be used for graphing.

For programmed printing, you must also remember to manually turn the printer on. \{Always remember to turn printer off before turning main calculator off.f How to Print

Programmed printing involves two steps of program and will print the number on the display previous to the print command. The first step is the actual print command key producing the code 0802 . The second tells the calculator how to label the previous number fusing high order codes\} and also how to print it numerically. This means to print it in scientific notation, floating, or with fixed decimal point \{using low order codes\}. If you forget to include the
second step of the printing procedure, the calculator will interpret the next program step as the code for how to print and cause program error. The chart on what keys to use for labeling and printing the numbers numerically can be found on the following page.

Labeling

When you label in a program, some thought should be given to what letter will best represent the answer. An example would be to label a current by using I which is denoted by the high order code 11 and generated by using the $\{S P\}$ and $\{-\}$ switches in the down position.

Paper Feeding

During your program you may want to separate groups of printed answers for easier identification. This is accomplished by using a pre-programmed paper feed step. This procedure contains two program steps the same as any other printing routine. The first is the print command and the second is register 145 . The switch positions do not matter in this case.

PRINTING CODES

All command preceded by a print command Require two additional strokes, a switch (High Order) and a register (low order).

High Order Code	Switch Position	Meaning		Low Order Code	$\begin{aligned} & \text { Key } \\ & \text { Reg } \\ & \hline \end{aligned}$	Meaning	
00	all up	Label	X	00	00		decimal
01	T	Label	Y	01	01		decimal
02	+	"	z	02	02	2	"
03	-	"	A	03	03	3	"
04	x	"	B	04	04	4	"
05	\div	"	C	05	05	5	"
06	ST	"	D	06	06	6	"
07	Re	"	E	07	07	7	"
08	(SP down)	"	F	08	08	8	"
09	SP T	"	G	09	09	9	"
10	SP +	"	H	10	10	10	floating
11	SP -	"	I	11	11	11	scientific
12	SP x	"	J	\vdots	$!$	$!$	
13	SP \div	"	K	'	1	:	
14	SP ST	"	L	!	+	i	
15	SP Re	\cdots	M	15	15	15	paper feed one line

IX. LOOPS AND DECISION KEYS

A. Decision Key Functions
B. Use of Loops
C. Incrimenting Routines

LOOPS AND DECISION KEYS

Decision Key Functions

The wang is capable of marking 4 \{four\} decisions \{Display Recognitions\}:

```
Jump if +
Jump if D
Jump if error {shift function}
Jump if }\not=0\mathrm{ {shift function}
```

These "decision" keys compare what is on the display to a preset condition. If that condition is met, the calculator skips the next two steps of programming and carries out the third instructional step after the jump command. If the condition is not met, the calculator continues as it normally would. The flow chart symbol for a decision is

The actual operation that occurs is as follows:
Step No.

Q10
[1]
-12
013 014
> compare display \{instructions for conditions not being met\} continue instructions if the conditions are met

The two steps that are used when the condition is not met are usually used to create a loop or direct the calculator to a different program or subroutine.

A loop is created when you tell the program to search for its won mark code. You may direct the machine to another completely separate program by "Search" " Program Code "
which requires two steps. You may also call for a subroutine \{l step\} and the machine will branch to the subroutine and come come back as has been previously discussed. Because only one program step is used to call for a subroutine, you must fill the leftover step with a GO command.

The two steps may also be used in any manner appropriate to the program being written.

Use of Loops
A loop differs from a subroutine in that a loop sets up a repeating or cycling operation that continues until the condition desired is met while a subroutine is usually a completely separate set of operations. Since subroutines have already been discussed, the following is an example of setting up a looping routine.

Step No.

000	Mark	This program will count
-01,	1	by 2 's form the begin-
00^{1}	E2	ning value \{stored in the
003	+L	left register\} until it
004	ST Rt	exceeds the ending value
005	$\alpha \quad \frac{1 / 2}{2} \mathrm{sec}$	\{stored in 00\} at which
00b	STOP pause	time it will jump to the
007	Re 00	End Program.
008	-Rt	
009	j if +	
010	Search	
Olı	l	
ロ12	EP	

Inerimenting Routines

The example above is a form of incrimenting routine. An incrimenting routine is a program loop that counts up or down by a value that is predetermined by the program. The
count being generated can then be used in another program.
EXAMPLE: Incriment from 10,000 to 100,000 by 500 's and use each incriment in a subroutine $\left\{f_{f}\right\}$. Store the first value in \square, store the last value in \square, store incriment in 몸.

$\begin{gathered} \text { Mark } \\ \mathrm{J} \end{gathered}$	This method of incrimenting may be used or any number of other possible
Peoo	forms can be used by the programmer
$\left\{\mathrm{f}_{\text {] }}\right.$ \}	to accomplish just the conditions he
Reoz	wishes to create.
+00	
STL	
Real	
-L	
j if +	
Search	
1	
Repl	
\{ff $\left.{ }_{\text {l }}\right\}$	
EP	

Try some of the problems in the supplement that apply to this section.

X. PROGRAM STORAGE

A. Cards

1. Programming

ㄹ. Loading
B. Tape

1. Recording

ᄅ. Loading
C. Bootstrap Routine

Cards
2. The card input is another way of inputing the program codes into the calculator.

On your cards? you have your high order and low order codes. To program the cards, you simply color in the appropriate squares. For example:

To enter code for SIN\{O\&DE\} you first color in the box labeled B, the high order part $\left\{\begin{array}{l}8 \times x\}\end{array}\right.$

Then you color in the 4 box and the 2 boxy the sum of which is the low order code $\{x \times 06\}$.

Try to fill in this code. Store reg. 03 \{0b03\} and recall reg. 15 \{0715\}.

The skip box is there so that if, for any reasoni you wish to skip that lines just fill in the box.

2. To enter the card into the calculator make the necessary attachments.

1. PRIME
2. DEPRESS LEARN MODE
3. INSERT CARD INTO CARD READER \{pencil marks up, arrows first\}

The card will automatically be pulled through the card reader. The calculator display will now show that it has read forty steps $\{m i n u s$ skip marks\}. If it does not read this, RRIME and start over.

If two cards are entered consecutively, the calculator display will read that it is on step 80 . You can keep doing this until you run out of memory. In most cases, for the Wang 500's, it takes 312 steps.

Program storage on cards of this type is especially good for numerous not too lengthly programs.

Tape

1. The Wang also has the capability of storing programs on tape. Let's suppose you have a program in memory and you wish to stre it on tape. Follow this procedure:
2. Place calculator into RUN MODE.
3. Insert tape cassette.
4. Rewind tape.
5. Engage TAPE READY switch.
6. a. If you wish to start recording from step 000,
depress PRIME and key RECORD PROGRAM.*
7. b. If you wish to start recording from a step,
i.e. lヨB, simply set P.C. \{program counter\}
to step 138 and key RECORD program.*
8. How to load program from tane into memory
9. Place calculator into RUN MODE.
己. Insert tape and rewind.
3.: Depress the tape ready switch.
10. a. If you wish to load from step OOD and on
Key PRIME
Key LOAD PROGRAMb. If you wish to load starting at some other stepin memory
Set $P C$ \{to that step\}
Key LOAD PROGRAM
Bootstrap Routine
A Bootstrap routine is a program which lets you chooseand load any one program from a tape. All you do is enterthe number of its position on the tape into the calculator.

Following is one way to do this.
The first block of your tape must be the index and contain these steps:and includeing the EP and STOP.

OOD1	Mark
OOD2	0
OODJ	LP
OOD4	EP

All other program blocks must have these steps preceeding the actual program itself:

Steps for	Steps for	Steps for	Steps for
lst block	2nd block	Jrd block	4 th block
1	2	3	4
stl	stl	stl	stl
Re 13	Re 13	Re 13	Re 13
-L	-L	-L	-L
j if +	j if +	j if +	$j \mathrm{if}+$
search	search	search	search
\square	0	\square	1]

EP EP

These seven steps do the comparing between the numbers you put into the calculator and the actual numbers of the program block.

Let's say that you have loaded the Index block into the calculator. The memory now looks like this:

0000	STl3
0001	Mark
0002	\square
0003	LP
0004	EP

And now you wish to load the second program. Uith the Wang in run mode, enter 2 and key $\underline{G} 0$. Calculation will start at step $0 \square \square$ and continue. When the load program command is encountered, the tape will start running and load in the next block program. These steps will be loaded from the step after the load program command and on. So the memory now looks like this:

\square	st13 3
1	M
2	0
3	LP
4	」
5	STL
b	Rel3
	-L
	j if +
	s
	\square
	\cdots
	n
	n
	EP

When the tape drive stops, the calculation will resume operation from step 0004. The next Bootstrap step will compare the number that you entered with the number of that block.

In this case, the number that we entered was 2 and the number of the block is l. The math compares these numbers $\{1-2=-1\}$. When the jump if positive $\{j$ if +$\}$ command is encountered, the program will not jump because the answer is negative. Instead, it will do the next two steps and search for the mark.

Now we are back to step $00 \square$. When the load program command is encountered again, the next program block will be loaded in. Then again, the number we entered will be compared to the block number \{this time, 2\}.

After the comparison $\{2-2=0\}$ the j if + command will jump the program over the Search \square command and execute the rest of your program.
XI. TAPE FEATURES
A. Introduction
B. Program Transfers

1. Record program
2. Load program
3. Alpha loading
a. Loading
b. Tape positioning
C. Data Transfer
l. Recording data
4. Loading data

tape features

Introduction

The wang 500 and bai are both supplied with cassette tape drive mechanisms. These greatly enhance the versatility of the machines. Programs can be "chained" or sequenced into the machine allowing for the development of programs , hich exceed the capability of the machine in terms of program steps.

The "Bootstrapping" technique used on the wang 500 has already been discussed and will not be presented again here. It should be stated, however, that the same technique may be used with the wang bua as well.

Program Transfers

1. Recording a program from memory to tape and vice-versa are quite simple and very straight forward.

Record Program
a\} Place in run mode
b) Rewind tape
c\} Tape ready
d\} If you wish to start recording from step 0000, prime the machine. If, however, the block of. core you wish to record starts at some position other than 0000 , you should set P.C. to the desired step before recording.
e\} Key record program \{orange key\}. All steps of programming from the initial setting position of the $P C$ up to and including the END PROG command will be recorded on tape.
2. Load Program
a\} Place in run mode
b) Rewind tape
c\} Tape ready
d). Set $P C$ to the step where you wish to start

> loading into memory. If you wish to start at anda, "prime." If the tape block you wish to load is locate on tape at, for example, the third position on the tape, you would depress the load program three times as follows. l\} Set p to starting step 2\} Load program \{when tape stops, the first tape block has been loaded and the program counter has been reset to the initial setting.j. 3\} Loadiprogram again--second block is loaded 4\}. Load program one last time and the third block is now loaded into the memory starting at the step you specified.

This method of loading may be used either on the 500 or 600. However, the b00 has a tape feature which eliminates this somewhat time-consuming procedure. It is called alpha loading.
3. Alpha Loading \{tape block search and load\} lets you automatically skip over a designated number of blocks of programs on tape and load the desired block without following the procedure stated above.
a. Suppose the same situation exists as was previously set
up. That is you have a program written in the third position on a tape and you would like this to be loaded into memory starting at step 257. Proceed as follows:
a\} Place in run mode
b\} Rewind tape
c\} Tape ready
d\} Set P.C. at ロ25?
e\} Key ᄅ. \{The number of blocks you wish to skip overf
f\} Key \{shift, alpha, load program\}
The first two tape blocks will be skipped over and the third block will be loaded into memory starting at step 25 ?
and continuing until an end program is encountered.
This procedure for loading memory from tape may be programmed and used for sequential loading and chaining and save a tremendous amount of time spent searching for a particular program.
b. Another technique using alpha load which you will find very convenient is one in which you position the tape for recording a program that has been written in memory.

Suppose you have written a program into memory that you wish to put on tape in the fifth block position:
a\} Place in run mode
b) Rewind tape
c\} Tape ready
d\} Set P.C. to last program step \{0B23\}
e\} Key 3
f\} Key \{shift, alpha, load\} The calculator will skip the first three blocks on tape and attempt to load the fourth program into the last 8 program steps fwhich it cannot dof. This causes a program error light fTape stops at E.P. of fourth block].
g\} Clear the error \{prime\}.
h\} Set P C to the beginning position of the program to be recorded.
if Key record program.
This results in the program in memory being loaded into position 5 on the tape.

Data Transfer
Data that is stored in memory may be transferred to
tape for permanent or temporary storage. Also, data that has been stored on tape may be transferred into memory registers using the alpha store and alpha recall commands. Alpha store pulls data out of memory registers and stores it
on tape; alpha recall pulls data off the tape and puts it into the memory registers.

1. Suppose you had data in registers 00 through $2 b$ that
was to be used over and over in several programs. It would be very convenient to have this data on tape rather than having to load it manually for each program.
a\} Place in run mode.
h\} Rewind tape
c\} Tape ready
d\} Prime
e\} Key the last register you wish to record \{in this casey 2b\}
f\} Key \{alpha, store\}.
When the tape stops, the contents of the registers will
have been transferred to tape in reverse order, that is, $2 b$ first and $0 \square$ last.

己. Any time you wish to recall this data back into memory from tape, you follow the same procedure except that you use \{alpha, recall\} instead of alpha, store. That is:
a\} Place in run mode.
b\} Rewind tape
c\} Tape ready
d\} Prime
e\} Key first register to be loaded \{己t\}
f\} Alphà recall
The data will be transferred into memory beqinning with register $2 b$ and continuing until all data has been loaded.

NOTE: Alpha store may be used to store as many registers as you wish. However, once stored on taper the entire block must be recalled. If this is not donei you will receive a program error indication.
XII. INTRODUCTION TO THE PLOTTER
A. Switches and Controls,
B. Bed Layout
C. Scaling
D. Operation

1. Plotting

ᄅ. Printing
3. I/0 writing

INTRODUCTION TO THE PLOTTER

Switches and Controls
The Model ble Flatbed Plotter is connected to the Wang 60ロ calculator by connecting the input cable to the typewriter output receptiacle. There are several switches and controls on the front of the plotter. They are as follows:

Contrals \{zero reference\}
Check \{Push button\} Brings pen to Zero position X \{Knob\} Controls Horizontal position Y \{Knob\} Controls Vertical position \{Scale adj\}
Check \{Push button\} Moves pen to upper right position
$X \quad$ \{Knob\} Controls Horizontal position
Y $\{$ Knob\} Controls Vertical position
Switches
Power on - off
Select Plotter - typewriter Chart Hold - release \{Hold paper\} Pen Up - locks pen in up position Down - allows calculator control

Bed Layout
The plotting surface of the plotter has a maximum chart capability of $10^{\prime \prime} \times 15^{\circ}$ paper. Any smaller size paper may be used and the scale may be adjusted to it. Whatever the size paper scaled for, the area scaled will be automatically divided into 979 vertical incriments and 999 horizontal units. Once the plotting area is scaled, all plotting and alphanumeric writing are done by incriments and do not depend upon actual size of area scaled. You should also remember that scaling adjustments affect the size of the area being scaled

while zero reference adjustments move the entire area to new positions. \{The plotting proportions do not change.\}

Scaling

Scaling the area to be plotted is dorie as follows:

1. Press zero reference check
2. Adjust X and Y to \{lower left\} zero point
3. Press scaling check
4. Adjust X and Y to extreme upper right point.

Area of plot is now scaled.
Remember: To change size, make scaling adjustments. To change position, make zero reference adjustments.

Condensed plotter instructions:
Turn plotter on -- load paper
Set reference point
Set scaling point
NOTE: The scaled area will always be divided into 999 parts for both X and Y axes no matter what the actual size in inches.

Maximum scale size is $1 \square^{n} \times 15^{n}$
One unit $\simeq 1 / 999$ of axis size.
Ex: 5" horizontal scale one horizontal unit $\simeq .05^{\prime \prime}$

Once the area is scaled, moving the reference point moves the whole area. The proportions do not change.

operation

There are basically three ways in which the plotter may operate:
I. Plotting mode
2. Alphanumeric printing
3. I/0 printing

1. All plotting commands are generated using a combination
of selector switches $\{$ high order\} and storage registers \｛low order\}.

There are basically six plotting commands：

	Code	Switch	Register
Plot			
Advance \｛without plot\}	0502	\vdots	02
Return \｛to zero\}	0503	\vdots	03
Pen up	0511	\vdots	11
Pen down	0103	T	03
Move \｛ incriment\}	0102	T	02
	0402	X	02

All of these command codes are preceded by an ：x code and followed by an end alpha command \｛i－D902\} \{end a ロ202\}.

When plotting or advancing the incriment amounts are stored prior to the command．
X amount stored in 0 \｛in incriments\}
Y amount stored in 01 \｛in incriments\}
X and Y values exceeding 999 incriments cannot be
plotted by the plotter．
CONDENSED MANUAL PLOTTING OF LINES
Y coordinate is always in 00 Reg Y in incriments X coordinate is always in $0 l$ Reg X in incriments

There are three basic plotting commands：
1．Plot a line
2．Advance \｛no plot\}
3．Return to zero
These are accomplished as follows：
1．Plot a line
Key stroke Instruction Code Number
is Alpha 0902
：ロ己 Plot \wedge XAY ． 0502

+ End alpha \quad azaz

Key stroke Instruction Code Number
2．Advance

$*$	Alpha	0902
$: 03$	Advance ix	0503
+02	End alpha	0202

3．Return＂a＂

a	Alpha	0902
$: ~ 11$	Return ro＂	0511
+02	End alpha	0202

No value in 00 or 0 ，should exceed 999.
ᄅ．Printing with the plotter is done by setting character size，setting the character spacing and then generating α printing codes．

For alphanumberic printing，the plotter requires three bits of information for it to write：

Character size \｛once\}
Character spacing \｛once\}
Numeric code for each character
Setting size：
l．Enter size $\{1$ to li5\}
2．Store in Dl 06日l St al
3．Alpha 0902 Shift print $\{: 1\}$
4．Set size 050』：0B
5．End alpha ロ2ロ己＋ロ己

Set spacing：

1．Enter horizontal spacing \｛in incriments\} OtOl st 0l
2．Store in DI^{2}
3．Enter vertical spacing \｛in incriments\} 0 bab St 0
4．Store in $0 \square$
5．Alpha \quad ロ9ロ己 Shifta
b．Set spacing $0510 \quad \therefore 10$
7．End alpha o वロ己＋ロ己
B．Open and generate alphanumeric codes．

NOTE：Restrictions

Sizes are multiples of single numeric size． Each numeric is 10 units high by 9 units wide． Size l allows 99 vertical units and lla hori－ zontal units．

A table of possible units follows．

$$
\begin{array}{ll}
\text { Number of } & \text { Number of } \\
\text { Vertical } & \text { Horizontal } \\
\text { Characters } & \text { Characters }
\end{array}
$$

Size i 100
Size 己 50
Size 3 33
Size 4 ． 25
Size 5 20
Size b l？
Size 7 14
Size B 」2
Size 9 ll
Size 10． 10
Size ll ๆ
Size le 8
Size 13 解
Size 14 ？
Size 15 ．b

110
55
36
27．5
2ᄅ
19
b
1.3

12
山」
10
q
9
8
？

Spacing is from center to center．
Vertical spacing should be no less than la X charac－ ter size．

Horizontal spacing should be no less than l3．X char－ acter size．

The $l 3$ multiple allows for space between characters．
Don＇t forget to close at the end of a printing block．
The next two pages are a listing of the keys，switches， and other codes which will generate the alphanumeric char－ acters．
2. Character list \{Table of Alpha Characters\}SWITCH TO BE

KEY TO
PRESS DEPRESSED

Pres

$$
12
$$

$$
0
$$

$$
12
$$

$$
13
$$

$$
05
$$

$$
\text { CLEAR \{red switch\} }
$$

CLEAR DISPLAY

$$
01
$$

$$
\begin{aligned}
& 04 \\
& ?
\end{aligned}
$$

$$
04
$$

$$
15
$$

$$
15
$$

$$
\begin{aligned}
& 06 \\
& 0 .
\end{aligned}
$$

$$
09
$$

$$
5
$$

$$
4
$$

$$
13
$$

$$
01
$$

$$
0 ?
$$

$$
14
$$

$$
14
$$

$$
00
$$

$$
15
$$

$$
1
$$

$$
07
$$

和

$$
2
$$

$$
01
$$

$$
09
$$

$$
06
$$

$$
1,4
$$

$$
09
$$

$$
05
$$

$$
04
$$

$$
1.3
$$

$$
\mathrm{l} 2
$$

$$
00
$$

SET EXP

ALL UP

$$
8
$$

13
CHANGE SIGN
9
\dot{b}
0
05

One precaution must be taken here: if you ask the plotter to print when it is located immediately beside eitherthe left edge or bottom edge of the plotting area, the characters will be distorted. Therefore, before actually generating the character codes, you should position the pen away from both edges by $1 / 2$ a spacing value or more. You will also find that the generation of characters is somewhat frustrating because of the time consumed in cross referencing and pushing all the character combinations. A technique for using the input/output writer has been developed whereby you can simoly type in the letters and they will be duplicated on the plotter.
3. There is another way in which the plotter may be used. It can be instructed to print out the results of calculations located on the display. All procedures concerning scaling, spacing, sizing and positioning were previously discussed and still apply in this case.

A two step command is required for printout of the display value. The first is the $I / 0$ command $\{1,502\}$ which alerts the calculator to the need for display printout. The second command is called the format command. Using a combination of a switch and a register key, you indicate the number of digits before and after the decimal point. The selector switch determines the digits to the left of the decimal and the register indicates the positions to the right. Thene is a maximum number of digits of nine to the left and
nine to the right.
A listing of switches and registers follows.

Selector Switch
Print Positions
Function Key
Print Positions

All Switches UP	0	
"T" Switch DOWN	1	
" ${ }^{\text {+" Switch DOWN }}$	2	
"'-" Switch DOWN	3	
"X'' Switch DOWN	4	decimal
" \because " Switch DOWN	5	point
"St" Switch DOWN	6	-
"Re"' Switch DOWN	7	
"Sp" Switch DOWN	8	
"Sp" and 'T' DOWN	9	

00	Suppresses decimal point
01	1
02	2
02	3
03	4
04	5
05	6
06	7
07	8
08	9
09	

The plotter will ignore "O" \{leading zeroes\} positions to the left of the decimal and space over one position for each zero. The plotter may also be instructed to space over without printing again by using a two step command.

$I / 0$	1502
$S P X X$	$12 X X$

The low order of the second step determines the number of spaces the pen will move over.

One last note: if you "underformat" that is, if you do not provide for enough positions to the left of the decimal point, the plotter will automatically print the answer in full scientific notation.

CONDENSED I/O WRITING
All sizing, spacing, and scaling rules apply as before.

1. Key $1 / 0$

ᄅ. Give format : Switches Register Digits before decimal Digits after decimal

XIII. PLOTTER UTILITY PACKAGE

A. Introduction

B. List of Options

1. Types of scales
2. Types of graphs
3. Types of axes
C. Loading the options
D. Program Conbinations
4. Pie chart
5. Line graph
6. Bar graph
7. Point graph
8. Linear regression
b. Math function
9. Alpha labeling
E. Drawing and Numbering the Axes
10. Option l己
11. Option 13
12. Option 14
13. Option 15
F. Alpha Labeling
14. Procedure
15. Character list
G. General Procedures and Considerations
H. Summary Sheets: Procedure and Notes on Plotting
I. Math Function Usage

plotter utility package

Introduction

Wang Laboratories provides a software package of the Wang bad-i4 calculator for use with the ble plotter. This utility package allows the operator selection of many different combinations of fifteen plotting options. These options are grouped into three types:
2. Types of scaling
2. Type of graph
3. Type of axis

The calculator may plot points entered or points calculated. Calculated point plotting is done by using the math function procedure. Since it is the method most used in electronics, it will receive the msot discussion here. List of Options

1. Types of scales

O1 X Linear Y Linear
No restrictions
[D X Linear Y Logarithmic
03 X Logarthmic YLinear
$\square 4$ X Logarithmic \quad Logarithmic
\{In choosing the logarithmic option, the operator restricts himself to values which may be neither "口" or negative. An attempt to plot either a "o" or a negative value will result in a program error.\}

05 Polar coordinates $X=$ redius $\quad Y=0$ angle
fCalculated or entered data points are limited to the above restrictions. The radius designates
the distance from the origin and the angle is measured counter-clockwise from the x axis.\}
ㄹ. Types of graphs
$\square 6$ Pie chart
\{When doing this graph, NO other options are needed. That is, you need not specify type of scaling and type of axis as they have no meaning in a pie chart.\}
D7 Point to point line graph
DB Vertical bar chart
पप Foint graph
10 Linear regression
11 Math function
\{This option requires that a subroutine labeled l101 be written and that this subroutine loads X in register l and Y in register $[$.
3. Types of axes
l2 X and Y both positive
$13 \quad X$ and Y positive or negative
14 Horizontal lines
15 Hatched fill.
If you desire alpha labeling after the plot is finished, you may key "shift पl ${ }^{n}$ This will give you the option to write on the graph. You may write anything at anv point in any size letters. Uriting is restricted to horizontal. If you wish to write vertically, you should pass on the alpha labeling and use the standard alphanumeric plottina procedure.
Loading the Options

To select and load the program option proceed as follows:

To select and load the program ontion proceed as

follows:

Insert cassette--Rewind--Tape ready--Run mode--prime-load program--verify.

Display should read 2444.
With $f\{x\}$ depressed, key $\square \square$ and then select options desired.

The procedure is used each time you wish to program a particular type of plot. Once done, however, the plotting capability is loaded in the machine and need only be used according to the restriction inherent in each set of options. This procedure needs to be repeated only if the operator wishes to change the options selected.

In the following discussion the steps specified above will be designated by the words LOAD OPTIONS and then the desired options will be specified. Options are selected by keying registers specified. When finished selecting options, key $\square 0$ and options will be loaded automatically.

When loading options, always specify:

Alpha loading is always the last option.

NOTE: When selecting options--

> ONLY ONE SCALING OPTION, ONE GRAPH OPTION, AND ONE AXIS OPTION MAY BE CHOSEN AT A TIME.

Scaling is a mathematical procedure for the calculator which tells it how to lay out the graph on the area to be plotted. You must later be careful that you obey the restrictions of the scaling method you have chosen. \{These have already been specified.\}

Axis selection tells the calculator how you wish to draw the axis and is restricted to the type of scaling you have chosen. For examnle, you would not choose option

33 with option 04 or 05 , polar coordinates do not have a Y axis and therefore $14-1,5$ axis labeling method would not be chosen, and so on.

Program Combinations

I. Pie chart: Load options 06.
2. For line graph of observed data points,

3. Bar graph:
Load options

Scaling	Graph	Axis
01	08	12
0		13
03		14
04		15

05 Scaling NoT usable with bar chart.
4. Point graph:

Load options

Scaling	Graph	Axis
$\square 1$	$\square 9$	$\boxed{ } 1$
$\square 2$		\square

03	
4	14

05 No axis selection
5. Linear regression:

Load options

Use of $02 \square 03 \square 04$
and 15 not appropriate
t. Math function:

Load options	Scalin	Graph	Axis
	01	11	12
	D2		13
	03		14
	04		1.5

05
?. Alpha labeling may not always be compatible with the graph chosen. Therefore, if you wish to label, you will have to scale the calculator after plotting is completed. The pie chart is a good example of this problem.

Drawing and Numbering the Axes

1. option I2

Key 03 -X hash spacing--60--\{hashes drawnt
Y hash spacing--GO fhashes drawnt
Key 04 --first $X-60--1$ ast $X-$-60--Incriment X--GO-\{X axis numbered\}
--first Y--G0--last Y--60--Incriment Y--60--
\{Y axis numbered\}
Numbering is in whole numbersi decimal parts not printed.

ㄹ. option 13
Using this option requires a scaling which includes "口:" Therefore, since logrithmic scaling cannot be done with either "ロ" or negative values, these two options are mutually exclusive.

The procedure for this option is the same as for option 12 .
3. Option 14

Key 03 --X hash spacing--G0--\{hashes drawnt $--y$ line spacing--G0--\{lines drawn\}

Key 04 --first $X-$-G0--last Y--go--frequency Y--60-- \{Y printed\}

Numbering done in whole numbers only.
4. Option 15

Note: Data must be entered and scaled prior to axis labeling and drawing. Also, data should be entered, if. possible, in a sequence of increasing X values. Xmin must be smallestX and X max must be largest X used when scaling.

Key 03 -vertical line spacing--60--\{vertical lines drawnt
--Horizontal line spacina--G0--\{horizontal lines drawn\}

Key 04 -first $X-$-G0--last $X-$ - $60-$ - x incriment--GO--\{X axis numbered\} --first $Y--60--1$ ast $Y--60--Y$ incriment--G0--\{Y axis numbered\}

Alpha Labeling
]. Note: Alpha labeling requires prior scaling.
Key $\square 5-X$ starting point--60--Y starting point--60-\{pen moves to start\}

NOTE: STARTING POINT POSITION MUST BE SPECIFIED IN THE SAME COORDINATE MANNER AS THE SCALING SCHEME CHOSEN.
2. Character list $\{T a b l e ~ o f ~ A l p h a ~ C h a r a c t e r s\} ~$ SUITCH TO BE KEY TO CHARACTER DEPRESSED PRESS

General Procedures and Considerations

In general, most of the plots can be done by following these steps in order:

1. Key $\square \square$ and enter data.
2. Key DI and scale the calculator.
3. Key वᄅ and plot the graph.
4. Key 03 and draw the axes.
5. Key 04 and number the axes.
b. Key 05 and alpha label.

The pie chart is a program by itself. However, if alpha labeling is desired, then it will be necessary to choose the scaling with X and Y both linear as well as the alpha labeling option. After the pie chart itself is drawn. scale the calculator by touching key $\square 1$ and then locate the point to print according to how it was scaled.

Do not use polar coordinates with any type of axes, with the bar chart or with linear regression. Locate the point to start alpha labeling a polar plot in terms of r and 0.

The axes cannot be numbered with decimal fractions.
With the hatched axes, X-min should be the minimum value of X and X-max should be the maximum value of X.

Do not use any logarithmic type of scaling with either linear regression or the hatched axes.

The following is a one page summary of procedure and options.
Summary Sheets: Procedure and Notes on Plotting
Loading the Program
Turn on Machine Display
Clear - Prime - Run Mode
Insert Cassette
Rewind - Tape ready
Load Progiam
Verify 1444.0000000
Key $\longrightarrow f\{x\}$ Reg $00 X$ linear Y linear
Choose scale type $f\{x\}$ Reg 01 X linear Y linear $02 X$ linear Y log $03 \quad X \log \quad Y$ linear $04 \times \log \quad Y$ log

 05 Polar coordinate
 Log scales may not be equal to \(\square\)
 or - value.
 Choose type of graph $f\{x\}$ Reg Db Pie chart
07 Line chart
वB Bar chart
09 Point chart
10 Linear regression
Il Math function
Choose type of axis $f\{x\}$ Reg l己 $X \& Y$ positive
$1 \exists X \& Y$ \{positive or negative\}
14 Horizontal lines
15 Hatched
Alpha labeling optional $f\{x\}$ Shift 01
CAUTION: Labeling program is set to print only horizontally. If you wish vertical labeling, use the standard alphanumeric procedure.
2. Character list $\{T a b l e ~ o f ~ A l p h a ~ C h a r a c t e r s\} ~$ SUITCH TO BE KEY TO CHARACTER DEPRESSED PRESS

General Procedures and Considerations

In general, most of the plots can be done by following these steps in order:

1. Key $\square \square$ and enter data.
2. Key DI and scale the calculator.
3. Key वᄅ and plot the graph.
4. Key 03 and draw the axes.
5. Key 04 and number the axes.
b. Key 05 and alpha label.

The pie chart is a program by itself. However, if alpha labeling is desired, then it will be necessary to choose the scaling with X and Y both linear as well as the alpha labeling option. After the pie chart itself is drawn. scale the calculator by touching key $\square 1$ and then locate the point to print according to how it was scaled.

Do not use polar coordinates with any type of axes, with the bar chart or with linear regression. Locate the point to start alpha labeling a polar plot in terms of r and 0.

The axes cannot be numbered with decimal fractions.
With the hatched axes, X-min should be the minimum value of X and X-max should be the maximum value of X.

Do not use any logarithmic type of scaling with either linear regression or the hatched axes.

The following is a one page summary of procedure and options.
Summary Sheets: Procedure and Notes on Plotting
Loading the Program
Turn on Machine Display
Clear - Prime - Run Mode
Insert Cassette
Rewind - Tape ready
Load Progiam
Verify 1444.0000000
Key $\longrightarrow f\{x\}$ Reg $00 X$ linear Y linear
Choose scale type $f\{x\}$ Reg 01 X linear Y linear $02 X$ linear Y log $03 \quad X \log \quad Y$ linear $04 \times \log \quad Y$ log

 05 Polar coordinate
 Log scales may not be equal to \(\square\)
 or - value.
 Choose type of graph $f\{x\}$ Reg Db Pie chart
07 Line chart
वB Bar chart
09 Point chart
10 Linear regression
Il Math function
Choose type of axis $f\{x\}$ Reg l己 $X \& Y$ positive
$1 \exists X \& Y$ \{positive or negative\}
14 Horizontal lines
15 Hatched
Alpha labeling optional $f\{x\}$ Shift 01
CAUTION: Labeling program is set to print only horizontally. If you wish vertical labeling, use the standard alphanumeric procedure.

Math Function Usage

The following is a condensed set of instructions for using the math function graph option.

Load options 01 II 13 shift 01
--60--
When 60 is keyed, the program options you have chosen will be automatically loaded.
\{Now add your subroutine\}
*Verify program \longrightarrow Key Subroutine

Run Mode
Subroutine limitations:
Subroutine for math function must carry, a Fl mark.
X value must always be brought to Reg Ol \{llol\}
Y value must always be brought to Rea 0 if polar
coordinates are being plotted
Radius is brought to Reg ol
Angle is brought to Reg 00
The following registers are not available for use in calculations:

00	01	07	08	09	10	11	12
$\{T 00\}$	$\{T 01\}$,	$\{T 02\}$	$\{T 03\}$	$\{t 04\}$	$\{T 05\}$		
16	$17\}$	18	19	20	21		

Subroutines and marks used in the function subroutine may use only the codes listed below or as subroutine using "H507" marks. \{SP-Re 0? \} \{Register Key\}
*NOTE: It has been found to be very convenient to step over the end program command after verifying and before keying the subroutine. This allows you to very quickly locate the beginning of the subroutine later if changes are desired.

ALL	up	Rea	01	\because	15
T		Reg	90	$\stackrel{+}{4}$	1.5
+		Req	[0]	\rightarrow	1.5
-		Reg	00	\cdots	15
X		Reg	00	-	15

Display Reads

$X \min 60$ $+2.00000000$
$X \max 60$ $+3.00000000$
$y \max 60$ $+4.00000000$
\{Pen goes to plot start point.\}
Key $f\{x\}$ D己 Plotting Function T min Go \{initial value\} +2. 000000000not necessarilyx max
TMax GO \{final value\} $+3.000000000$ not necessarily X max
$\wedge T$ GO \{incriment\}\{Function will be plotted.\}
Key $f\{x\} 03$
Drawing axis with hash marks \{Dark screen\}
Key X Hash Mark Separation--Go\{Dark screen\}X axis will be drawn with hash marks.
Key Y Hash Mark Separation-Go\{Dark screen\}Y axis will be drawn with hash marks

First X--60 $+2.001000000$
Last X--60 $=3.000000000$
Frequency of $X--G 0$
$\begin{aligned} \text { NOTE: } & X \text { axis numbers are set up to allow for four }\{4\} \\ & \text { digits centered on hash marks. Therefore, } \\ & \text { single digit numbers will be offset to right } \\ & \text { of hash marks. you can correct this by ad- } \\ & \text { justing the "g reference horizontally \{x\} a } \\ & \text { small amount prior to the numbering process. } \\ & \text { Use caution in doing this because you are al. } \\ & \text { tering the entire scaling area of the plotter. }\end{aligned}$
$+1.000000000$
 Last $Y--60+3.000000000$
\{y axis will be numbered\}
PRECAUTION: These are restrictions on the labeling program which may cause problems. Labeling can usually be accomplished with more flexibility by using the procedures given in the Flat Bed Plotter instructions section.

Remember, when scaling Log graphs, you may not use " ${ }^{\prime \prime}$'s" or negative numbers on the logarithmic axis. Also, when scaling for polar coordinates, you need only specify the maximum radius and key 60 . Realize also that when choosing the 05 \{Polar\} option an axis need not be specified. You would only choose an axis if you desired one on the drawing.

For other examples of options and combinations, you may refer to the Utility Package book provided by Wang Laboratories.

XIV. DEBUGGING A PROGRAM

A. Definitions

B. Error Indications
l. Check with known values
2. Program error indicator
3. Machine error indicator
4. Verify codes
C. Finding errors

1. Step

ㄹ. Backstep
3. List program function
4. Mark search and search mark \{S.M.\}
5. Trace
D. Correcting a Program
l. Changing
2. Deleting
3. Inserting

DEBUGGING A PROGRAM

Definitions

The most experienced programmer may spend weeks on a program only to find that it does not work. In his program. there are certain errors that keep it from working. These errors, or "bugs," can be in the form of an incorrectly keyed program or in the form of incorrect logic on the part of the programmer. To help the programmer "debug" his programs, the $\begin{aligned} & \text { ang } \\ & \text { has several features to make debugging }\end{aligned}$ easier.

Error Indication

l. When first running the program, it is always a good idea to enter values to which the answer is already known. This will provide the quickest and easiest check of the program. If the answer is what was expected, then no debugging is necessary.
2. Sometimes, when running the program, the program error indicator will light and the display will flash. This is an automatic feature of the wang which checks for certain types of errors in a program. These are the conditions which will cause the program error indicator to activate:
h. Calculated results exceeding 70^{99} foverflow conditionf
2. Dividing by zero
3. Finding the square root of a negative number.
4. Finding the natural log or common log of a nonpositive number.
5. Searching for a non-existent mark.
b. Exceeding capacity of memory with tape.*
?. No "End Program" command when recording or verifying.
B. Sin cos or tan of an angle greater than 10 radians or 5?20.
9. Sin -1 , $\cos ^{-1}$ of a number whose absolute value is greater than, 1 .
3. The machine error indicator flocated next to the program error indicator\} will light if data is not transferred properly from or onto the tape. To correct this situation, prime as you would if the program error indicators were to light and then repeat the loading or recording operation. 4. Another way to check if an error were to be introduced in the program is by using the verify program key. The verify program key adds the first two digits of the program codes beginning at step 0000 until it encounters END code. The sum is shown on the display.

EXAMPLE:

STEP	KEY	CODE	
0000	MARK	0900	$\therefore\left\{\begin{array}{l} 09 \\ 00 \end{array}\right.$
0001	1	[00]	$\times .60$
0002	x^{2}	081,	108
0003	STOP	0913	* $\{09$

*NOTE: If an End Program command is located on the last step in the program memory \{step 0ヨlil for Model bob-2, step 0825 for Model b0ロ-b, and step 1847 for Model 600-1,4\} the program will load properly, but the error indicator will go on. Even though the End Program command is not missing, the Program Error indicator will go on when this program is transferred to tape. If this is the case, prime and ignore the Program Error indicator.

0004 END PROG. $9014 . \begin{aligned} & 09 \\ & 14\end{aligned}$
THE VERIFY CODE FOR THIS PROGRAM IS b5.
This is valuable when re-introducing a program to the machine. If the correct verify code is known then it is easy to see if the program put in memory is correct by seeing if it has the correct code. It is very unlikely that two verify codes would be the same for different programs.
\{After the execution of the Verify Program operation, the Program Counter is set at the End Program step.\}

Now that we have discussed ways of determining if an error exists, the next section will deal with finding where the errors are in the program.

Finding Errors
Suppose the program entered does not work. The cause of error will be either a mistake created by incorrectly entering the program or by incorrect logic when the program was written. A person experienced in programming and with the general operating characteristics of the wang will make fewer logic errors such as introducing undefined values or improperly arranging steps or subroutines. However, whatever the error is, it should be fairly obvious to a programmer at this stage after a little study of the program.
I. Debugging requires an understanding of the four digit operation code in the machine. This code can be translated by use of the pull-out cards under the llang or by the same
table reprinted in the back of this manual. By recognizing the codes, theoperator can put the wang in learn mode and step thragh the operational codes to see the program in memory with the Step key, starting at a step set by the program counter.
2. It is possible to Back Step in a program by using the upper case of the Verify Program key. This is accessed by putting the Uang in Run-Learn mode. \{Simultaneously depress both Run and Learn switches.\} Then use the key as you would use the step key.
3. It is also easier to see mistakes if the entire program is printed out on paper. To do this, put the lang in List Program mode, prime for set the Program counter to the point to be listedf and key G0. The program will be printed out until the End Program command is reached. There will also be on the tape an alphanumeric translation of the operation code to make debugging easier.

Suppose we want to watch values run through a proaram to determine where errors are. If this is the casen put the Wang in run mode, enter values in the appropriate registers and then use the step key and follow the values through the program. The programmer will have some idea of what to expect and will therefore find at what point the error is made.
4. It is possible to only run one subroutine by using the Mark-Search routine. This is done by keying search and then
the flag which corresponds to the subroutine to be run. The program will run from that point.

It may be desirable to go to the point where the subroutine starts and then stop before executing. This is done with the Search-Mark function found on the Prime key \{uang ba口 only\}. Place in the Run-Learn moder key the Search-Mark key, and then the flag which corresponds with the section of the program to be studied. The display will show the first command after the Mark number. The step key can be used in this mode to check the codes, or the wang can be returned to run mode and values can be stepped through the subroutine.
5. Suppose we wanted the $\begin{aligned} & \text { wang to step through a program }\end{aligned}$ automatically in run mode, print out all the values as they moved through the program after every step and indicate the function being processed. This is possible on the wang boo with the Trace function. Before running the program, key Alpha $\{x\}, \log _{e} x$ \{or Alpha, $\left.\log _{1} 0^{x}\right\}$ to turn the Trace on. Then run the program. To turn off the Trace function, key Alphar e^{x} \{or Alphar $\left.1 \square^{x}\right\}$. It is possible to place the trace on and off functions into the program to trace certain sections as the program runs. This is done by inserting steps in a programi a procedure which will be covered in the next section on correcting a program.

Correcting a Program

1. Many times when debugging a program a mistake will be
found that only needs to be replaced or "written over." Tu do thisi switch to Learn mode. Set the program counter to the step to be changed and then key in the correct command. The program is now changed. \{This method will write over existing steps. It cannot be used to add extra steps.\} 2. To correct a program it is sometimes necessary to delete a step or steps. On the 4 ang 500, this was done by replacing the unnecessary steps with Go commands. On the Model bon, it is possible to delete a step entirely and therefore save program steps. This is done by going to the step or steps to be deleted, placing the wang in RunLearn mode and then keying Delete. The step deleted will disappear and all of the remaining steps will move up to take its place. EP \{End Program\} steps are automatically inserted at the end of the program as the steps move up into the new positions.
2. The most powerful debugging feature on the wang boo \{only\} is its ability to insert steps. On the 500, it is necessary to rewrite the entire program from the point where steps are added; but on the bOO, the new steps are inserted directly into the program between existing ones to make room for the new commands.

To insert a step, set the program counter to the command which is to immediately follow the inserted step or steps. Then put the Wang too in Run-Learn mode and key Insert. This will insert a 60 command into the program. The
command that was on the display will have moved up one step along with all the commands after it. To insert two steps, key Insert twice and all the commands after it will move up two steps, and so on. The steps that were inserted were D803 GO commands. These are now written over by setting the program counter to the desired step for using the backstep key\} and keying the new step or steps over the Go commands. Remember: Before you insert, the program step that is to follow must be on the display.

If you must insert steps in more than one place in a program it will be easier to locate the places if the last set of inserts is done first. Since doing an insertion changes the step numbers of the steps following the insertion, locating other places in the program would be more difficult if the first set of inserts were done first.

Every programmer develops his own preferences and techniques from the methods described in this chapter. Even if a programmer never makes mistakes, some programs can be changed for the sake of improvement or adapted for other programs and is easily done with the methods previously discussed here.
XV. SPECIAL ADDRESSING
A. Introduction
B. Memory Layout

1. Diagram
2. Arithmetic
3. Sequential Storage
c. Variable Length Jump

SPECIAL ADDRESSING

Introduction

Both the W lang 500 and 600 can interpret the internal registers as either programmed steps or as data storage positions. Programming has already been exolained. There is a technique known as indirect addressing which allows the operator to use the internal storage as data handling register. That is, you can add, subtract, multiply, divide, store and recall values in any of the substorage registers using the upper sixteen registers as "pointer" registers. The term "indirect" comes from the fact that you "get to" the register by an indirect path using the upper registers to point the way.
l. To understand the procedrue, you need to understand the layout of the registers in the machine. Look at the diagram on the following page.
2. To indirectly address any one of registers lb through LIB, you store the number in one of the upper registers and then key, "indirectly," the functional operation switch and the pointer register in which you stored the aduress.

EXAMPLE: Suppose you wished to add 45 and 79 in register 89. Use 00 as pointer.

Key 89
ST 00 fointer register 00 now contains the address "89"\}
45
indirect
ST. $00\{45$ is now in register 89$\}$
79
indirect +00 \{79 +45$\}$ now in 89

Once you have established a pointer register, arithmetic commands performed in the substorage become simple two step commands.
3. The indirect procedure may also be used to sequentially store numbers in registers.

EXAMPLE: Store the numbers 20 through 30 in Registers 45 through 55 . Use 04 as the pointer.

Key
20
STL
45
ST 04
Search 1
Mark 1
Re L
Indirect
ST 04
I.
$+L$
l
$+\square 4$
ST Rt
56
-Rt
-- \quad jearch
l
1
EP
The numbers $20 \rightarrow 30$ are now stored in Registers $45 \rightarrow 55$.

There are many ways in which the ability to address the lower registers can be extremely useful. It is well worth your time to explore this feature of the bob.

Variable Length Jump

When the program encounters the two step command "Indirect $00 X X^{n}$ \{where $X X$ is the register in which the number of steps to be jumped is stored\}, it will add the contents of the $X X$ register to the program counter causing the program to skip that number of steps.

EXAMPLE: Suppose you wanted the program to skip from step 450 to 565.
$\left[\begin{array}{r}565 \\ -450 \\ \hline 115\end{array} \quad\right.$ You need to skip 1115 steps. $]$

STORE llis in one of the upper registers \{e.g. Ot\}. At step 447 , the program should read:
$\left[\begin{array}{lll}\text { STEP } & \text { CODE } & \text { COMMAND } \\ 0449 & 1511 & \text { Indirect } \\ -\quad 0450 & 0006 & 06 \\ -0565 & & \\ & & \end{array}\right]$

The calculator automatically takes the contents of Db and adds it to the program counter causing a lles step jump.

You may jump up to 999 steps if your calculator has that capacity.

NOTE: lf Only the absolute integer portion of the contents of the keyboard register designated are used. Negative numbers are interpreted as positive. Thus "jump" can only be forward in the program flow.

2\} If a jump is attempted to a non-existent step $\{e \cdot g .--s t e p ~ 2000\}, ~ e x e c u t i o n ~ h a l t s ~ a n d ~ t h e ~ p r o-~$ gram error light turns on.

XVI: INPUT/OUTPUT WRITER
A. Introduction
B. Modes of Operation

1. Local mode
2. Output mode
3. Input mode
4. Type mode
C. Programming from I/O Uriter
D. Correcting Input Errors
E. Printing Display Answers
F. I/O Spacing Commands

MODEL EI. INPUT/OUTPUT URITER

Introduction

The bll Input/Output Uriter $\{I / O$ Writer $\}$ is an automatic typewriter. It will print out alphanumerics upon program command from the $60 \square$ calculator. The I/O Uriter may also input alphanumeric programs into the Wang. And, of course, it may be used as a regular typewriter. Modes of Operation

The I/O Uriter itself has four modes of operation: output, input, type and local modes. All are indicated on the I / O control panel. For the four modes see the figure below.

1. When the toggle switch on the I/O writer control panel is placed into the local position, the Uriter is in the local mode. This enables you to use it as a regular electric typewriter independent of the caluclator. If the calculator is executing a program and the switch is placed to

Local, the calculation will be interrupted and the writer keyboard freed for local maniuplation. When switched back, the execution of the proaram will continue from where it left off.
2. When the toggle switch on the $I / 0$ uriter is placed into the "I/O" position, the output indicator light will illuminate. This shows that the writer is ready to print upon program command from the b00. The writer keyboard is now locked up.
3. The input mode is used to input the alphanumeric program codes into the calculator by use of the I/O keyboard. To change to the input mode, the codes \{1554 4$\}$ and \{04]2\} must be generated in the calculator. For example; olace calculator into the run mode.
key group ㄹ $\{151,4\}$
depress $\{x\}$ and key Reg le $\{041,2\}$
The I / O control panel should now have the input light illuminated. The calculator keyboard is now locked up, with the exception of the debugging and PRIME keys.

Thechanging of the uriter to input mode can also take place in a program.
4. The type mode is a way of letting you type something while the calculator is still running a prooram. The codes $\{1514\}$ and \{041, 3$\}$ are encountered, the calculation will stop thus allowing you to use the writer without generating program codes into the bロO. When you have finished typing, key $\underline{G O}$ and the calculation will continue under program
control.
Here is an example of how to place the writer into type mode:

Depress run button on calculator.
Key Group 2 \{1,51,4\}
Depress $\{x\}$ and key Reg 13 \{[1413\}
Programming from $I / 0$ ulriter
After the writer has been switched to input mode a any key that is touched on the $I / 0$ keyboard will produce a code in the bDO.

Any program which is to be printed out on the writer must be preceded by a write alpha command and terminated with an end alpha command. The calculator will then orint out anything within the alpha and end alpha commands. For example, to print out ruang Labsi" follow this procedure:

Key PRIME
place I/O writer to INPUT MODE
Key URITE ALPHA
key CR/LF \{carriage left\}
Key INDEX
key SPACE
key SPACE
key UP SHIFT
key \quad \{quotation marks\}
key u
key DOUN SHIFT
key A
key N
key G
SPACE
UP SHIFT
L
DOUN SHIFT
a
b
s
UP SHIFT
$x \times$
DOUN SHIFT
key END ALPHA
THIS PROGRAM IN NOW IN THE GOD.
key $G 0$ on I / O \{Returns command back to calculator\} depress LEARN mode button on the bOD Key END PROGRAM \{EP\} \{Every program must have an EP command.\}
depress RUN mode button
THE GOI IS NOW READY TO RUN YOUR PROGRAM. key GO on calculator to run program.

Correcting Input Errors

As mentioned before, one of the advantages of pro-
gramming the calculator via the I / O writer js that the programmer can watch for input errors as he types and easily correct them. If a major error is found the easiest way to correct it is to reset the program counter on the calculator \{reset $P .[$.$\} , and use the I / O$ Writer to re-enter the entire string of alphanumerics.

Suppose, however, a programmer was using the $I / 0$ writer to enter some alphanumeric characters into the calculator and found himself in the following situation:

Number Regression Coefdicients - I/o Writer Carriage \& positions in this position

That is while programming some column headings, he Inadvertently typed the letter "d" instead of an "frin the word "coelficients." He could retype the entire line or he coild rolypu just a single letter. If he chooses to retype Just the loliter, there are two possible ways of oroceeding:

PROCEDURE I FOR CORRECTING ERRORS

Step a. Key END ALPHA on the I/O Uriter fif this was not already donef
Step b. Put the calculator in the RUN/LEARN mode fthat is, depress both the PUN and LEARN mode switches simultaneouslys
Step c. Key B.S. \{BACKSTEP\} E times \{remember--only programmable keys on the calculator are locked at this time--therefore, the BACKSTEP key will work\}.

The situation now looks like this:
Programing Position Program Code According to Calculator for letter "d"

Regression Coefdicients, \uparrow
0033 ロ2 1ヨ
Number

That is, although the $I / 0$ writer is positioned at the space following the letter "s," the proaram counter fand therefore the program stepf of the calculator is positioned at the letter "d."

Step d. Now depress the "f" key on the I/O Uriter's keyboard, thereby replacing the "d" with an "f."

The situation would now look like this:
On Paper:
Calculator Display
Number

In the Calculator Memory:
Number Regression Coefficients

Step e. Put the calculator back in the RUN mode \{i.e. depress the RUN mode switch\}.

Step f. Since the error has now been corrected, depress the Go key on the I/O Uriter. This returns programming control to the calculator.

To be sure that all errors have been corrected and that the alphanumeric programming has the proner format, make a test run of the printout.

NOTE: When attempting to correct alphanumeric programmina errors, remember to count all shift up, shift down, and tabbing operations as program steps.

PROCEDURE II FOR ERROR CORRECTION
Step a. Key END ALPHA \{if this has not already been done.f

Step b. Key GO on the I/O Writer. This will transfer programming control back to the calculator.

Step c. In RUN mode, SET P.C. to the beginning of the alphanumeric programming, and STEP through the alphanumeric printout. The diagram below shows the situation after the STEP key has been keyed b times \{i.e. after Program Step 0005 has been executed.\}

Numposition of the I/O Uriter
Key STEP until the mistake is printed. The situation will now look like this:

Number
Regression Coefd
Position of the $I / 0$ uriter
Step d. If the calculator is now put in the RUN/LEARN mode, the display will show the program çode of the next letter to be printed:

If you key B.S. \{ BACKSTEP \}, the display will then show the code for the letter "d", the error:

Therefore you know that the mistake is $10=$ cated in step no. 门agl.

Step e. Put the calculator back into RUN mode.
Step f. Now transfer programming control to the $1 / 0$ Writer: On the calculator, key GROUP 2 and with the $\{x\}$ Selector Switch downa key le.

Since programming control is now centered in the I/O Uriter, the calculator display will show:

0034 ロ213

although the calculator's RUN mode switch is still depressed.

Step g. Depress the "f" key on the I/O Writer keyboard, thereby replacing the "d" with an "f." The correction has now been made. Therefore, depress the GO key on the I/O Uriter to return control to the calculator.

The error correction procedure is now complete.
Depress Learn mode button on the boll.
The bOD is now ready to run your program.
Key GO on calculator to RUN program.

In addition to programming alphanumeric characters into the calculator using the I/O Writer, these characters can be entered into program memory via the calculator keyboard. To do this, the programmer uses the Special Selector switches and the data register keys at the top of the calculator keyboard.

The Selector switches are used to generate the "high order" part of a program code, while the data register keys
are used to generate the low order code:

Below is a listing of the blu I/O Uriter Format com-
mands.

611 I/O WRITER FORMAT COMMANDS

FUNCTION CODE	SELECTOR SWITCH SETTING (Generates High-Order Code)	(Generates Low-Order Code)

Space	0002
Backspace	0003
Index (LF)	0110
Shift Up	0103
Shift Down	0102
CR/LF	0108
Tab	0008
Clear Tab	0011
Set Tab	0010

All Switches Up	02
All Switches Up	02
" T " Switch Down	03
" T " Switch Down	10
" T " Switch Down	03
All Switch Down	02
All Switches Up Up	08
All Switches Up	08
11	

The following page contains the manual entry codes for printing.

CHARACTER	CODE
A/a	0112
B/b	0200
C / c	0212
D/d	0213
E/e	0205
F/f	0014
G/g	0015
H / h	0201
1/i	0104
J/i	0007
K/k	0204
L/I	0209
M / m	0115
N / n	0206
O/o	0109
P / p	0005
$0 / q$	0004
R/r	0113
S/s	0101
T/t	0207
U/u	0214
V/v	0114
W/w	0100
X/X	0215
Y/y	0001
$2 / 2$	0307
[/] or $1 / \pm$	0315
@/2	0306
4	0314
\$/4	0309
9/6	0305
1/6	0304
$8 / 7$	0313
*/8	0312
$1 / 9$	0300
170	0301
1	0000
1/2	0006
1/41/2019\%	0107
\%	0013
\%	0105
4	0012
\%	0106
41	0009

SELECTOR SWITCH SETTING
"T" Switch Down
"+" Switch Down
" + " Switch Down
" + " Switch Down
"+" Switch Down
All Switches Up
All Switches Up
"+" Switch Down
"T" Switch Down
FUNCTION KEY SETTING

All Switches Up

" + " Switch Down	04
" + "Switch Down	09

"' + " Switch Down \quad Switch Down $\quad 15$

" + " Switch Down	06
" T " Switch Down	09

All Switches Up $\quad 05$

All Switches Up
" T " Switch Down
13

"T" Switch Down $\quad 01$
"+" Switch Down : 07
" + " Switch Down $\quad 14$

"T" Switch Down	14
" T " Switch Down	00
15	

" + " S Switch Down	15
All Switches Up	01
" " Switch Down	07

$"-"$ " Switch Down	07
" Switch Down	15

"'-" Switch Down $\quad 06$

"'-" Switch Down	14
"_" Switch Down	09

"." Switch Down : 05
"-" Switch Down . 04
"." Switch Down $\quad 13$
"-" Switch Down : 12
"-" Switch Down 00
"-" Switch Down 01
All Switches Up $\quad 00$
All Switches Up $\quad 06$
"T" Switch Down 07
All Switches Up 13
"T" Switch Down 05
All Switches Up
"T" Switch Down
All Switches Up

NOTE: Each of the commands on the previous two pages must be preceded by an ALPHA command \{0902\}, and end with an END ALPHA command \{ロ2ロ2\}.

Printing Display Answers
Numerical answers can also be printed out on the I/O Writer. The Writer will only print out the number that is in the display of the calculator. To print this number out on the I/O, a two step command is needed. The first step is the I/O command. Key the I/O button thus producing the \{l502\} code. The second command is the formating command which serves as a means of telling the $I / 0$ how it is to print the number out.

You have a choice of how many diaits before and after the decimal point are to be printed out.

This command must immediately follow the $I / 0$ command.
Here is a table of your formating choices:

The selector switches generate the \# of positions to the left of the decimal point.

Selector Switch	Print Positions		Function Key	Print Positions
All up	0		00	Suppresses decimal pt.
"T". Switch down	1		01	1
"+" Switch down	2		02	2
"--"Switch down	3		03	3
"X" Switch down	4	decimal	04	4
"י" Switch down	5	point	05	5
"St" Switch down	6	-	06	6
"Re" Switch down	7		07	7
'Sp'" Switch down	8	,	08	8
"Sp" and " T ". down	9		09	9

Example 1

Calculator Keystrokes

Key the number 987654321 , followed by

1. $1 / 0$

Code Generated

1502
2. With the $(S p)$ and (T) Selector Switches down,

0909
key 09

The 1/O Writer will print out

Example 2

Now key 123456789. followed by

Calculator Keystrokes
Code Generated

1. $1 / 0$
2. With the (Sp) and (T) Selector Switches down, key 09

The 1/O Writer will print out

As you can see, the 1/O Writer will not print out leading zeros. Instead, it will space over the Indicated number of spaces.

To have a printout in scientific notation, all that has to be done is to under format the left of the decimal. EXAMPLE
-123.4560000
If the calculator display looked like this and you attempted to print out the number with less than three digits to the left of the decimal point, let's say as follows:

Calculator Keystrokes
Code Generated
l. Key I/O
\{1502\}
2. With the $\{T\}$ switch down, key प4
$\{0104\}$
The I / O Uriter will print out the following:

- 』. 234560000e 02

In this case, it did not matter how many digits you instructed the $I / 0$ Uriter to type after the decimal point. The number would always be printed in scientific notation, since you instructed the Model bll to type out only one digit in front of the decimal point, when the number actually had three digits in front of the decimal point. This is a case of under-formatting.

I/O Spacing Commands
These codes will allow you to have the carriage skip up to fifteen spaces without using fifteen steps.

A. Purpose of Recordkeeping
B. What to Include on a Specific Program
I. Program description \{storage method\}
2. Flow diagram
3. Program steps
4. Operational instructions
5. Example of program results
C. Program Files

1. Card files
a. Master card index
b. Reverse side notes
c. Notebook file
2. Tape
a. Program index
b. Loading instructions
D. Summary

RECORDKEEPING

Purpose of Recordkeeping

Keeping a complete and thorough record of your programs as they are developed is easily as important as developing the program itself. Even the best program in the world is useless if you cannot remember how to use it or what the results show. It is therefore extremely important for you to develop proper recordkeeping habits right along with your programming skills. What follows is a short discussion concerning what should be included in your documentation of a program as it develops.

What to Include in a Specific Program

l. When setting out to write a program, write briefly what you want the program to accomplish and the order in which you wish that calculation to be done. Also determine the method of storage: tape, cards, or simply written record. The decisions made at this point determine the layout and progression of the program and form the basis for later formal description of the program.
2. Next, lay out a rough flow diagram of the program. This diagram need not include a great amount of detail but should block out the main routine, subroutines and decision points. Later, after the actual program has been finished, the flow chart should be refined to include all the details of the program as loops, marks, data entry points, decision conditions, etc.

The following flow diagram symbols my be useful.

3. Once you have made the decisions above you are eready to begin the actual process of writing the program. First, assign any registers that will be required and aive marks to the program blocks and subroutines as necessary. Proceed to formulate the proper step to accomplish the program. After the writing, run the program and proceed to remove any errors and make any changes necessary until the program is satisfactory.
4. After you have the program developed to your satisfaction, run it, at least once completely through, making a formal record of the results and a printout of the answers if any. Urite out in detail the operational procedures needed to run the program, a description of the program and its function, a detailed flow diagram, a code listing of the program and any other information necessary to understanding the program. This material should be well-organized and contain all detail necessary for efficient usage.
5. Organize all of this into a package to be filed for future reference. The following is an examole of what the results mught look like for a simole program.

PROGRAM EXAMPLE

Program Description
This program will make the conversion from polar phaser form to rectangular form. The operator need enter only the magnitude and the angle and the program will print back the horizontal $\{x\}$ and the vertical \{Y\} portions of the phaser.

Enter Mag 0
Printout Horiz $\{X\}$
Vert \{Y\}
$\underset{\rightarrow}{\operatorname{con} v} Z \cos 0+j \sin 0$ \{functional equation\}
Operational Procedure
Select card 725 from card file. Put the machine in learn mode and run card through the card reader. Verify that the program is loaded.
Verification \#42?.
Key search 3. When the display reads +l, enter magnitude, key $60 ;+2$ enter angle, key $G 0$. Program will print out results.

Flow diagram

Storage Information
Program stored on card \#25 \{card file\}
Number or steps: 28
Verification \#42?
Print out $x \rightarrow$ Horiz vaule b digits
$Y \rightarrow$ Vert value b digits
Finally, fill out a program description form and file it with the program.

Program Files

1.. Card files are one of the two methods that can be used to store programs for use by the llang calculator. The procedure for entering data on the cards has already been shown and will not be discussed here.
a. When filing cards, you should have a master list which tells basically what each card contains and how to identify it. You will notice that each card has on its edge a place to write a title, a card number, and how many cards are included in the group.
b. It is suggested that all the identification information on the front side be duplicated on the back as well. The reverse sid of the card also lends itself well to including
an abbreviated set of operational instructions, verification number and register assignments.
c. It has also been found to be extremely useful to have a looseleaf notebook containing a set of program description forms and the operation instructions. A sample of these forms may be found at the end of this section. These have proved to be quite helpful. You may wish to make up your own form or to use the ones provided. Ue would, suggest, however, that whatever form you use, you should have some kind of master list that can be searched out quickly. 2. Cassette tape is the other method of program storage provided for the Wang calculator. It has the advantage of being able to store many programs in a small physical space. The program retrieval system, however, is somewhat more complex and requires the use of a bootstrapping system as a self-designed retrieval method.
a. You should again keep some form of master file of reference material including such items as have been previously mentioned:

Program description, verification of numbers, operational procedures, etc.

In addition to these, you will find it useful to have a block diagram of the tape showing the position of the program on the tape.
b. Because tape retrieval systems are somewhat more complex than card systems, you should include loading instructions
with each program that is loaded on tape. Summary

As you have probably already noticed, the keeping of program records includes a fair amount of duplication of instructions. While this may seem to be wasted paper, you will find that, especially with tape retieval, the availability of loading and operating instructions without the necessity of actually pulling the file on a particular program is very handy.

It is worthwhile repeating that complete records are extremely important and without them your programs tend to become useless pieces of paper laying on your desk which seldon, if ever, get used.

Prograna
Operation TITLE \qquad

General Program Description and Function:

Formula or Format:

Use and Application:

Data Register Assignments:

00	01	02	03.	04	05	06	07	08	09	10	11	12	\pm

Operation and Loading:

