
CpnetSerialServer
July 13, 2020

Table of Contents
Introduction...1
Serial Protocol...1

Simple Serial Protocol..1
DRI Serial Protocol..2

Native Files..3
Server Configuration...3
HostFileBdos Server Properties..4
Diablo 630 Implementation...5
Network Boot..7

Introduction
CpnetSerialServer is a JAVA program the implements a CP/NET server, with CP/M 3 extensions. It
uses a dedicated serial connection and provides a “server dispatch” function. It receives requests on the
serial link, performs the dispatch to the appropriate server, and provides CP/M-style access to native
file folders on the host. It can serve as a gateway between the serial link and network servers
(CpnetSocketServer) using socket connections.

This JAVA program requires an external add-on package to support manipulation of serial ports. The
package jSerialComm is required. See https://fazecast.github.io/jSerialComm/. See
“contrib/serialserver” script for example syntax to run. This general command syntax should work on
Windows, substituting appropriate paths (and path syntax).

This server has a great deal of code in common with CpnetSocketServer, particularly regarding access
to native files.

Serial Protocol
Serial protocol is selected by the cpnet_proto property. The string contains the property name followed
by options. The SNIOS (for all clients) serial protocol must this setting. Protocols available are:

Simple Serial Protocol

The default serial protocol (SIMPLE ASCII CRC) used by this server (and compatible SNIOS
implementations) is as follows for each message:

1. Message start sequence “++”.
2. Message data (CP/NET request/response) in 6 to 261 pairs of (uppercase) hexadecimal digits.
3. Two pairs of hexadecimal digits representing the CRC16 of the binary message data.

CpnetSerialServer Manual 2

4. Message end sequence “--”.

Receipt of the dash character(s) is required to consider the message complete. Once the message CRC
has been verified, the message data may be inspected and the CP/NET function performed.

The CRC16 algorithm is represented by the following (JAVA) code. The crc is initialized to the value
0xffff at the start of each message.

private int crc;
static final int POLY = 0x8408;
private void crcByte(int data) {
 int i;
 int mask;
 for (i = 0; i < 8; ++i) {
 mask = ((crc ^ data) & 1);
 crc >>= 1;
 data >>= 1;
 if (mask != 0) {
 crc ^= POLY;
 }
 }
}

The SNIOS in src/serial/snios.asm uses this protocol. The exact character transport is defined by the
chrio.asm module, for example in src/ft245r/chrio.asm.

Two special message functions are recognized, used to manage the network. Both use CP/NET
FMT=0/1 packets, but use FNC codes 255 and 254. FNC=255 is a message used by the client to
discover it’s node ID, the response will contain the client’s node ID in the DID field. FNC=254 is used
to notify CpnetSerialServer that the client wishes to shutdown all connections. This message has no
response.

The standard CP/NET function requests (and responses) are described in the DRI CP/NET manuals.

DRI Serial Protocol

The “DRI” protocol is the one shown in the Digital Research sample SNIOS (reference
implementation). It uses ASCII control characters to implement the protocol, and by default sends data
in binary. It is summarized here:

1. ENQ, response: ACK
2. SOH <FMT> <DID> <SID> <FNC> <SIZ> <checksum>, response: ACK
3. STX <data>… ETX <checksum> EOT, response: ACK

The checksum byte is a simple 8-bit sum of bytes sent, negated (i.e. the checksum of the message
including checksum byte is 00). In the case of the data packet, checksum does not include EOT.

The only protocol option is “ascii”, to send data bytes as ASCII hexadecimal digit pairs instead of
binary.

CpnetSerialServer Manual 3

Native Files
Native files must have lower-case only names. Mixed-case filenames will cause unpredictable results.
All files created by CP/M will be in lower-case.

The file’s write permission is used to reflect the CP/M RO attribute. CP/M programs that change a
file’s RO attribute will change the native file’s write permission.

The file’s execute permission is used to reflect the CP/M SYS attribute. Note that Windows will always
show files as executable, and thus files on a Windows host will always have the SYS attribute set. Also
remember that CP/M normally hides files that have the SYS attribute set. There is a server
configuration setting the disables the SYS attribute, to avoid these issues on Windows hosts.

The CP/M ARCHIVE attribute is not supported.

Files that are not an even multiple of 128 bytes in size will be padded to a 128-byte multiple, using
Ctrl-Z (EOF, 0x1a), when reading. Writing to a file always involves a full 128-byte record, so no
additional padding is performed. The CP/M 3 feature “Set File Byte Count” will truncate a file to a
specific, arbitrary, number of bytes, after which the file may no longer be an even multiple of 128
bytes.

Server Configuration
The server is configured using a “configuration file”, which is plan text formatted as “property = value”
lines. The configuration file to be used is specified on the commandline using the parameter
“conf=file”. The environment variable CPNET_CONFIG may also specify the configuration file. If
nothing is specified, the server will look in the current directory for “cpnetrc” and then the user’s home
directory for “.cpnetrc”.

Many properties may be specified on the commandline, using a “parameter=value” format. The
parameter names are the property names with the “cpnet_” prefix removed.

The following properties are recognized:

cpnet_log = log-file
Diverts stderr to log-file.

cpnet_tty = tty-dev [baud]
The tty device to use for the connection. For example, “/dev/ttyUSB0”. May be set to “stdio” as
well. The tty device name may be followed by the baud rate to use.

cpnet_flow_control = flow-control
Specifies the serial port flow control to use. Valid flow-control strings are “none”, “rts/cts”, and
“xon/xoff”. Note that these require cooperation from both sides, especially for XON/XOFF.

CpnetSerialServer Manual 4

Flow control is enabled for both directions, and cannot be limited to the server-to-client
direction only.

cpnet_cid = node-id
Specifies the CP/NET node ID to assign to the attached client. Value is interpreted as a
hexadecimal string, and must be in the range 01-FE.

cpnet_proto = protocol
Specifies the style of serial communications that the SNIOS expects. With no property, the
protocol is ASCII with CRC. Specifying the property clears defaults to BINARY and no-CRC.

cpnet_serverXX = server-spec
Where XX is the hexadecimal node ID to use for the server. server-spec may be “HostFileBdos”
(for local file folders) or “Socket” to specify a remote CpnetSocketServer instance. These
options are discussed below.

cpnet_debug
Enables debug mode. Currently dumps messages received and sent (in hex).

HostFileBdos Server Properties
HostFileBdos properties may be specified in-line with (in the same file as) the CpnetSerialServer
properties. In addition, the first argument to the “HostFileBdos” server-spec (may) specify the root dir,

hostfilebdosXX_temp = tmp-drv
Specifies the CP/M drive letter to designate as the temporary drive. Default is “P”. The server
does not use the temporary drive, but CP/M applications may. For example, MAIL.COM uses
the temporary drive as the location for mail message files.

hostfilebdosXX_root_dir = path
Specifies the top-level (root) directory to be exported to CP/NET. Subdirectories named “a”
through “p” are assumed, but not created automatically. Default will be
“${HOME}/HostFileBdos”. Note: JAVA does not expand “~” or environment variables the way
a shell does, and so the exact path must be specified.

hostfilebdosXX_nosys
Disable the CP/M SYS attribute, so files will not be hidden on Windows.

hostfilebdosXX_drive_X = path
Where “X” is one of “a” through “p”. Specify the path to use instead of “root_dir/X” for the
exported CP/M drive.

hostfilebdosXX_lstX = lst-spec
Where “X” is a hexadecimal LST: device number, 0-F. Specify the implementation of the LST:
device. The supported strings are:
“>file” - send all printer out to file. Note, this file will contain all output sent during the life of

the server.

CpnetSerialServer Manual 5

“Diablo630Stream [options]” - Use a basic emulation of the Diablo 630 dasiy-wheel printer,
producing Postscript output. See section on the Diablo 630 implementation for options.

At this time, no other printer handlers exist.

Socket Server Properties

Note: host and port may be specified after the “Socket” server-spec, in that order. In that case, there is
no need for properties.

cpnetserverXX_host = host-or-ip
Specifies the host network address of the remote server.

cpnetserverXX_port = port-number
Specifies the port number of the remote server.

Starting the Server

Typical setup will include creating a configuration file that specifies all the necessary parameters. Then
invoke the JAR file while specifying the configuration file. If stderr has not been redirected (using the
log property/parameter) then the terminal will have messages displayed.

Because of the need for jSerialComm, the startup command is more complicated. A bash script exists in
contrib/serialserver that may work for most non-windows systems, and may provide an example for
others.

Typical startup command using ‘serialserver’:

./serialserver conf=file

Startup using the ‘java’ command directly:

java -cp CpnetSerialServer.jar:/path/to/jSerialComm-2.5.3.jar \
CpnetSerialServer conf=file

Note that the location, and name, of the jSerialComm JAR may vary, and would require customization
of the command or shell script.

Other techniques may be used to start the server in the background or set it up to start automatically
whenever the system is booted.

Diablo 630 Implementation
The Diablo 630 printer emulation is provided for convenience in serving printers to CP/NET clients. It
is not a complete emulation, but supports the functions used by Magic Wand word processor. Magic
Wand uses the printer’s micro-spacing, and does not depend on the printer’s “word processing”
functions like print bold, or center a line.

CpnetSerialServer Manual 6

Output will be turned into Postscript and sent to a file. Upon receipt of the CP/NET “end list” character
(0xff), the output file will be closed and disposed of as configured (may be deleted depending on the
configuration). Configuration properties way reside in the same file used for CpnetSocketServer.
Similar to CpnetSocketServer, properties may also be used as commandline parameters by removing
the prefix. The commandline in this case is the “[options]” part of the CpnetSocketServer LST:
property.

The following properties are recognized:

diablo630_file = file
Establishes the name of the output file. This file is the current printer output. The contents of
this file will be handled upon receipt of the “end list” character, depending on other
configuration parameters. Default is “ps.out” and so must be changed if multiple LST: devices
are being used on the same host, running in the same directory.

NOTE: currently, this parameter must be specified on the commandline.

diablo630_nogui
Disables the GUI printer control panel. This is typically required in cases like
CpnetSocketServer, although careful invocation of the server may allow for the GUI.

diablo630_jobend = action
Determines what will be done to the printer output file when the “end list” character is received.
Actions:

discard - erase the previous output and start over with an empty file.
save - save output in a unique filename.
queue cmd args – use the command template to process the output. Any “%f” in args
will be replaced by the output file name.

diablo630_paper = paper
Determine the default paper size and orientation. The control panel allows paper to be changed.
Recognized paper keywords are LETTER, LEGAL, FORMS, PORTRAIT, LANDSCAPE, and
GREENBAR. “FORMS” and “GREENBAR” are experimental values. “FORMS” is for 11x14
inch form-feed paper, “GREENBAR” overlays the familiar computer-center green-bar paper
background in the postscript, but that does not print to paper if the postscript is sent to a printer.

diablo630_cpi = cpi
Determine the default CPI (characters per inch) setting. If not specified, “10” will be used. The
control panel allows cpi to be changed.

diablo630_lpi = lpi
Determine the default LPI (lines per inch) setting. If not specified, “6” will be used. The control
panel allows cpi to be changed.

diablo630_font = font

CpnetSerialServer Manual 7

Determine the default font (typewheel). Font typically needs to be mono-spaced. If not
specified, the system provided “Monospaced/PLAIN/12” font will be used. The control panel
allows font to be changed.

The value contains three fields, separated by spaces in the property file or commas on the
commandline. The values are name, style, and point-size. These must match JAVA font
parameters.

NOTE: currently, font style is not parsed. The font will always be “PLAIN”.

Network Boot
Booting from the network is not supported in the CpnetSerialServer application directly, however
socket connections to CpnetSocketServers do support network boot.

	Introduction
	Serial Protocol
	Simple Serial Protocol
	DRI Serial Protocol

	Native Files
	Server Configuration
	HostFileBdos Server Properties
	Diablo 630 Implementation
	Network Boot

