
The H8-512K RAM add-on Programmer's Manual
DRAFT
11/01/18

The MMU organizes the RAM into 16K "pages", at 16K boundaries. It also divides the 64K CPU
address space into 16K "blocks", at 16K boundaries. Any page may be assigned to any block. In
addition, separate "page tables" exist for read vs. write, allowing direct copying between different
regions of RAM.

The MMU I/O space is divided into 8 Output ports. Writing a 5-bit value to one of these ports will
assign a RAM page to the corresponding address block, for either reading or writing. The following
table shows port offsets and affected address blocks.

 Port Offsets CPU Memory
Address Block Read Write

 0 4 0000-3FFF

 1 5 4000-7FFF

 2 6 8000-BFFF

 3 7 C000-FFFF

Also note that the high bit (bit 7) of the data to these ports must be "1" in order to enable mapping. Any
time data is output with bit 7 set to "0" the mapping will revert to the power-on state, where pages 0-3
are assigned blocks 0-3. This map enable feature is not normally used, except during initial switching
to banked memory use. Once banked memory is setup, all bank switching should always have bit 7 set
to "1". The format of each page table entry is as follows. Note, “MAP” is not actually stored in the page
table, but is rather a single, global, bit. The last byte output to any port offset will determine the MAP
value.

D7 D6 D5 D4 D3 D2 D1 D0

MAP A18 A17 A16 A15 A14

CPU address lines A14 and A15 select which address block is being used, and the contents of the (read
or write) page table entry determines address lines A14-A18 sent to the RAM chip(s). CPU address
lines A0-A13 are passed to the RAM chip(s) directly. Any 16K page of RAM can be mapped to any
16K block of CPU addresses. 16K alignment is strictly maintained.

As with all banked memory schemes, care must be taken to ensure that the code which is executing is
in memory that does not change with the mapping. It is also necessary to consider interrupts and
whether the necessary code is available to service an interrupt. For this reason, interrupts are often
disabled during critical bank switch operations.

Note that typical bank switching involves setting several page table entries, and such an operation is
not atomic. This is another reason to disable interrupts during bank switching.

- 1 -

The following diagram shows how addresses are mapped.

This diagram shows the relationship between CPU addresses and MMU Registers, as well as an
example page table mapping to copy data from “bank 0” to “bank 7”. The code doing the copy must
reside (execute) in common memory, C000-FFFF. This includes any additional resources such as stack.

CP/M 3 Banked Memory

Here is a typical CP/M 3 Bank Switching table for the first 208K (four 48K banks plus 16K common)
of the RAM:

table: ; _00_40_80_C0_
bank0: db 0, 1, 2, 3
bank1: db 4, 5, 6, 3
bank2: db 7, 8, 9, 3
bank3: db 10,11,12, 3 ; not needed?

Note how the top address block, C000-FFFF, always contains the page value "3". This establishes
"common memory" (this mapping never changes) and is necessary for CP/M 3 to operate. Also note
that this table does not show bit 7 (the MAP bit). An implementation might set bit 7 of all bytes in the
table only after proper detection/initialization of hardware is done.

- 2 -

0 = 80h

1 = 81h

2 = 82h

3 = 83h

4 = 9ch

5 = 9dh

6 = 9eh

7 = 83h

0000-3FFF

4000-7FFF

8000-BFFF

C000-FFFF

read

write

00000-03FFF

04000-07FFF

08000-0BFFF

0C000-0FFFF

70000-73FFF

74000-77FFF

78000-7BFFF

7C000-7 FFFF

...

CPU Addr

MMU Regs

RAM Addr

Because of the separate page tables for read and write, the CP/M 3 "XMOVE" feature may be
implemented. This allows for more flexible placement of buffers and can also improve performance of
the Directory HASH Buffers and warm boot reloading of the CCP. XMOVE uses CP/M bank numbers,
and so does not alter the page table scheme from what is normally used. This is in contrast to a RAM
Disk implementation, which is likely to directly map desired pages to a convenient address block for
“I/O”.

The reference implementation (mem512k.asm) demonstrates all of the above. An example bank select
routine, where the logical bank number is passed in A, is:

bank$sel:
 lxi h,table ; table of bank schemes
 add a
 add a
 mov c,a ; logical bank number * 4
 mvi b,0 ;
 dad b ; index to desired bank
 push h ; same mapping for RD and WR
 mvi b,4
 mvi c,mmu-1
bnksl1:
 inr c ; set RD pages
 outi
 jrnz bnksl1
 pop h
 mvi b,4
bnksl2:
 inr c ; set WR pages
 outi
 jrnz bnksl2

This routine updates all 4 read page registers and all 4 write page registers. Both read and write use the
same mapping, as required by CP/M 3 (normal execution). If address block C000-FFFF page mapping
never changes, then only 3 page bytes need be output for each of RD and WR mappings. For XMOVE,
the setup requires selecting a different table entry for RD vs. WR. The RAM Disk also takes advantage
of this feature to directly copy to/from the device.

RAM Disk

Since CP/M 3 can rarely take advantage of more that 3 banks (160K), the additional memory beyond
what CP/M 3 can use may be organized into a "RAM disk".

Because of the flexible page assignments and separate page tables for read and write, I/O to/from the
RAM Disk can be done directly to the CP/M DMA Buffers. This greatly improves performance and
simplifies the driver code.

The reference RAM Disk implementation (rd512k.asm) computes the page (13-31) which represents
the desired disk data, then creates read and write page selections base on direction of transfer and user's

- 3 -

DMA buffer and bank. Note, the DMA buffer may be for BDOS buffers or the user's program space so
a specific bank cannot be assumed.

The rd512k Ram Disk driver uses (remaps) CPU Address block 0000-3FFF to move data. Because a
CP/M DMA buffer may be on any boundary, it is possible for it to span a 16K block. This requires the
driver to also map the subsequent block (4000-7FFF) to the page following the start of the DMA buffer.
Since all of CP/M 3 BIOS code resides above 8000, this is not a problem. Because H8/H89 interrupt
vectors are kept in page 0 (block 0000-3FFF), interrupts must be disabled during transfers.

- 4 -

	CP/M 3 Banked Memory
	RAM Disk

