
CP/NET
Network Operating System

Reference Manual

Copyright © 1982
Digital Research

P.O. Box 579
160 Central Avenue

Pacific Grove, CA 93950
(408) 649-3896

TWX 910 360 5001

All Rights Reserved
[CP/M3 extensions added April, 2016]

COPYRIGHT

Copyright © 1980, 1981, 1982 by Digital Research. All rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer
language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without the prior written permission of Digital Research, Post Office Box 579, Pacific Grove,
California, 93950.

Portions of this manual are, however, tutorial in nature. Thus, the reader is granted permission to include the
example programs, either in whole or in part, in his own programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents hereof and specifically
disclaims any implied warranties of merchantability or fitness for any particular purpose. Further, Digital
Research reserves the right to revise this publication and to make changes from time to time in the content
hereof without obligation of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M and CP/NET are registered trademarks of Digital Research. ASM, CP/NOS, DDT, LINK-80, MP/M II,
RMAC, SID, and ZSID are trademarks of Digital Research. Altos is a registered trademark of Altos
Computer Systems. Intel is a registered trademark of Intel Corporation. Keybrook is a registered trademark
of Keybrook Business Systems, Inc. ULCnet is a registered trademark of Orange Compuco, Inc. Xerox, 820
Computer, and R820-II are registered trademarks of Xerox Corporation. Z80 is a registered trademark of
Zilog, Inc. Corvus OMNINET is a trademark of Corvus Systems, Inc. DSC-2 is a trademark of Digital
Microsystems. DB8/5200 is a trademark of Dynabyte. FileServer is a trademark of Keybrook Business
Systems, Inc.

The CP/NET Network Operating System Reference Manual was prepared using the Digital Research TEX
Text Formatter and printed in the United States of America by Commercial Press/Monterey.

Fifth Edition: November 1982

Foreword

CP/NET®, a network operating system, enables microcomputers to access common resources via a network.
CP/NET allows microcomputers to share and transfer disk files, to share printers and consoles, and to share
programs and data bases. CP/NET consists of servers running MP/M II® and requesters running CP/M®.
The servers are hosts that manage the shared resources that the network requesters can access.

The hardware environment for CP/NET must include two or more microcomputers that can communicate in
some way.

One of the microcomputers must execute the MP/M II operating system to provide the CP/NET server
facilities. The processor executing MP/M II must be an 8080, 8085, or Z80 CPU with a minimum of 32K
bytes of memory, 1 to 16 consoles, 1 to 16 logical or physical disk drives each containing up to eight
megabytes, a clock/timer interrupt, and a network interface.

The CP/NET requester microcomputers must have 8080, 8085, or Z80 CPUs with at least 16K bytes of
memory, 0 to 16 logical or physical disk drives each containing up to eight megabytes, and a network
interface. A console is not absolutely required although it is strongly recommended.

The CP/NET Network Operating System Reference Manual is intended for several different levels of
CP/NET users. It contains all the information you need to use CP/M applications programs on a CP/NET
requester, to write new application programs under CP/NET, and to customize CP/NET for a specific
network.

Section 1, an overview of the CP/NET system, discusses CP/NET features, network topologies, and the
principles behind CP/NET operation.

Section 2 contains all the information you need to use the network when executing CP/M application
programs. You need no skill level beyond that required for normal CP/M operation.

Section 3 describes the CP/NET interprocessor message format and each of the Network Disk Operating
System (NDOS) functions you can invoke from application programs. This section provides the information
you need to access the network primitives. Section 3 also discusses the implications of performing CP/M
operations on a resource controlled by the MP/M II operating system.

Section 4 provides information for the systems programmer. This section describes how to write a custom
Slave Network 1/0 System (SNIOS) that performs the CP/NET requester network functions. The mechanics
of implementing and debugging a custom SNIOS are also discussed. Programmers attempting to develop an
SNIOS should be familiar with CP/M and experienced in writing a custom CP/M BIOS. This section also
explains how to write a custom Network Interface Process (NETWRKIF) that performs the CP/NET server
network functions.

Section 4 also discusses implementing and debugging the NETWRKIF module. You must have a high degree
of competence and experience with MP/M II to develop a custom NETWRKIF. You must be familiar with
the process and queue descriptor data structures and the MP/M II XDOS primitive functions. Experience
with implementing an XIOS for MP/M II might also be necessary.

Appendixes to this manual contain several example network communications packages.

Table of Contents

1 CP/NET Overview
 1.1 CP/NET Features
 1.2 CP/NET Configurations
 1.3 How the Requester Works
 1.4 How the Server Works

2 CP/NET Utilities
 2.1 The LOGIN Command
 2.2 The LOGOFF Command
 2.3 The NETWORK Command
 2.4 The LOCAL Command
 2.5 The ENDLIST Command
 2.6 The DSKRESET Command
 2.7 The CPNETLDR Command
 2.8 The CPNETSTS Command
 2.9 CTRL-P
 2.10 The MAIL Utility
 2.10.1 Menus
 2.10.2 Data Entry
 2.10.3 MAIL Options
 2.10.4 Error Messages

3 CP/NET Programmer's Guide
 3.1 CP/NET Interprocessor Message Format
 3.1.1 Message Format Code
 3.1.2 Message Destination Processor ID
 3.1.3 Message Source Processor ID
 3.1.4 CP/M Function Code
 3.1.5 Size
 3.1.6 CP/NET Message
 3.1.7 Additional Packaging Overhead
 3.2 Running Applications Transparently Under CP/NET
 3.2.1 MP/M II vs. CP/M File Systems
 3.2.2 Error Handling Under CP/NET
 3.2.3 Temporary Filename Translation
 3.2.4 Opening System Files on User 0
 3.2.5 Compatibility Attributes
 3.2.6 Password Protection Under CP/NET
 3.2.7 Networked List and Console Devices
 3.3 CP/NET Function Extensions to CP/M
 3.4 CP/NET Applications

4 CP/NET System Guide
 4.1 General Network Considerations
 4.1.1 Functions of the CP/NET Physical Modules
 4.1.2 Interfacing a Computer to a Network
 4.1.3 Developing a Network Layer
 4.1.4 Error Recovery
 4.2 Customizing the Requester's SNIOS
 4.2.1 Slave Network 1/0 System Entry Points
 4.2.2 Requester Configuration Table

 4.2.3 Prefiguring the Configuration Table
 4.2.4 Sending and Receiving Messages
 4.2.5 Generating and Debugging a Custom SNIOS
 4.3 Customizing the Server
 4.3.1 Detecting and Receiving Incoming Messages
 4.3.2 The Architecture of the NETWRKIF Module
 4.3.3 Elements of the NETWRKIF
 4.3.4 Enhancements and Additions to the NETWRKIF
 4.3.5 MP/M II Performance Factors and NETWRKIF
 4.3.6 Generating the NETWRKIF
 4.3.7 Debugging the NETWIRKIF
 4.4 Implementing Non-MP/M II Servers

Appendixes

A CP/NOS
 A.1 Overview
 A.2 System Requirements
 A.3 Customizing the CP/NOS
 A.4 Building the CP/NOS System
 A.5 Debugging the System

B CP/NET 1.2 Standard Message Formats

C CP/NET 1.2 Logical Message Specifications

D NDOS Function Summary

E A Simple RS-232C CP/NET System
 E.1 Protocol Handshake
 E.2 Binary Protocol Message Format
 E.3 ASCII Protocol Message Format
 E.4 Modifying the SNIOS
 E.5 Modifying the NETWRKIF

F A CP/NET System for Use with ULCnet
 F.1 Overview of ULCnet
 F.2 Customizing a ULCnet SNIOS for the Requester
 F.3 Creating the ULCnet Server

G Using CP/NET 1.2 With Corvus OMNINET
 G.1 The Corvus Engineering Transporter
 G.2 Implementation Structure
 G.3 The SNIOS Implementation
 G.4 The NETWRKIF Implementation Model
 G.5 Possible Improvements to NETWRKIF

Tables

2-1. Receive Mail Message-handling Options

3-1. Interface Attributes
3-2. BDOS Error Modes

4-1. Requester Configuration Table
4-2. Server Configuration Table
4-3. Requester Control Block

B-1. Message Field Length Table

C-1. Conventional CP/NET Messages

D-1. NDOS Functions

G-1. Transporter Command Block
G-2. Receive Result Block

Figures

1-1. Standard CP/NET Configuration
1-2. CP/NOS Configuration
1-3. Single Requester Networked to MP/M II Server
1-4. Multiple Requesters in Hub-star Configuration
1-5. Multidrop Network
1-6. Hybrid Network
1-7. CP/NET Memory Structure
1-8. A Simple Server Supporting Three Requesters

3-1. Message Format

4-1. Layered Model of a CP/NET Network Node
4-2. Network Status Byte Format
4-3. Algorithm for Interrupt-driven Requester Node
4-4. Server Architecture
4-5. Two-process NETWRKIF
4-6. Transport Process/Data-link Processes Interface
4-7. Directly Interfacing NETWRKIF to XIOS Routines
4-8. Synchronizing Data-link Activity Using Flags
4-9. A Typical Server Memory Map
4-10. Implementing Timeouts with Flags

B-1. CP/NET 1.2 Logical Message Format

E-1. Protocol Handshake
E-2. Binary Protocol Message Format
E-3. ASCII Protocol Message Format

Listings

2-1. A Typical CPNETLDR Execution
2-2. A Typical CPNETSTS Execution

4-1. SNIOS Jump Vector
4-2. Stack and Process Descriptor Allocation for Four-requester Server

E-1. Requester Network I/O System

E-2. Server Network I/F Module

F-1. Requester Network I/O System for ULCnet
F-2. NETWRKIF for Systems Running ULCnet
F-3. ULCnet Data-link Layer MP/M XIOS Module

G-1. Sample SNIOS for Corvus OMNINET
G-2. Sample Server Network I/F for Corvus OMNINET

Section 1
CP/NET Overview

By separating the logical operating system from the hardware environment and placing all hardware-
independent code in a separate I/O module, CP/M and MP/M II have gained widespread industry acceptance.
The CP/NET operating system uses this same design approach. CP/NET is network independent. The Slave
Network I/O System (SNIOS) module contains all network-dependent code for the requester. The Network
Interface Process (NETWRKIF) module contains all network-dependent code for the server. Logical
messages passed to and from the SNIOS or NETWRKIF are transmitted over an arbitrary network between
servers and requesters using an arbitrary network protocol.

CP/NET and CP/NOS can be combined in a composite network consisting of MP/M II servers, CP/M
requesters, and diskless CP/NOS requesters.

CP/NET is a bridge between a microcomputer running MP/M II and a microcomputer running CP/M. The
MP/M II server manages resources that are considered public to the network. The CP/NET requesters
executing CP/M have access to the public resources of the server and to their own local private resources,
which cannot be accessed from the network. This architecture permits the server's resources to be shared
among the requesters, yet guarantees the security of the requester's resources.

The MP/M II server responds to the network asynchronously in real-time; the CP/M requesters perform
sequential I/O and are usually not capable of monitoring a network interface in real-time. Figure 1-1
illustrates the relationship between CP/M, MP/M II, and CP/NET.

Figure 1-1. Standard CP/NET Configuration

CP/NOS, the second network operating system product, is designed for applications where the requester
microcomputer lacks disk resources and is therefore unable to run CP/M. CP/NOS consists of

• a bootstrap loader that can be placed into ROM or PROM
• a skeletal CP/M containing only the console and printer functions
• the logical and physical portions of the CP/NET requester

At the user level, CP/NOS provides a virtual CP/M 2.X system to the requester microcomputer. A requester
microcomputer can consist of no more than a processor, memory, and an interface to the network. Thus, a
CRT with sufficient RAM can execute CP/M programs, performing its computing locally and depending on
the network to provide all disk, printer, and other I/O facilities. Figure 1-2 illustrates the relationship between
CP/NOS, MP/M II, and CP/NET.

Figure 1-2. CP/NOS Configuration

1.1 CP/NET Features

CP/NET operates in multiple-processor environments ranging from tightly to loosely coupled to networked
processors. In this manual, tightly coupled processors are those sharing at least a portion of common
memory. Interprocessor messages communicate at memory speed. Loosely coupled processors do not have
access to memory that is common or accessible by both processors; they communicate via a short, high-speed
bus. Loosely coupled processors usually reside in the same physical box. Networked processors are usually
physically separated and communicate over a serial link.

The CP/NET operating system is an upward-compatible version of CP/M 2.2, which provides system I/O
facilities to requester microcomputers through a network. Additions to the Basic I/O System (BIOS) called
the Slave Network I/O System (SNIOS), and a new Basic Disk Operating System (BDOS) called the
Network Disk Operating System (NDOS), provide network access to System I/O facilities. The requester
NDOS and NIOS are loaded and executed while running under CP/M 2.2.

In addition to the standard CP/M facilities, CP/NET provides the following capabilities:

• The network can be accessed for system I/O facilities.
• The network environment can be reconfigured to access I/O facilities according to application

requirements.
• Messages can be transmitted and received between requesters and servers.
• An electronic mail system allows requesters and servers to send mail to each other.

The MP/M II server is implemented by adding some resident system processes at system generation
(GENSYS) time. The resident system processes include server processes (SERVER) that perform the logical
message-handling functions for the server and network interface processes (NETWRKIF) that you can
customize for a particular hardware network interface.

1.2 CP/NET Configurations

CP/NET supports a number of different network topologies and a variety of system resources. The
interprocessor message formats permit a requester to access more than one server for different resources.

Figure 1-3 illustrates an MP/M II system supporting a single CP/NET requester. The requester is a totally
independent system, with its own console, printer, and disk resources. The requester can also access the
MP/M II system's resources over the network. The MP/M II system also supports other users using local
terminals.

Figure 1-3. Single Requester Networked to MP/M II Server

Figure 1-4 shows an active hub-star network running CP/NET. Each requester is networked to the server
through a unique network port. The requesters have their own local resources, but they also share the server's
disk and printer resources. This topology is simple to implement because you can adapt the network protocol
from the protocol used for RS-232 console drivers. The sample system in Appendix E uses this topology.

Figure 1-4. Multiple Requesters in Active Hub-star Configuration

Figure 1-5 shows a system of three requesters and two servers networked together in a bus or multi-drop
configuration. The network protocol must be capable of resolving conflicts when nodes attempt to use the
network simultaneously. Each requester has access to the resources of both servers, in addition to its own
local resources. Appendixes F and G provide examples of CP/NET systems using this network topology.

Figure 1-5. Multi-drop Network

Finally, you can combine these topologies, as well as other topologies like loops and trees, into a hybrid
network topology. Figure 1-6 depicts such a topology, combining the bus, star, and loop forms.

Figure 1-6. Hybrid Network

1.3 How the Requester Works

The CP/NET requester software runs under an unmodified CP/M version 2 operating system. The requester
operating system consists Of three object modules: NDOS.SPR, SNIOS.SPR, and CCP.SPR. These modules
are system page relocatable files that can be loaded directly under the CP/M BDOS and BIOS, regardless of
their size or their location in memory.

The module NDOS.SPR contains the Network Disk Operating System (NDOS), the logical portion of the
CP/NET system. The NDOS determines whether devices referenced by CP/M function calls are local to the
requester or whether they are located on a remote system across a network. If a referenced device is
networked, the NDOS, prepares messages to be sent across the network, controls their transmission, and
finally reformats the result received from the network into a form usable by the calling application program.
NDOS.SPR is distributed in object form by Digital Research. No modification to this module is required to
run CP/NET.

The Slave Network I/O System (SNIOS) is contained in the module SNIOS.SPR. The systems implementer
must customize this software to run on a particular computer and network system. The SNIOS performs

primitive operations that allow the NDOS to send and receive messages across a network. The SNIOS also
provides a number of housekeeping and status functions to the NDOS. Digital Research distributes a number
of example SNIOS modules in source form with CP/NET.

The final module, CCP.SPR, is a replacement for the normal CP/M CCP. Like the regular CCP, CCP.SPR is
loaded directly below the operating system. However, CCP.SPR performs a number of special network
functions that initialize the environment for a program.

The logical origin of SPR files is location zero. Each file has a 256-byte header, with locations 1 and 2
defined as the length of the code in the file. A bit map, appended to the end of the code, identifies bytes of
the code that must be relocated when the code is loaded on a particular page (256-byte) boundary.

The CP/NET utility CPNETLDR relocates the bytes defined by the bit map. CPNETLDR loads SNIOS.SPR
directly below the CP/M BDOS. NDOS.SPR is loaded directly below the SNIOS. CPNETLDR then passes
control to an initialization routine. This routine modifies key areas of the operating system:

1. Location 5, which contains a jump to the BDOS entry point, is saved away by the NDOS.
2. Location 5 is then modified to jump to an entry point in the NDOS. This assures that the NDOS

intercepts all CP/M function calls.
3. The BIOS jump vector entries for console status, console in, console out, list status, list out, and warm

boot are replaced with entries that jump into special NDOS routines. The NDOS saves the BIOS entry
points for these routines, allowing direct BIOS calls to these routines to be intercepted in exactly the
same way that CP/M function calls are intercepted.

After these modifications have been made, the NDOS calls the SNIOS to initialize the network. The NDOS
then jumps to its own warm boot routine, which performs a disk system reset, loads CCP.SPR, and then
passes control to the CCP.

When an application program calls the CP/NET operating system via location 5, the NDOS is entered instead
of the BDOS. Invalid functions return to the user program immediately as errors. Functions dealing with
console or printer I/O immediately pass through to the local BDOS; but these functions are intercepted by the
NDOS again when the BDOS calls the BIOS. At this level, the NDOS checks whether the console or printer
is a networked device. If so, the NDOS sends a request across the network for the input or output.

Some functions have no meaning when they are sent across the network to a remote server. Examples of
these are Function 26 (Set DMA Address), Function 32 (Get/Set User Number), and Function 12 (Return
Version Number). The local BDOS always handles these functions. But the NDOS saves certain parameters
from these functions for its own use, processing them before allowing them through to the BDOS.

Finally, the NDOS checks most functions that deal with either the disk drive system or the file system to
determine whether they reference local devices. If so, these functions pass unmodified to the BDOS. The
NDOS also checks whether these functions reference devices that exist somewhere out on the network. If
they do, the NDOS constructs a network message to be sent to the system on which the device exists. The
network message contains the network function to be performed and the information necessary to perform it.

Figure 1-7 illustrates how the CP/NET operating system is organized. The solid line outlines the function
flow of an operation on a networked disk drive. The dotted line traces the flow of an I/O operation to a
networked list device or console. Arrows indicate possible function flow.

Figure 1-7. CP/NET Memory Structure

When an NDOS requester sends a function message out over the network, a response from the addressed
server is implied. As soon as the NDOS has successfully called the SNIOS to send the message, the NDOS
calls the corresponding message receive routine, also in the SNIOS. This procedure precludes the problem of
trying to recover sequencing information from an arbitrary stream of messages.

The NDOS uses the network response to update the application program that made the function call. The
NDOS then returns to the application program. If the device referenced was local, then the requester's BDOS
updates the application program.

1.4 How the Server Works

Unlike the requester, the server software that runs under MP/M II does not modify the actual operating
system. Rather, the operating system is a set of cooperating processes under MP/M II.

In its most basic form, each requester to be attached to a server requires two processes, communicating
through two queues. One process, resident in the NETWRKIF.RSP module, performs the physical message
transport task. The systems implementer must modify this process to accommodate the network's node-to-
node protocol. The process's protocol must be compatible with that of the requester's SNIOS.

The NETWRKIF must be capable of monitoring one or more network lines in real-time and detecting when a
requester is trying to send a message. The NETWRKIF must then receive the message, check it for data

integrity, and send it on to the logical portion of the server, contained in the module SERVER.RSP. When
the SERVER module returns its response to the logical message, the NETWRKIF must receive the message
and then transmit it across the network back to the requester.

The module SERVER.RSP performs the logical operation the requester specifies. After receiving the
message from the NETWRKIF, SERVER.RSP checks to make sure that the requester is logged in properly.
Then SERVER.RSP responds to the message by performing a series of MP/M II operating system calls.
Using the information returned by those calls, the SERVER constructs a response message and sends it to the
NETWRKIF module for transmission.

Both the NETWRKIF and SERVER modules are Resident System Process files (RSPs). RSPs are built into
the MP/M II system during its GENSYS operation. When MP/M II is cold started, all RSPs are automatically
dispatched. Each RSP module might contain multiple processes, but only one process per RSP is
automatically dispatched. Because each requester bound to a server might require one process from the
NETWRKIF and one from the SERVER, both RSPs contain initialization code to create additional copies of
themselves. These processes can be reentrant. They can share the same code, but they have separate data
areas to avoid conflict between program variables.

One of the simplest server architectures is shown in Figure 1-8. Processes from the NETWRKIF are named
NtwrkIP<x> where <x> is the ASCII representation of a hexadecimal number between 0 and F. SERVER
processes are named SERVR<x>PR.

Figure 1-8. A Simple Server that Supports Three Requesters

A NtwrkIP<x> process writes the address of an input message to a queue named NtwrkQI<x>. A
SERVR<x>PR process reads this queue while waiting for an input message. Because the queue is empty
when the requester is not requesting service, the SERVR<x>PR process is suspended and consumes no CPU
resources.

When the NtwrkIP<x> process writes to the queue, the SERVR<x>PR process is dispatched, and it begins to
operate on the message. As soon as the NtwrkIP<x> process has finished sending the incoming message to
NtwrkQI<x>, NTWRKIP<x> immediately tries to read a second queue, named NtwrkQO<x>. This queue is
empty, and the NtwrkIP<x> process is consequently suspended until the SERVR<x>PR process writes the
response message to it. The NtwrkIP<x> can then transmit the message back to the requester.

Server functions can be divided into four categories:

• session control functions
• file serving functions
• print serving functions
• non-CP/NET functions

Session control functions permit a requester to log on to a server, log off, set compatibility attributes, set
default passwords, and examine the server configuration table.

File serving functions make up the bulk of the server's work. These functions include opening and closing
networked files, reading and writing files, and managing disk devices.

The server can operate as a print server in two different modes. If the MP/M module SPOOL.RSP is present
in the system, requester outputs to a networked list device are spooled to a file for future printing. If no
spooler exists in the system, the server manages the attaching and detaching of various print devices.

Finally, the NETWRKIF module can be designed to recognize a logical message that has no meaning to the
SERVER module, but that can be operated on by a user-defined process. This feature allows you to use
functions CP/NET does not provide.

Section 2
CP/NET User's Guide

This section describes the requester commands that enable you to access the network and use its resources.
All the requester commands are actually COM files that reside on disk at the requester.

2.1 The LOGIN Command

The LOGIN command allows a requester to log in to a specified server. A requester must log in before any
resources on the server can be accessed. Once a requester has logged in, it is not necessary to log in again
even though the requester might power down and then power up again. A requester can only be logged off a
server by an explicit LOGOFF command issued from the requester. The command takes the general form:

 LOGIN {password}{[mstrID]}

where password is an optional 8 ASCII-character password; the default password is PASSWORD.
[mstrID] is an optional two-digit server processor ID; the default is [00]. The simplest form is

 A>LOGIN

2.2 The LOGOFF Command

The LOGOFF command allows a requester to log off from a specified server. Once a requester has logged
off, the server cannot be accessed again until you issue a LOGIN command. The command takes the general
form:

 LOGOFF {[mstrID]}

where [mstrID] is an optional two-digit server processor ID; the default is [00]. The most simple form is

 A>LOGOFF

2.3 The NETWORK Command

The NETWORK command enables a requester to assign selected I/O to the network. The NETWORK
command updates the requester Configuration table. The command takes the general form:

 NETWORK {local dev}{=}{server dev{[srvrID]}}

where local devserver dev is the specification of a server device such as A:, B: ... P: in the case of a disk
device or 0, 1 ... 15 in the case of CON: or LST:. A missing server dev defaults to 0 in the case of CON:
or LST:. [srvrID] is an optional two-digit hexadecimal server processor ID. The default is [00]. Typical
assignments are

 A>NETWORK LST:

 A>NETWORK LST:=3[07] (list dev #3 on server 07)
 A>NETWORK CON:=2 (console #2 on dflt srvr)
 A>NETWORK B:=D:[F] (logical B: is D: on server 0F)

Note: when networking drive A: to a server, the file CCP.SPR must reside on the networked drive, or warm
boot operations fail. Do not network a device to a nonexistent or off-line server because network errors could
result.

2.4 The LOCAL Command

The LOCAL command enables a requester to reassign selected I/O back to local from the network. The
LOCAL command updates the requester configuration table. The command takes the general form:

 LOCAL {local dev}

where local dev is the specification of a local device such as LST:, A:,... CON:. The following are
typical assignments:

 A>LOCAL LST:
 A>LOCAL B:

2.5 The ENDLIST Command

The ENDLIST command sends a hexadecimal 0FF to the list device, signaling that a list output to a
networked printer is finished. If a spooler is resident on the server, the spool file is closed and enqueued for
printing. If no spool file is present, the networked list device is freed for use by another requester.

Note: the CCP implements an endlist every time a program terminates, provided that CTRL-P is not active at
the time. Turning CTRL-P off also causes an endlist.

 A>ENDLIST

2.6 The DSKRESET Command

The DSKRESET command functions exactly like the PRL that executes under MP/M II. DSKRESET resets
the specified drive, so a disk can be changed. The command takes the general form:

 DSKRESET {drive(s)}

where drive is a list of the drive names to be reset. If any of the drives specified cannot be reset, the
console displays the message:

 Reset Failed

The following are typical disk resets:

 A>DSKRESET (resets all drives)
 A>DSKRESET B:,F: (reset drive B: and F:)

2.7 The CPNETLDR Command

The CPNETLDR command loads the requester CP/NET system. Specifically, the SNIOS.SPR file loads and
relocates directly below the CP/M BDOS. The NDOS. SPR file loads and relocates directly below the
SNIOS.

From that point on, the BIOS, BDOS, SNIOS, and NDOS remain resident in memory. The CPNETLDR
requires no user customization. CPNETLDR displays an error message when loader errors are encountered.
Listing 2-1 is a typical CPNETLDR execution.

 A>CPNETLDR
 CP/NET 1.2 Loader

 BIOS F600H 0A00H
 BDOS E800H 0E00H
 SNIOS SPR E500H 0300H
 NDOS SPR DB00H 0A00H
 TPA 0000H DB00H

 CP/NET 1.2 loading complete.
 <Warm Boot>
 A>

Listing 2-1. A Typical CPNETLDR Execution

2.8 The CPNETSTS Command

The CPNETSTS command displays the requester configuration table. The requester configuration table
indicates the status of each logical device that is either local or assigned to a specific server on the network.
Listing 2-2 shows a typical CPNETSTS execution.

 A>cpnetsts

 CP/NET 1.2 Status

 Requester processor ID = 34H
 Network Status Byte = 10H
 Disk device status:
 Drive A: = LOCAL
 Drive B: = LOCAL
 Drive C: = Drive A: on Network Server ID = 00H
 Drive D: = Drive B: on Network Server ID = 00H
 Drive E: = LOCAL
 Drive F: = LOCAL
 Drive G: = LOCAL
 Drive H: = LOCAL
 Drive I: = LOCAL
 Drive J: = LOCAL
 Drive K: = LOCAL
 Drive L: = LOCAL
 Drive M: = LOCAL
 Drive N: = LOCAL
 Drive O: = LOCAL
 Drive P: = LOCAL
 Console Device = LOCAL
 List Device = List #0 on Network Server ID 00H
 A>

Listing 2-2. A Typical CPNETSTS Execution

2.9 CTRL-P

A CTRL-P causes console output to be echoed to the list device until the next CTRL-P. The messages

 CTL-P ON

and

 CTL-P OFF

are displayed at the console. When the requester list device has been networked, the local system uses the

server printer. The second CTRL-P causes a hexadedimal FF to be sent to the server, causing the server to
close and print the spool file.

Note: when the requester uses the server printer with a CTRL-P active, the requester must issue a second
CTRL-P to cause the server to close the spooled file and begin printing it. When the requester is using the
server printer and has invoked it with a program such as PIP, the warm boot at program termination causes
the required endlist character to be sent to the server to close and print the spooled file.

The program ENDLIST is not needed to terminate network list output in these situations.

2.10 The MAIL Utility

The MAIL utility allows you to send, receive, and manage electronic mail in a network environment. MAIL
operates using file based function calls, so special processing by the server is not required. MAIL runs
transparently on either server or requester, so only one program is required throughout the entire electronic
mail system.

MAIL allows you to send messages to a single node, broadcast messages to all nodes currently logged in, or
receive messages.

Messages are stored for your future examination on the temporary file drives of CP/NET servers. A user's
mail file is named

 xxMAIL.TEX

where xx corresponds to your node ID. For example, if requester #5C wants his mail, the MAIL program
accesses files named 5CMAIL.TEX on the temporary file drives of all the servers that node 5C currently has
logged in. Every server in the CP/NET system might have one of these files, so other nodes in the network
that do not have direct access to all of node 5C's servers can still send messages indirectly to it.

Menu-driven operation allows you to run the program with a minimum of instruction. Messages are limited
in size to 1.7K bytes. You can enter messages into the system directly from the keyboard or through a
preedited file. Options allow you to answer a message immediately while reading your mail and to delete
unwanted entries.

2.10.1 Menus

Three basic menus can appear during a MAIL session:

• Main Menu
• Input Source Menu
• Receive Response Menu

The Main Menu determines the basic operation to be performed. The Input Source Menu specifies whether
input comes from a file or whether you enter it directly. Finally, the Receive Response Menu determines the
disposition of messages you receive.

Enter a menu selection by typing the number associated with the selection, followed by a carriage return. If
you type an invalid character or no character at all, the menu system defaults to the last item on the menu.
You simply press the carriage return for common operations.

Main Mail Menu

The main mail menu appears when you enter the mail program and when any of its options have completed
execution. Main mail menu options are

 1 - Broadcast
 2 - Send Mail
 3 - Receive Mail
 4 - Exit Program

A simple carriage return or an invalid entry at this level return you to CP/M or MP/M II command level.

Input Source Menu

The input source menu allows you to specify how message input is entered into the system. The input source
menu has only two options:

 1 - File
 2 - Console Input

Receive Response Menu

The receive response menu determines the disposition of messages once the user has examined them. The
options are

 1 - Stop Receiving Mail
 2 - Answer Message
 3 - Delete Message From Mail File
 4 - Answer Message, Then Delete
 5 - Re-Examine Last Message
 6 - Get Next Message

2.10.2 Data Entry

In addition to the menus, MAIL prompts you for a variety of inputs. These inputs determine the destination
of messages, input files, and subjects.

Destination ID Prompt

When using the send mail option, MAIL requires an explicit destination to deliver the message properly. The
system prompts for the destination. The legal value is a 2-digit hexadecimal number, followed by a carriage
return. This value corresponds to a CP/NET server or requester ID value.

If you enter a value that is not a legal hexadecimal number, the system displays an error message, and
prompts you again. The system does not check, however, to determine whether a requester or server with this
ID exists on the network.

Subject Prompt

With both the broadcast and send mail options, MAIL prompts for a subject header. This header is displayed
as the title of the message and is also used for answering mail to the message that is sent.

When the system prompts for subject, you can enter a subject header from 0 to 80 bytes long, followed by a
carriage return.

Input File Prompt

If a preedited file contains the text of a message, MAIL prompts for the filename. You can then enter a valid
CP/M file specification. If the file specified does not exist, the system displays an OPEN ERROR, and the
program aborts.

Console Input Prompt

If you choose to enter a message directly from the console, MAIL prompts for input. You can then simply
type the message. Individual message lines can be up to 78 characters long. A message, whether input from
the console or from a file, must be no longer than 1764 characters, about enough to fill a standard terminal
display. Longer messages are truncated.

To terminate input, the user presses CTRL-Z, followed by a carriage return.

2.10.3 MAIL Options

This section explains how the CP/NET system gathers and receives mail and how you control the disposition
of mail.

Broadcast

The broadcast option sends a message to every node that it can find logged in to the CP/NET system.

MAIL works differently when it is running on a server under MP/M II, from the way it works when it is
running on a requester under CP/M or CP/NOS. If a requester is broadcasting, MAIL sends the specified
message to every server on which it is logged in as well as to every other requester logged in to those servers.
If a server is broadcasting, MAIL sends the message only to every requester logged in to that server. A server
has no means of initiating transactions with other servers, although it can use its own local MP/M II system
to file mail for its own requesters.

A message cannot be broadcast to the broadcasting node.

To send a message to a given server and its associated requesters, MAIL must reference that server's
temporary file drive across the network. If a requester has not networked the temporary file drive of a server,
no messages are sent to that server.

When the broadcast option is entered, MAIL prompts you for a subject and message. When the operation is
completed, it returns to the main menu.

Send Mail

The send mail option sends a message to a specific node in the CP/NET system. The destination can be either
a server or a requester. If the option is running on a requester, it first searches the network to see if the node
specified is logged in. If the option finds the node is logged in, it sends the message. if the option does not
find the node, it leaves the message on the first server located when MAIL searches the local configuration
table. If a destination requester logs in later, its mail will be waiting for it. Mail files can accumulate that
were erroneously sent to nonexistent requesters or to servers that the requester sending the message had not
logged onto when it sent the message.

If the option is running on a server, mail is left on that server, whether the node it is being sent to is logged in
or not.

Upon selecting the send mail option, MAIL prompts you for a destination ID, a subject, and for the message

itself. MAIL then attempts to send the message. If MAIL cannot find a server with a temporary file drive to
accept the message, the error NO SERVER MAIL DRIVE NETWORKED is displayed, and the program
aborts.

Receive Mail

The receive mail option permits you to examine messages left for you on all the servers on which you are
currently logged in. After each message is displayed, you are presented with a number of message-handling
options.

If you are running MAIL on the server, only the mail file on the server is accessed. However, if MAIL is
being run on a requester, each server to which the requester is logged in is searched for messages.

Each message is preceded by a header that tells you what node the message came from and the subject of the
message. The actual message is then displayed. As a message is being displayed, you can halt the display by
pressing CTRL-S and resume display by pressing CTRL-Q. At the end of the message, bring up the receive
response menu by pressing any key. You can then take one of the options listed in Table 2-1.

Option Explanation

Stop
receiving
mail

MAIL stops searching for more entries or additional files and returns to the main menu.

Answer
message

MAIL prompts you to type in a reply message. The reply message is sent back to the sender
of the original message. The subject of the reply message is the characters "RE: ", followed
by the original subject.

Delete
message

MAIL flags the message in the file as deleted. At the end of each file, or if you decide to
stop receiving mail, deleted messages are physically removed from the file.

Answer,
then delete

This option answers the message message just displayed, then deletes the message.

Display
next
message

Messages continue to be displayed in this fashion, allowing the user to respond to each one,
until no more can be found. The message "No More Messages" is then displayed, and the
program returns to the main menu.

Table 2-1. Receive Mail Message-handling Options

Upon completion of any message-handling options, with the exception of the reexamine option, the next
message is displayed.

2.10.4 Error Messages

In addition to the error messages already mentioned, CP/NET returns file system errors. These errors display

 ERROR READING FILE
 ERROR WRITING FILE

 or
 ERROR OPENING FILE

followed by a filename. After displaying such an error, MAIL aborts.

It is possible to get the ERROR OPENING FILE message by specifying a nonexistent input file for sending
or broadcasting a message. Almost all other instances of the messages, however, indicate possibly serious
trouble with the network, the server file system, or the mail-handling system.

Section 3
CP/NET Programmer's Guide

This section provides information for the applications programmer who wants to write programs to run under
CP/NET or to evaluate the performance and correctness of programs written for CP/M or MP/M II under the
CP/NET operating system.

MP/M II performs all operations on a networked device and makes file security checks that CP/M does not
usually make. Because MP/M was designed to run unmodified CP/M applications, these checks seldom
prevent the use of a CP/M application under CP/NET.

3.1 CP/NET Interprocessor Message Format

The simple message format that CP/NET uses for interprocessor communication includes packaging
overhead and the message itself. The packaging overhead is a header consisting of a message format code, a
CP/NET destination address, a CP/NET source address, a CP/M function code, and a message size. The
actual CP/NET message follows the header.

3.1.1 Message Format Code

The message format code is a single byte that specifies the format of the message itself. Digital Research
reserves message formats 0-127 for general interprocessor message format codes and future use. The general
interprocessor format codes follow the message format shown below, but differ in length of the individual
fields. (See Appendix B.)

The odd-numbered format codes are for response messages sent back from servers to requesters. Thus, a
CP/M disk read function sent from a requester to a server has a message format code of 0, and the return
code sent back from the server to the requester has a message format code of 1.

Implement the general interprocessor message formats 0 and 1 as shown in Appendix A because these
formats promote standardization among microcomputers from different vendors.

3.1.2 Message Destination Processor ID

The message destination processor ID field is one byte long. Destination IDs can be in the range O-0FE hex.
An ID of 0FF is illegal. Many CP/NET utilities use a server destination of 0 as a default. For this reason,
assign the most commonly used network server a node ID of 0.

3.1.3 Message Source Processor ID

The message source processor ID field is usually one byte long. The node sending the message always fills
this field with its own ID. Valid source IDs range from 0 to 0FE hex. An ID of 0FF is illegal.

3.1.4 CP/M Function Code

The CP/M function code field is one byte long. The size of the message data field depends on the CP/M
function. Each CP/M function has a specific number of bytes to be sent to the server and a specific number of
bytes to be returned to the requester. Appendix C provides the logical message specification for each of the
CP/M functions. Some of the CP/M function codes have no equivalent network function.

3.1.5 Size

The size field is one byte long. The size value has a bias of 1. Thus, a size of 0 specifies an actual size of 1,
while a size of 255 specifies an actual size of 256. With a 1-byte size field, the minimum data field is 1 byte,
and the maximum is 256.

3.1.6 CP/NET Message

The CP/NET message consists of binary data and is from 0 to 256 bytes long. The meaning of the message
depends on the format, function, and size specified by the header.

3.1.7 Additional Packaging Overhead

Some networks might have to modify the standard CP/NET message to transmit it over the physical network
medium, route it to the proper destination, and ensure its integrity.

For example, the message format shown in Figure 3-1 contains no cyclic redundancy code (CRC) or any
other error checking as a part of the packaging overhead. The user-written SNIOS can add the error checking
when it places the message onto the network, and then test the message when the SNIOS receives a message
from the network. This function is intentionally left to the user, avoiding redundant error checking where
standard interface protocols, both in software and hardware, might already provide error checking.

The NDOS always constructs messages using format 0. Likewise, the server processes always expect to
receive messages in format 0. The server sends its response in format 1, which the NDOS requires to
interpret the response. If the SNIOS and NETWRKIF must communicate using a different format, they must
convert all received messages back into the standard formats 0 and 1.

+-----+-----+-----+-----+-----+----- ------+
| FMT | DID | SID | FNC | SIZ | MSG ... |
+-----+-----+-----+-----+-----+----- ------+
 ^ ^ ^ ^ ^ ^
 | | | | | |
 | | | | | +-- Message of length SIZ+1 bytes
 | | | | +-- Size of message = message length - 1
 | | | +-- CP/NET Function Code
 | | +-- Message Source ID
 | +-- Message Destination ID
 +-- Format Code
Figure 3-1. Message Format

3.2 Running Applications Transparently under CP/NET

Applications that use local devices under CP/NET use the CP/M 2.2 BDOS file system. Applications that use
networked devices use he MP/M II file system. These operating systems are largely compatible with each
other, so applications written to run under CP/M should run across the network with no changes.

But there are some differences between the two file systems:

• The CP/NET NDOS supports MP/M II functions not supported under CP/M 2.2. Because these
function calls are meaningless to CP/M, they can only be made to devices that are mapped across the
network.

• The two operating systems handle errors differently. The NDOS reconciles these differences, for
CP/M application programs. A special function call takes advantage of MP/M II's extended error-
handling capability for applications referencing networked devices under CP/NET.

• MP/M II file security checking can cause certain CP/M applications to abort because these
applications modify fields in the File Control Block that make the FCB invalid to MP/M II. Special
compatibility modes have been added to CP/NET to allow these applications to run without
modification.

• Temporary filenames, like $$$.SUB or FILENAME.$$$, are modified under CP/NET. If more than
one requester requires a temporary file with the same name, this modification prevents collisions
between filenames that otherwise cause an application to abort. The modification is transparent to the
application, but it can be confusing when trying to analyze aborted programs.

• A CP/NET requester presents a different version number to an application program when it calls
Function 12 (Return Version Number). Under CP/M 2.2, this function returns a 002x value. Under
CP/NET, it returns a 022x value. Application programs checking this version number might not
function properly. They must be modified. Modifications to CP/NET, to present the same version
number as CP/M, are now included as application notes in all releases of the CP/NET product.

• You can protect files on networked drives from unauthorized access by requiring a requester to
specify a predefined password. You can also assign default passwords to all servers logged on to a
particular requester.

• Certain files that exist only on user zero can be opened by any other user number if they are opened in
the proper mode.

• The operating system must handle the printer differently under CP/NET from under CP/M because
printer output is buffered into 128-byte packets. The operating system must have some way of
deciding when an application program has finished using the printer. Also, several requesters might
be competing for the same printer.

• The allocation vector for a networked drive is returned into the NDOS's default message buffer on a
call to function 27 (Get Allocation Vector Address) and register pair HL is set to the address of the
message buffer. Because of this, the allocation vector must be used or moved before the next network
message is sent, or the vector is destroyed.

Differences between the CP/M 2.2 BDOS and MP/M II file systems are more fully described in the following
sections.

3.2.1 MP/M II vs. CP/M File Systems

MP/M II is a real-time, multitasking operating system. To function properly, MP/M II requires a file system
capable of sharing files among multiple processes and resolving access conflicts among those processes. In
contrast, CP/M is a single-task operating system, so no such conflicts can arise.

One of MP/M II's key methods for maintaining file system integrity is the File Control Block checksum. The
FCB checksum takes into account the process controlling the FCB, the physical blocks allocated to the file,
whether the file is open in a mode that allows other processes to share it, and other factors. When file-related
functions are submitted to MP/M II, the checksum is examined. If the checksum is found to be invalid,
MP/M II returns an error to the calling process.

MP/M II also returns an error if

• a process attempts to open a file in a mode incompatible with the mode of a file already opened by
another process

• a valid password is not supplied for the file
• a user tries to write to a file opened for Read-Only access
• a process exceeds certain predefined parameters for the operating system

Because a single process handles all CP/NET activity on a server all of these limitations apply to a CP/NET
requester performing file operations on a remote device. These limitations, however, do not apply to a

requester accessing a local device. The systems implementer should take these factors into account when
designing servers for a CP/NET system.

3.2.2 Error Handling Under CP/NET

Most CP/NET function calls result in specific values returned in the CPU registers. These values can be
pointers to data objects, bit vectors specifying drive status, directory codes, or success or error conditions.
Directory, success, and error codes are returned in register A. Pointers and bit vectors are returned in register
HL. Register A is always equal to register L, and register B is equal to register H for all CP/NET return
codes.

Error Handling for Local Devices

When a CP/NET requester performs a local file operation, the function parameters pass untouched to the
CP/M BDOS. The BDOS checks those parameters for validity and calls the BIOS to perform physical I/O
functions. Two types of errors can arise from these local operations.

The BDOS can detect certain logical problems with a file function and return a logical error. If it does, an
error code is returned in register A, but the calling application program is allowed to continue.

A physical error is returned when the BIOS is unable to successfully perform a physical operation requested
by the BDOS. When the BDOS is presented with a physical error, it prints the following message on the
console:

 BDOS Err on <x>:
 <error message>

where <x> is the drive referenced when the error occurred, and <error message> is one of the four following
errors:

• Bad Sector
• Select
• File R/O
• R/O

After the physical error message is printed, the BDOS waits for the user to respond to the error with one of
two actions. Pressing CTRL-C causes the BDOS to perform a warm boot, aborting the program. Pressing any
other key causes the BDOS to ignore the physical error and continue as if it had not occurred.

For a more complete discussion of CP/M 2.x errors, see the CP/M Operating System Manual, published by
Digital Research.

Error Handling for Network Devices

When an application references a networked device, the MP/M II server performs the actual file operation
and returns a message defining whether the operation was successful or not. Unlike the local case, the
requester has only indirect knowledge of any error status. Direct physical error indications are impossible to
obtain because a requester has no contact with the MP/M II XIOS. Instead, if an error occurs, MP/M II
returns a message indicating that an error occurred and the type of error it was.

When referencing a remote device, the two types of errors possible under CP/NET are logical errors and
extended errors.

Like logical errors under local CP/M, logical network errors define nonfatal error conditions, such as reading
past the end of a file or attempting to open a nonexistent file. Some serious error conditions are returned as
logical errors for functions that expect to process their own errors. These functions are

20 Read Sequential
21 Write Sequential
33 Read Random
34 Write Random
40 Write Random with Zero Fill
42 Lock Record
43 Unlock Record

Errors for these functions are returned in the return code field of a CP/NET message. The NDOS formats this
field into register A, so the condition code upon return to the application program looks exactly as it does
under local CP/M.

Some of the following codes can be returned in register A for each of the preceding functions:

00 Function Successful
01 Reading Unwritten Data or No Directory Space Available
02 No Available Data Block (Disk Full)
03 Cannot Close Current Extent
04 Seek to Unwritten Extent
05 No Directory Space Available
06 Random Record Greater than 3FFFF
08 Record Locked by Another Process
09 Invalid FCB
0A FCB Checksum Error
0B File Verify Error
0C Record Lock Limit Exceeded
0D Invalid File ID
0E No Room in System Lock List

Extended errors indicate that a potentially fatal condition has occurred during the execution of an MP/M II
function. The condition can be a physical error, similar to the physical errors that can occur under CP/M. Or
the condition can be an error produced by the file system, indicating that the specified operation violates the
integrity of the file system.

When an extended error occurs under MP/M II, the default mode of operation displays the extended error
message on the console attached to the calling process, and the process aborts, MP/M II provides, however,
for returning extended errors to the calling process without aborting that process. In this return error mode,
register A is set to FF hexadecimal, and register H contains the extended error code.

The CP/NET server uses return error mode because if the server aborted, it could not communicate further
with the requester it was servicing until MP/M II was restarted. When the server detects an extended error, it
constructs a special CP/NET message. The message is two bytes long, with the first byte (the return code) set

to FF. The second byte is set to the extended error code.

When the requester detects one of these special messages, it checks the error mode set by the application
program with Function 45 (Set BDOS Error Mode). There are three possible modes:

• Default Mode
• Return Error Mode
• Return and Display Error Mode

If the NDOS is in default mode, it prints the following error message:

 NDOS Err <xx>, Func <yy>

where <xx> is the extended error code in hexadecimal, and <yy> is the function being performed when the
error occurred, also in hexadecimal. The NDOS then performs a warm boot, aborting the program.

In return error mode, the NDOS does not display a message or abort the program. Instead, the NDOS sets
register A to FF and register H to the extended error code; then it returns to the application program.

If an extended error is detected in return and display error mode, the NDOS displays the error message on the
console. But the NDOS does not abort the program, setting the registers in the same manner as return error
mode.

Function 45 (Set BDOS Error Mode) does not exist under CP/M. Because of this, most CP/M applications
automatically run in default mode. If an extended error occurs, these applications abort.

The following extended error codes can be returned to the NDOS:

01 Bad Sector--Permanent Disk Error
02 Read-Only Disk
03 Read-Only File
04 Drive Select Error
05 File Open by Another Process in Locked Mode
06 Close Checksum Error
07 Password Error
08 File Already Exists
09 Illegal ? in an FCB
0A Open File Limit Exceeded
0B No Room in System Lock List
0C Requester not Logged on to Server or Function Not Implemented on Server
FF Unspecified Physical Error

Extended error 0C hex is returned, not by MP/M II, but by the server itself. This error indicates that the
server is unable to process an otherwise valid CP/NET message, either because the requester is not logged in
to that server or because the function code contained in the message is invalid.

Extended error FF can result only from two special functions, Get Allocation Vector Address and Get Disk
Parameter Address. Because these functions return a pointer in register pair HL, it is not possible to detect a
regular extended error. Instead, these functions return an FFFF value in HL if a physical error occurs. The

NDOS ensures that the address returned for these functions (including Get Server Configuration) never
return an address with FF in the low byte, so if they return with A (or L) = 0FFH then the caller should
assume an error.

Not all CP/NET functions are capable of returning extended errors. However, extended error 0C can be
returned on any function, even on MP/M II functions that normally have no extended error associated with
them. If an extended error is returned for such a function, the NDOS ignores it. The following functions can
result in the performance of a network access but cannot produce an extended error:

1 Console Input
2 Console Output
5 List Output
9 Print String
10 Read Console Buffer
24 Return Login Vector
28 Write Protect Disk
29 Get Read-Only Vector
37 Reset Drive
39 Free Drive
64 Login
66 Send Message on Network
67 Receive Message on Network
70 Set Compatibility Attributes
106 Set Default Password

Any other function can cause a program to abort if an MP/M II extended error occurs, if an unsupported
function is passed to the server, or if the server is not logged in.

3.2.3 Temporary Filename Translation

Many common application programs use temporary files. The names of these files often have the form
FILENAME.$$$ or $$$.SUB. When multiple copies of these applications run on different requesters logged
on to the same server, a number of these temporary files can have the same name, causing extended MP/M II
errors that abort the application program.

To solve this problem, each requester's NDOS recognizes temporary filenames destined for networked drives
and implicitly renames them, so the filename an application presents to the operating system is not the one
the NDOS presents to the MP/M II file system.

Each occurrence of the string $$$ in the first three bytes of a filename, as well as any filetype of $$$, forms a
CP/NET message with a filename or filetype of $<xx>, where <xx> is the ASCII representation of the
requester ID byte. Because all requesters have a unique ID, this modification guarantees the uniqueness of
temporary filenames.

This modification is transparent to the calling application program. When the NDOS modifies a filename in a
CP/NET message, it converts the filename back to its original form before updating the application's FCB.
The only possible change to the FCB is that interface attributes set in the high-order bits of the filename
strings modified are reset. This change poses no problems if temporary files are truly temporary. Treat
temporary files like Read-Write files with the DIR attribute; delete them before the application program

terminates.

Functions 17 (Search For First Directory Entry) and 18 (Search For Next Directory Entry) do not perform
temporary filename translation when referencing a networked drive. If a user creates file with a temporary
filename and then attempts to locate it within his directory, this can be confusing.

For example, suppose that a user working on requester 5A enters the command:

 REN $$$.$$$=BLAH.TMP

Then the user enters a DIR command. The file previously renamed appears as

 $5A.$5A

in the directory.

If a temporary file is referenced on a drive that is local to the CP/NET system, the filename passes
unmodified to the BDOS. -No conversion is necessary, because there is no possibility of conflict.

3.2.4 Opening System Files on User 0

Under MP/M II, a requester running in a user number other than 0 can access certain networked files in user
0. If an MP/M II file has its t2' interface attribute set, the file is a system file. If a networked file is opened in
locked or Read-Only mode from a nonzero user number, the following actions are taken:

• If the file exists in the same user number, MP/M II opens the file.
• If the file does not exist in the same user number, MP/M II searches user 0. If the file exists on user

Of and it is a system file, MP/M II opens it just as though the file existed under the other user number.
• If the file exists on user zero as a system file, but it is also a Read-Only file (interface attribute t1'),

MP/M II automatically opens the file in Read-Only mode.

The user of a CP/NET requester can make convenient use of these options. Because the CCP.SPR always
opens files in Read-Only mode, all COM files can be placed in user 0 and marked as system files, making
them accessible to all user numbers.

Because this facility does not exist under CP/M 2.x, all COM files on local devices must exist within the user
numbers from which they are to be executed.

3.2.5 Compatibility Attributes

Because of MP/M II's added file security, applications written under CP/M might not work properly under
MP/M II. Two basic factors contribute to the incompatibility. The first is the FCB checksum computation
that MP/M II performs on open FCBs. Certain CP/M applications modify their FCBs in a way that makes
their checksums invalid. Second, MP/M II defaults to opening all files in locked mode, allowing only one
process to have a file open at a time. Although files can be opened in an unlocked or shared mode, an
application must explicitly specify that the file is to be opened unlocked. CP/M applications have no
knowledge of this procedure.

To enable CP/M applications to run unmodified under MP/M II, a system of compatibility attributes has been
added. This feature is supported under CP/NET. Using compatibility attributes, a user can selectively disable
parts of the MP/M II file security mechanism.

When a requester's CCP opens a COM file for loading and subsequent execution, it examines the high-order
bits of the first, second, third, and fourth bytes of the filename. These bits are referred to as interface
attributes Fl', F2', F3', and F4'. The CCP constructs a byte based on the interface attribute set. It then uses this
byte as a parameter for Function 70 (Set Compatibility Attributes). Function 70 causes the NDOS to send a
logical compatibility attribute message to every server of which it has knowledge.

Table 3-1 defines the interface attributes.

Attribute Meaning

Fl'

causes MP/M II to behave as though all files were opened in Read-Only mode, although
write accesses are still permitted. F1' is functionally equivalent to opening a file in unlocked
mode, except that record locking is not possible. Using this attribute, two programs can
update the same record simultaneously, leaving the file in an indeterminate state.

F2'
causes all file close operations to convert to partial close operations. A partial close uses the
current FCB to update the directory but permits the application program to continue using
the file without reopening it.

F3'
disables FCB checksum verification during close operations. Files are closed successfully as
long as MP/M II can tell the file was initially opened and still has an item on the system lock
list. If the file was not opened, an error is still returned.

F4'

disables all FCB checksum verification. F4' implicitly sets attributes F2' and F3' as well. Use
this attribute with extreme caution because it is possible to perform valid file operations
using corrupt FCBs. Doing this could result in serious damage to the files on the disk drive
being referenced.

Table 3-1. Interface Attributes

The CCP uses the interface attributes to construct a one-byte parameter for the set compatibility attributes
call by setting the following bits:

• F1' bit 7
• F2' bit 6
• F3' bit 5
• F4' bits 4, 5, and 6

All other bits are set to zero.

The set compatibility attributes logical message causes the server to change its process descriptor if the user
has enabled compatibility attributes during the MP/M II GENSYS operation. Otherwise, the message is
ignored.

When an application program terminates, the CCP resets all compatibility attributes. This prevents a
subsequent program from operating in an environment with insufficient file security.

It is advisable to enable the minimum number of compatibility attributes necessary to allow a program to run
properly. Use the following guidelines for setting the attributes:

• If the program aborts with NDOS Error 05, FILE OPEN BY ANOTHER PROCESS, set Fl'.
• If the program aborts with NDOS Error 06, CLOSE CHECKSUM ERROR, set F3'.
• if an error code is returned in register A on I/O operations under CP/NET, but no error is returned

under CP/M, try setting F2' If the problem persists, try setting both F2' and F3'. if the problem still

persists, set user attribute F4'. Make sure there is no possibility of corrupting the file system before
using attribute F4'.

You can use the SET utility under MP/M II to enter compatibility interface attributes into a .COM file's
directory entry from an MP/M II console. For example,

 SET <filespec> [Fl=ON,F3=ON]

If you cannot use MP/M II, you can set the interface attributes under program control using Function 30 (Set
File Attributes).

3.2.6 Password Protection Under CP/NET

The MP/M II file system limits file access by unprivileged users through password protection for individual
files. There are three levels of password protection for files:

• All access is denied without the password.
• The file can be read without the password, but it cannot be written to.
• The file can be read and written to without the password, but not deleted.

Use the SET utility to assign passwords under MP/M II. The procedure for assigning passwords is described
in the MP/M II Operating System User' s Guide. CP/NET does not support the assignment of passwords
across the network.

CP/NET does, however, allow an application program to send a Password across the network when a file is
opened. This allows a user on a CP/NET requester the most basic form of password support: operation on
networked files that have been previously password protected.

If a read-protected file is opened and no password is specified, an extended error is returned across the
network, and the Calling application aborts. The same error is also returned when an application attempts to
write to a write-protected file for which no password was provided when the file was opened. Finally, any
attempt to delete, rename, or change the attributes of a delete protected file without providing a password
results in an extended error.

CP/NET also supports Function 106 (Set Default Password). Function 106 provides a password against
which all protected files are checked if no password is provided or if the password is incorrect. This function
can relieve an application of the responsibility to parse passwords constantly into the first eight bytes of the
current DMA buffer.

CCP.SPR does not support MP/M II's facility of supplying passwords when the user enters a command line.
Because of this, do not password-protect COM files unless a default password utility is provided to the user.

Because CP/M 2.x does not support any kind of file protection, passwords are ignored when referencing files
on drives local to a CP/NET requester.

3.2.7 Networked List and Console Devices Under CP/NET

In addition to the 16 disk devices, CP/NET allows the user to map the list and console devices across the
network. A number of requesters can share a printer, or a console can be logically attached to a completely
independent system running CP/NET or CP/NOS. Such a system needs only a network interface to support
full CP/M capability.

Unlike most requester BDOS calls, whether a console or list device is local or networked is determined, not
at the BDOS intercept level, but at the BIOS-intercept level. This feature enables application programs to
make direct BIOS calls for console and printer I/O and to continue to run transparently across the network.

List device I/O is handled in the following manner: when the BIOS call is made to LISTOUT, the NDOS
traps it. The NDOS examines the configuration table to determine whether the list device is local to the
CP/NET system or networked. If the list device is local, the call is passed through to the BIOS unchanged.

If the list device is networked, however, the NDOS stores the character to be listed in a special buffer,
located directly below the requester configuration table. When 128 characters are stored, the NDOS sends a
List Output logical message to the server upon which the list device is mapped. This buffering process
improves system performance because one-character messages that would congest the network
communication interfaces need not be sent between each requester and server.

Under CP/M, there is no need to tell the list device when a listing is complete because only one application
can list at a time, and that application has complete control of the device during that time. Under CP/NET,
however, more than one requester can share a printer. So a mechanism must be included to notify the server
that a listing is done and that the list device is available to other requesters.

A special provision must be included so a partially filled list buffer can be flushed to the server when a listing
is finished, and so the server can release the list device. Endlist, a special character equal to FF hex, is
intercepted by the NDOS as the signal to terminate a listing.

The endlist character can come from one of four sources:

1. The CCP.SPR sends an endlist character every time it is entered and detects that a list is in progress.
This causes an endlist every time a program terminates.

2. An application can issue an endlist to terminate its own listing.
3. Every time a CTRL-P is toggled to off, the NDOS console input routine detects this and issues its

own endlist.
4. You can use the ENDLIST utility to terminate the listing.

The server can handle listing in two different modes. If the module SPOOL.RSP is present in MP/M II, the
server takes all list output messages and writes them to a dedicated spooler file. When the server detects an
endlist, it inserts a CTRL-Z end-of-file character into the message, closes the spooler file, and directs the
SPOOL process to begin printing the file on the appropriate list device

If a SPOOL process is not resident under MP/M II, the server, upon receiving an initial list out message,
performs an explicit attach list function on the specified list device. This prevents other requesters from using
the list device until the requester being serviced is finished listing. All other requesters are suspended or
receive network errors if they try to use the same list device. When the server finally receives the endlist
character, it issues a detach list function, freeing the list device for another process.

Both server modes have potential disadvantages. A printer that uses a CTRL-Z as an escape sequence for
special printing functions cannot be used with the SPOOL.RSP. Using CTRL-Z causes the spooler to
terminate a print job prematurely, assuming that an end-of-file was encountered. On the other hand, explicit
attaching and detaching of list devices can cause a network error if a requester attempts to attach a list device
that is already in use, has its server become suspended, and eventually times out.

Console I/O cannot be buffered and sent across the network in large blocks because it is not possible to
determine when input critical to the operation of an application is needed. The NDOS must therefore send
such I/O across the network one character at a time.

As with list output, the NDOS traps console-related BIOS calls. The NDOS determines whether the console
is local or networked. If the console is local, no action is taken, and the local BIOS is entered. If the console
is networked, a raw or unfiltered console I/O message is sent to the server. The server performs the I/O
function and sends a response back to the requester.

If a networked console is used with CP/NET, the system behaves unreliably when the console is also being
used as a regular MP/M II terminal because MP/M II allocates a Terminal Message Process (TMP) to each
known user console. Both a server process and a TMP can be waiting for input from the same console.
Because of this, typed characters can be echoed normally, doubly echoed, or not echoed at all. The actual
processes might or might not receive every character.

A networked console user should also be aware that, because each character must be sent over the network,
networked consoles drastically degrade the performance of the entire CP/NET system. Networked consoles
are not recommended unless there is no way to support a local console, as in certain industrial process-
control applications.

The CTRL-P facility of CP/M is partially handled by the NDOS. The NDOS must know when CTRL-P is
active because it must send an endlist character when the facility terminates. If the CCP detects that CTRL-P
is active, it will not send an endlist, even if a program terminates.

3.3 CP/NET Function Extensions to CP/M

Applications accessing networked drives use the MP/M II file system to perform file operations. Many of
those operations have slightly different meanings than they do under CP/M. For example, by setting the high-
order bits of an FCB filename, a file can be opened or made in locked mode, unlocked mode, or Read-Only
mode. CP/NET also allows an application to place a password in the current DMA buffer for opening
password-protected files. Similarly, a close operation can perform either a permanent close or a partial close.

The return codes and side-effects of MP/M II functions also differ. Error-handling differences are discussed
in Section 3.2.2. The open and make functions also differ. These functions return a two-byte value, called the
file ID, in the random record field of the opened FCB. The file ID is necessary for performing record locking
functions.

For a complete description of how individual CP/M functions work under MP/M II, see the MP/M II
Operating System Programmer's Guide.

This section describes CP/NET functions that have no counterpart under CP/M. These include MP/M II
functions that do not exist under CP/M, as well as a set of dedicated CP/NET functions. All of these
functions adhere to exactly the same calling conventions as the rest of CP/M and all follow the same
conventions regarding return codes.

FUNCTION 38: ACCESS DRIVE

Prevents Drives from Being Reset

Register Value

Entry
Parameters

C 26H

DE Drive Vector

Return Values
A Return Code

H Extended Error

The Access Drive function inserts a dummy open file item in the system lock list for each drive specified in
the drive vector. The drive vector is a 16-bit vector in which each possible drive is presented. Bit 0 represents
drive A:, bit 1, drive B:, continuing through 15 for drive P:.

The NDOS separates the drive vector into a number of drive vectors, one per server that the NDOS can find
in the requester's configuration table. The NDOS then sends a logical message to each of these servers. If any
of these messages result in an extended error, the function aborts.

If a server's system lock list does not have enough room to fit all the dummy items for all the drives
specified, or if the open file limit for the server process is exceeded, none of the items is inserted and
Function 38 returns an extended error.

Because the NDOS sends messages to each server in sequence, an extended error on one server does not
indicate that servers accessed previously failed to insert open file items. This differs from MP/M II, where
only one file system controls the entire lock list. Note that drives might have to be freed after a failure
resulting from an access drive call.

If the NDOS is in return error mode, an error condition on function 38 causes register A to be set to 0FFH,
and register H contains one of the following codes:

0A Open File Limit Exceeded
0B No Room in the System Lock List
0C Server Not Logged In

Because Function 38 is meaningless to local drives under CP/NET, no call to the local BDOS is made.

FUNCTION 39: FREE DRIVE

Free Specified Disk Drives

Register Value

Entry
Parameters

C 27H

DE Drive Vector

The Free Drive function purges servers' lock lists of all items pertaining to the drives specified. The drive
vector is a 16-bit vector in which each possible drive is represented. Bit 0 represents drive A:, bit 1, drive B:,
continuing through 15 for drive P:.

Because dummy drive accesses, locked records, and open files are all purged, close all important files before
issuing the free drive call. Otherwise, a checksum error is returned on the next file access, and data might be
lost.

The CP/NET CCP issues a free drive every time a program terminates. This prevents the server process
associated with the requester from becoming clogged with useless files.

Because Free Drive is meaningless under CP/M, the operating system ignores entries in the drive vector that
specify drives local to the requester.

Free Drive has no error return.

FUNCTION 42: LOCK RECORD

Lock Records in a File

Register Value

Entry
Parameters

C 2AH

DE FCB Address

Return Values
A Return Code

H Extended Error

The Lock Record function grants a requester exclusive write access to a specific record of a file opened in
unlocked mode. Using this function, any number of requester processes can simultaneously update a
common file.

To lock a record, a requester application must place the logical record number to be locked in the random
record field of the file's FCB. The file ID number, a two-byte value that is returned in the random record field
when a file is opened in unlocked mode, must be placed in the first two bytes of the current DMA buffer.
When the lock function is called, a pointer to the FCB must exist in register pair DE.

The record to be locked must reside within a block currently allocated for the file. The lock fails if the record
is locked by another process or requester. This prevents two processes from simultaneously updating the
same record and leaving it in an indeterminate state.

If a file was opened in locked mode, the Lock Record function always returns successfully, but no explicit
action is taken because the whole file is locked in the first place.

To use the Lock Record function, follow these steps:

1. Open the file in unlocked mode. Save the file ID returned in the random record field of the open FCB.
2. When the application needs to update the record, lock the record, even before attempting to read it.

Reading a record that is locked by another process can result in leaving the record in an indeterminate
state. If an error results because the record is locked by another process, repeat this step until the
record is locked successfully. Place a timeout value on retrying the lock in case another requester has
locked the record and then gone off line.

3. Read the record.
4. Update the record.
5. Write the record back.
6. Unlock the record.

The Lock Record function returns a 0 in register A if successful. Otherwise, the Lock Record function returns
one of the following error codes in register A:

01 Reading Unwritten Data
03 Cannot Close Current Extent to Access Extent Specified
04 Seek to an Unwritten Extent
06 Random Record Number Greater than 3FFFF
08 Record Locked by Another Process
0A FCB Checksum Error
0B Unlock File Verification Error

0C Process Record Lock Limit Exceeded
0D Invalid File ID in the DMA Buffer
0E No Room on the System Lock List
FF Extended Error

These extended errors can occur:

01 Permanent Error
04 Select Error
0C Requester Not Logged In to Server

The Lock Record function has no meaning when a drive local to the requester is referenced. The function
returns with register A set to 0.

FUNCTION 43: UNLOCK RECORD

Unlock Records in a File

 Register Value

Entry
Parameters

C 2BH

DE FCB Address

Return Values
A Return Code

H Extended Error

The Unlock Record function releases a previously locked record, allowing it to be locked and written to by
another requester. The record to be unlocked must be placed in the random record field of the file's FCB. The
file ID is a two-byte value that is returned in the random field when a file is opened in unlocked mode. The
file ID must be placed in the first two bytes of the current DMA buffer. Register pair DE must contain a
pointer to the FCB.

The Unlock Record function returns successfully if

• the file was opened in locked mode.
• the record specified is already unlocked.
• the record is locked by another process.

In all these cases, no action is performed.

Do not unlock a record until the requester's application program has finished updating the locked record and
has written it back out to the file. Otherwise, another process might inadvertently destroy the updated
information.

The Unlock Record function returns a 0 in register A if Successful. Otherwise, the function returns one of the
following error codes in register A:

01 Reading Unwritten Data
03 Cannot Close Current Extent to Access Extent Specified

04 Seek to an Unwritten Extent
06 Random Record Number Greater than 3FFFF
0A FCB Checksum Error
0B Unlock File Verification Error
0D Invalid File ID in the DMA Buffer
FF Extended Error

These extended errors can occur:

01 Permanent Error
04 Select Error
0C Server Not Logged In

The Unlock Record function is meaningless when it references a requester's local drive; it returns a 0 in
register A.

FUNCTION 45: SET BDOS ERROR MODE

Defines CP/NET Error Handling

 Register Value

Entry Parameters
C 2DH

E Error Mode

The Set BDOS Error Mode function provides the NDOS with these options:

• aborting on extended errors
• returning the extended error to the calling application for handling
• returning the error to the application and displaying it on the console

All requester application programs are initially loaded in a default environment that causes the NDOS to
abort on extended errors and to display the extended error code. Use Function 45 to change this default
mode, according to the contents of register E.

Register Explanation

0FFH
Return Error Mode. BDOS returns extended errors coming from the network to the
application program. Register A is set to 0FFH, and register H contains the extended error
code. No error message is displayed on the console.

0FEH
Return and Display Mode. BDOS returns the extended error in the same manner as in Return
Error Mode, but also displays an extended error message.

Any
Other
Value

Default Mode.

Table 3-2. BDOS Error Modes

Function 45 is not implemented across the network. The NDOS maintains its own internal error mode flag
and acts upon returning network messages according to that flag.

The Set BDOS Error Mode function has no effect on physical errors returned by the requester's local BIOS.
These errors always display an error message, then they give the user the option of aborting the application
program or continuing.

FUNCTION 64: LOGIN

Initiate Session Between a Requester and a
Server

 Register Value

Entry Parameters
C 40H

DE Ptr to Login Msg

Return Values A Return Code

The Login function identifies a requester to a server and initiates a session with that server. The Login
function must always be successfully called before a requester can access a server's resources. Register pair
DE must contain a pointer to a data structure that contains the following two fields:

00-00 Server ID byte
01-08 Password

The NDOS uses this structure to construct a logical LOGIN message to the server specified. Only the
LOGIN message can be passed to the SERVER module without generating an extended error 0C, requester
not logged in.

The server checks to see whether the password matches the password defined in the server configuration
table. The server then scans the configuration table to find out whether logging in another requester exceeds
the number of servers present in the system. If a server exists for the requester, and the password matches,
the NDOS returns a 0 in register A. Otherwise, an error is flagged by returning an 0FFH in register A. The
NDOS also returns a 0 in register A if the requester is already logged in.

FUNCTION 65: LOGOFF

Terminate a Session Between a Requester and a
Server

 Register Value

Entry Parameters
C 41H

E Server ID

Return Values
A Return Code

H Extended Error

The Logoff function completes a session and breaks the logical binding between the server specified in
register E and the calling requester. Once a Logoff has been performed, the server process is free to begin a
session with another requester, if the the server's NETWRKIF can support the dynamic binding of requester

nodes to server processes.

Function 65 returns a 0 if successful. It returns an extended error 0C, requester not logged on to server, if
unsuccessful.

FUNCTION 66: SEND MESSAGE ON NETWORK

Send a Message to Another Network Node

 Register Value

Entry Parameters
C 42H

DE Pointer to Message

Return Values A Return Code

The Send Message on Network function sends messages across the network that might have no defined
function on the MP/M II server. This allows applications to be written under CP/NET that use non CP/NET
messages. Point-to-point communications packages, special electronic mail systems, implementation of
requester synchronization functions, and special print spooling systems are examples of such applications.

To use Function 66, the address of the message to be sent must be passed in register pair DE. The message
pointed to might have the standard CP/NET structure of FMT, DID, SID, FNC, SIZ, and MSG, or it might
take some nonstandard format. In the latter case, the SNIOS must be able to recognize the nonstandard
message and send it properly.

Unlike the usual CP/NET session protocol, the Send Message on Network function does not automatically
attempt to receive a response to the message that was sent. So an application can send throw-away messages
that do not require a logical acknowledgment or response. You can also define message types that can be
broadcast to every node in the network.

If an application requires a logical response to a message sent using Function 66, make an explicit call to
Function 67 (Receive Message on Network).

As a rule, set the FMT field of the message header of any nonstandard message sent through a CP/NET
system to a value other than those reserved for use by Digital Research. Future releases can then run
applications using Function 66, with minimal modification.

Function 66 returns an FF in registers A, H, and L if a network error occurred and the message was not sent.

FUNCTION 67: RECEIVE MESSAGE ON NETWORK

Receive Message from Another Network Node

 Register Value

Entry Parameters
C 43H

DE Receive Buffer Address

Return Values A Return Code

The Receive Message on Network function is the counterpart of Function 66, Send Message on Network.
Invoke it immediately after performing a send message if a logical response is expected. Function 67 can also

be used to wait for an unsolicited message from another node.

To use Function 67, an application must pass a pointer to a buffer area into which the message can be
received in register DE. Upon return, registers A, H, and L are set to 0FFH if the function failed to receive
the message properly.

Like Function 66, Function 67 can handle nonstandard messages across a CP/NET network, provided that the
requester's SNIOS is equipped to handle them. For a more detailed discussion on how to use Functions 66
and 67, see section 3.4.

FUNCTION 68: GET NETWORK STATUS

Get Network Status Byte from the Configuration
Table

 Register Value

Entry Parameters C 44H

Return Values A Network Status Byte

The Get Network Status function returns the configuration table's network status byte in register A. It also
resets any error conditions in the status byte.

For a description of the fields contained in the network status byte, see Section 4.2.1.

FUNCTION 69: GET CONFIGURATION TABLE ADDRESS

Get Configuration Table Address

 Register Value

Entry Parameters C 45H

Return Values HL Table Address

The Get Configuration Table Address function returns the address of the requester configuration table
maintained in the SNIOS. Using this function, an application can dynamically modify the mappings of
devices across the network. The utilities NETWORK and LOCAL use Function 69 to accomplish this kind of
modification

For a description of the fields in the configuration table, see Section 4.2.2.

FUNCTION 70: SET COMPATIBILITY
ATTRIBUTES

Configure Server File Systems for an Application

 Register Value

Entry Parameters
C 46H

E Compatibility Attribute Byte

The Set Compatibility Attributes function selectively disables the file security mechanism on all MP/M II

servers to which the calling requester has networked drives. This allows certain applications that run under
CP/M but not under the MP/M II file system to run under CP/NET and access networked devices.

The CCP.SPR checks the compatibility interface attributes of all COM files that it loads for execution and
performs a Set Compatibility Attributes function based on the pattern it finds. This is the only time to use this
function. Applications should not modify their compatibility mode in mid-execution. Doing so might produce
unpredictable results.

The compatibility attribute byte is set according to the interface attributes found in the COM file's name. The
following attributes cause the corresponding bits to be set in register E prior to the call to Function 70:

F1' bit 7
F2' bit 6
F3' bit 5
F4' bits 4, 5, and 6

For a complete description of how to use compatibility attributes, see Section 3.2.5.

Function 70 has no error return. Extended error messages from servers to which the requester is not logged in
are ignored.

FUNCTION 71: GET SERVER CONFIGURATION TABLE ADDRESS

Get Information About a Server

 Register Value

Entry Parameters
C 47H

E Server ID

Return Value HL Server Configuration Table Address

The Get Server Configuration Table Address function returns a pointer to parts of the specified server's
configuration table. The ID of the server to be examined is passed in register E prior to calling Function 71,
and a pointer to the received information is returned in register pair HL.

The data structure addressed by HL has the following format:

00-00 Server Temporary File Drive
01-01 Server Network Status Byte
02-02 Server ID
03-03 Maximum Number of Requesters Permitted on the Server

04-04
Number of Requesters Currently Logged In Bit Vector of Requesters Logged In in the
Requester

05-06 ID Table
07-16 Requester ID Table

The information is identical with that contained in the server configuration table, except that the login
password has been removed, and a byte containing the server's temporary file drive has added to the front of

the table.

Function 71 can determine whether other requesters are logged into a server. The temporary file drive can be
used when an application wants to leave a file on a server but does not know the capacity or type of the
server's disk drives. The MAIL utility makes frequent use of Function 71.

The server configuration table is returned across the network in a Special buffer in the NDOS. If more than
one call is to be made to Function 71, and the calls reference a different server each time, the buffer is
overwritten by each successive call. If an application must examine more than one server configuration table
at once the table must be copied down into a buffer defined by the application.

If Function 71 passes a server ID to which the calling user is not logged on, an extended error 0C, requester
not logged in, is returned.

FUNCTION 106: SET DEFAULT PASSWORD

Establish a Default Password for File Access

 Register Value

Entry Parameters
C 46H

DE Password Address

The Set Default Password function allows an application to specify a password that is checked if an incorrect
password is presented during an Open File function. If a file is password protected, MP/M II first checks for
a password in the current DMA buffer. If no match is found, MP/M II then checks the default password set
by Function 106. If MP/M II finds a match, it allows the requested operation to succeed. Otherwise, MP/M II
returns an error.

When Function 106 is performed on a requester, the requester's NDOS attempts to set the default password
on every server to which a drive is networked by that requester. Since Function 106 has no error return,
extended requester not logged in errors are ignored

Each server process uses an MP/M II default password slot, starting with console 0 and using as many slots
as there are requesters supported.

The default password set by Function 106 persists until another default password is set.

3.4 CP/NET Applications

In addition to running standard CP/M applications packages on a CP/NET requester, you can implement
special applications using the network functions available in CP/NET. The applications can handle message
processing in a distributed environment. Examples include high-performance print spoolers, node-to-node
transfer utilities, and network management tools.

Using Functions 66 (Send Message on Network) and 67 (Receive Message on Network) , you can define an
entire set of specialized messages to provide network functions. These messages must be recognized and
processed by the SNIOS and NETWRKIF, but once implemented, they can be used by application programs
as though they were functions themselves.

Suppose a specific network application requires a print spooler that provides special formatting features. You
can write an application program that creates messages with a special code in the format byte of the CP/NET

message header. When the application wants to spool data to the special spooler on the server, it uses
Function 66 to send the data.

On the server side, the NETWRKIF must be capable of recognizing the specially defined format code. When
the NETWRKIF sees this format, instead of routing the message to a server process, it writes the message to
a special queue. The actual spooler can reside as a process under MP/M II. The spooler reads the queue and
spools the data.

Notice that Functions 66 and 67 are independent of the logical protocol of CP/NET, where every message
sent by a requester implies that the requester waits to receive the message. This independence permits an
application using a feature like a special spooler to return immediately after sending its message. The
application need not wait for a logical acknowledgment.

Another convenient application is a file copy program that works without server intervention. Under the
regular CP/NET protocol, the only way to copy a file on a local requester drive to the local drive of another
requester is first to copy the file to a common networked drive, then copy it back to the other requester's
drive. This is inefficient.

Instead, suppose that the users of the two requesters agree to cooperate in the copying of the file. They can do
this by sending each other mail. One user invokes an application program called RECEIVE, while the other
brings up an application program called SEND.

The SEND program merely reads the file into memory, then sequentially sends it to the other requester, using
Function 66. The SEND program might or might not request verification from the receiving requester via
Function 67. In the meantime, the RECEIVE program reads the messages from the network. No server
intervention is required; only the two SNIOS modules of the requester are involved in the transmission. Even
though the two requesters are only capable of sequential processing, they are still able to send and receive
messages synchronously. This application does not require modifications to the SNIOS and NETWRKIF; the
standard CP/NET protocol is sufficient, because such applications never reference the server.

Finally, a complex network might require automatic system monitoring and maintenance utilities. Using
special message formats, you can design a set of messages that check which drives are usable on various
servers, compute the best path from a requester to a given server and back, and notify the system's users of
servers and requesters going on or off line. These messages can be handled automatically by the SNIOS or
NETWRKIF software, or they can be implemented under the control of special application programs.

Section 4
CP/NET System Guide

The requester's NDOS and the server's SERVER module are key components in the logical structure of the
CP/NET operating system. These modules, however, do not deal with the physical problems of moving a
logical message from the source requester to the destination server and back again. Implementing this task
varies depending on network topology, hardware, and the characteristics of the host computer systems. These
modules are therefore not portable from machine to machine. You must customize them.

This section provides the network systems implementer with the information necessary to design and
implement a CP/NET system efficiently. Section 4 is divided into four parts. Section 4.1 discusses general
network design issues that affect CP/NET implementation. Section 4.2 details how to implement the
requester network software, the SNIOS.SPR. Section 4.3 discusses the design and implementation of the
server communications software, the NETWRKIF.RSP. Section 4.4 describes the design of a CP/NET server
that runs under an operating system other than MP/M II. Appendixes to this manual contain several example
network communications packages.

4.1 General Network Considerations

This section explains some of the basic functions of network communications software and describes, in the
most general way, how communications software fits into the overall architecture. If any of the material in
this section is unfamiliar to you, consult one of the many excellent textbooks available on modern
networking technology. Theoretical knowledge can help you enormously in the design and implementation
of your network system.

4.1.1 Functions of the CP/NET Physical Modules

The SNIOS and NETWRKIF modules function on four levels. At the lowest level, they must handle the
physical transfer of a bit stream from one network node to another. This physical layer must take into account
the I/O port numbers being used for communication, the physical characteristics of the network medium,
network contention schemes, and other factors.

The next layer of functions must address the problem of getting complete messages from one node to another
with no errors or redundant data. This data-link layer takes the bit stream from the physical layer and
processes it according to its own protocol.

If any routing from node to node is required, you must include, a network-level protocol. The network layer
can be as simple as identifying when a message is destined for a particular node, or it can perform complex
store-and-forward operations, compute the best route from node to node, and maintain open circuits for nodes
that want to communicate.

The last layer the SNIOS and NETWRKIF must address provides an interface between the low-level
communications software and the logical level operating system software. In the SNIOS, this layer must
transport messages to and from the NDOS. In the NETWRKIF, the transport layer reads and writes message
from and to the appropriate server queues.

The layered architecture presented here can be indistinct in implementations, with single subroutines
sometimes handling all four layers at once. Figure 4-1 shows the relationship of the various layers to the
network interface. Notice that the physical, data link, and network layers might have to participate in the
interface to recover information to perform their functions.

file:///home/drmiller/git/heathkit/h89/docs/Sec4_4

Figure 4-1. Layered Model of a CP/NET Network Node

Notice also the interfaces between the various levels. As a message migrates through the layers, the data in
the message can change. The interface between the physical layer and the data-link layer yields bit or
character data; the message itself is incomplete. The interface between the data-link and network layers
produces messages, but the messages might contain routing information irrelevant to the transport layer.
When a message reaches the transport layer, it might be in a format unusable by the higher logical layers of
the operating system. only when the message is passed to those logical layers must it be complete and in the
standard format of a CP/NET message.

The architecture described above corresponds to the four lowest layers of the network model described by the
International Standards Organization (ISO). However, there are some slight differences. For example, the
ISO definition of the transport layer concerns itself mostly with migrating messages from a centralized
network controller to one of many possible hosts. In the model described above, the transport layer deals with
moving messages that have already reached a host into the correct portion of the operating system. The
model in Figure 4-1 is the basis for the following, more detailed discussion.

4.1.2 Interfacing a Computer to a Network

All network nodes need some method of controlling the communication functions that take place on the
communications medium of the network. The simplest method is to have the node's CPU directly control all
network communications protocols.

In this case, the network interface is a direct line into the host computer. When the communications software
is called upon to send a message, the CPU must initiate the message, possibly waiting for an appropriate
handshake response from the destination node. The CPU must then transmit the message, receive and process
any acknowledgments, and determine whether the message should be retransmitted. If the node is receiving a
message, it must, under program control, detect when the sender is trying to initiate a message, perform any
handshake with the sender, receive the message, verify its correctness, and provide acknowledgment. All
these tasks must be performed using programmed I/O operations or possibly some form of DMA for parts of
the transmission or reception.

These tasks can take up a significant amount of the CPU's processing power. For an SNIOS, this is not a
problem, because the NDOS is idle in the time interval after a message is sent and before the response is
received. For a NETWRKIF, however, the multitasking nature of the server can result in serious performance
degradation.

Another drawback to this method is that it places the burden of engineering communications software on the
host systems implementer. This software can be extremely costly to develop for a high performance network.

The principal advantage of this method is its simplicity. If two computers have spare RS-232 ports, you can
network them together with no special hardware. Many simple protocols can be readily modified to provide
low-performance networks at low cost. Such a protocol is provided in Appendix E.

For higher-performance networks, it might be necessary to relieve the host CPU of the burden of physical,
data-link, and network processing. In this case, an intelligent network communications controller can be
useful. Many such controllers are available, and there is a variety of methods of interfacing them to a host
computer.

An intelligent communications controller can perform all physical and data-link processing, as well as many
network layer functions, with no host CPU intervention. The SNIOS and NETWRKIF modules must be
concerned only with a nominal amount of network routing, if necessary, and with the problem of transporting
the message from the controller. Because the communications controller can transfer data to the host at high
speed with high reliability, the host's transport layer can be very simple and requires little CPU time.
Appendix G provides a CP/NET implementation utilizing an intelligent network controller.

Intelligent controllers require special hardware that must be added to the host computer. Interfacing this
hardware is not always possible. In addition, each network node needs a controller. This can be expensive.

CP/NET also works in multiprocessor environments, both loosely coupled and tightly coupled. A loosely
coupled system can send messages via a high-speed, reliable bus. This reduces the data-link problem, so
simply transferring data is often sufficient to ensure the message's integrity. Tightly coupled processors can
share memory, so messages can be sent between nodes by mapping memory from one processor to another.

4.1.3 Developing a Network Layer

Because CP/NET is independent of the network used, the communication modules must be modified to
support various network topologies. The NETWRKIF that supports a multidrop, contention network is
different from the one that supports an active hub-star configuration.

Some CP/NET configurations require extremely complex interconnections. Messages destined for one server
might have to pass unmodified through several servers or requesters before they reach their final destination.
The network implementer must define the software necessary to accomplish this routing. For simple
networks, a network layer is barely necessary. For example, a simple work station cluster, where several
requesters share a single server, requires only that the destination ID field of the message match the server's
ID on a request, and that the destination match the requester's ID when the server's response is sent back to
the requester.

In complex networks, each node might need to keep track of other nodes on-line in the network. Some
algorithms require the exchange of routing messages to maintain an accurate picture of the topology of the
overall network. To do this, the communications software must recognize these routing messages as
nonstandard CP/NET messages and not pass them to a server process or to the NDOS for processing.

Even requesters might need a network layer. For example, consider a daisy-chain network of several
requesters with a server at one end. All the traffic for requesters farther down the chain passes through the

requester adjacent to the server.

Because a CP/M requester can only operate a single task, the communications software for receiving and
forwarding a message must be written as a series of interrupt routines. Because the NDOS might call on the
SNIOS to transmit or receive a message of its own, these routines must be reentrant to the extent that NDOS
requests can be held up until an intermediate message has been processed.

4.1.4 Error Recovery

Network transmission media are often unreliable. Messages are occasionally garbled or lost. In addition to
data-link errors, networks can route messages incorrectly, or messages can be lost due to congestion in a
section of the network. Because of these problems, a node must be able to recover from transmission errors

The most common form of error is garbled data. Bits that should have been zeros are received as ones, and
ones are received as zeros. The easiest way to detect this type of error is to transmit a check along with the
message. The check is computed by performing an arithmetic operation on the actual message before it is
transmitted. If the check does not match the result of performing the same operation when the message is
received, then a transmission error has probably occurred.

Most data-link protocols provide a mechanism for acknowledging that a message was received correctly.
This mechanism requires a special message as an acknowledgment. The node that received the original
message sends the special message back to the node that sent the original message. If an error occurs, the
receiver either sends no acknowledgment or sends a negative acknowledgment, telling the sender to
retransmit the message immediately.

The sender must be able to detect a transmission error and take steps to retransmit the message. This can be a
problem because the sender does not know what the receiver is doing. If an error message comes back, the
sender knows something has gone wrong. But if a message is lost completely, the receiver might not know it
was sent and never send an error condition.

To solve this problem, the sender can send a message, then wait a predetermined interval for
acknowledgment. If no acknowledgment arrives, the interval expires, and the sender times out. A timeout
condition can cause the sender to retransmit the message or take other steps to recover from the error. When
the message is finally sent successfully, the sender can free up the buffer that held it and continue with other
processing.

For a CP/NET requester, two different levels of timeouts might be necessary. At the data-link level, a timeout
can be set on the amount of time that elapses between sending a message and receiving the acknowledgment
that it was received correctly. This timeout interval can be fairly short, since the transmission path is not
likely to be very long.

The second timeout addresses the logical structure of CP/NET. Every message sent to the server implies a
response to be sent back to the requester. A timeout can be set upon entering the requester's receive message
routine. If the requester waits too long for a response, it can be assumed that the communication link or the
server itself has crashed. With this kind of timeout, the error recovery involves much more than just
retransmitting the initial message. A logical initialization must take place, probably including a CP/M warm
boot.

A timeout scheme can successfully retransmit lost or garbled messages. Another problem arises, however,
when the receiver's acknowledgment signal is lost. The sender, not receiving the acknowledgment, eventually
times out and retransmits the message. In the meantime, the message has actually been successfully received.
When the message arrives from the sender a second time, the receiver must have some way of knowing that
the message is a duplicate. The receiver should ignore the message, but send an acknowledgment to stop the

sender from sending the duplicate yet again.

The easiest way to detect duplicates is to assign a sequence number to each message. If the receiver does not
receive the sequence number it was expecting, it ignores the message, even if the message was received
correctly. Every time a message is received, the expected sequence number is incremented. Every time the
sender receives an acknowledgment, the sequence number to be sent is incremented. If a message times out,
however, the sequence number is not incremented.

All error recovery schemes should be free from deadlocks. A deadlock occurs when the sender is waiting for
an action from the receiver, but the receiver is not performing that action because it is waiting for the sender
to perform another action. Carefully analyze networks that store and forward messages from node to node for
deadlocks because two nodes can try to transmit to one another simultaneously.

The means of avoiding deadlocks varies according to the network topology. A multidrop network can use
collision detection. if two nodes attempt to use the network at the same time, they immediately detect that
their messages are garbled and stop transmitting. To avoid continuous collisions and a consequent deadlock
condition, the two nodes attempt to transmit again based on a random time interval, so that one node can start
transmitting before the other.

In a point-to-point network, a properly designed message handshake can often avoid data-link deadlocks. At
a higher level, enforcing a buffer allocation protocol can often prevent deadlocks. Waiting to transmit
messages until the receiver has space for them minimizes the possibility of two messages continuously
timing out.

4.2 Customizing the Requester's SNIOS

The communication interface between the logical NDOS and the actual network is contained in the Slave
Network I/O System module, SNIOS.SPR. Because this interface varies depending on the computer system
and network hardware, you must customize the SNIOS.

For most applications, the SNIOS need only be a sequential system. The SNIOS never needs to respond
asynchronously to unsolicited messages. Only the NDOS must direct the SNIOS to receive messages.
However, some networks require real-time response from their SNIOS modules to pass a message between
two network nodes that have no direct means of communicating with one another.

This section details the design and preparation of an SNIOS for inclusion with a CP/NET requester and
describes the installation of the utilities necessary to run the requester.

4.2.1 Slave Network I/O System Entry Points

The SNIOS must begin with a jump vector containing the network I/O system entry points, as shown below:

SNIOS: JMP NETWORKINIT ; Network initialize
 JMP NETWORKSTS ; Rtn network status
 JMP CONFIGTBLADR ; Rtn Config. Tbl Adr
 JMP SENDMSG ; Send msg on network
 JMP RECEIVEMSG ; Receive msg from ntwk
 JMP NTWRKERROR ; Network error
 JMP NTWRKWBOOT ; Network warm boot

Listing 4-1. SNIOS Jump Vector

Each jump address corresponds to a subroutine that performs the specific function. The exact responsibilities

of each entry point subroutine are given below.

NETWORKINIT
This SNIOS entry point is called when control is transferred to the NDOS initialization entry point after
being loaded by the CPNETLDR. This subroutine performs any required network interface
initialization. Initialization includes reading back-panel switches, or some other suitable source, to
obtain the requester processor ID for the configuration table. If initializing messages must be sent out
over the network, send them from this routine.

NETWORKSTS
This subroutine returns a single byte in register A and determines the status of the network interface.
The error bits snderr and rcverr are reset when the call is made. The format of the network status byte is
shown in Figure 4-2.

+---+---+---+---+---+---+---+---+
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
+---+---+---+---+---+---+---+---+
 ^ ^ ^ ^
 | | | |
 | | | +-- snderr
 | | +-- rcverr
 | +-- ctrlps
 +-- active

Figure 4-2. Network Status Byte Format

• active = 1 if requester logged in
• ctrlps = 1 if control P is active
• rcverr = 1 if error in received message
• snderr = 1 if error in sending a message

CONFIGTBLADR
This subroutine returns the requester configuration table address in the HL register pair. The requester
configuration table is described in section 4.2.2.

SENDMSG
This subroutine enables messages to be sent from one processor to another via the network. The passed
parameter, in registers BC, is a pointer to the message. Control is not returned from this procedure until
the message has been sent. Thus, the message pointed to by the BC register pair can be modified
immediately upon return. The return code, in register A, has a value of 0 indicating success or 0FFH
indicating failure to access the network.

RECEIVEMSG
Messages are received from another processor through the network with this subroutine. The passed
parameter, in registers BC, is a pointer to a message buffer. Control is not returned from this procedure
until the message has been received and placed into the message buffer. Thus, the message in the buffer
is valid immediately upon return. The return code, in register A, has a value of 0 indicating success or
0FFH indicating failure to access the network.

NTWRKERROR
When network errors are encountered, this procedure is called. Any required network interface device
reinitialization should be performed. In typical SNIOS implementations, executing a return from the
NTWRKERROR procedure results in a retry. If a retry is not wanted, an appropriate message is
displayed on the console, and a warm boot is performed.

NTWRKWBOOT
This SNIOS procedure is called each time the NDOS reloads the CCP. The sample SNIOS in Appendix
E displays a

<Warm Boot>

message on the console only as a demonstration of NTWRKWBOOT. More practical applications of
this procedure include interrogating the CP/NET server for messages. In this way, each time a warm
boot is performed, the user is notified of messages posted for him.

4.2.2 Requester Configuration Table

The configuration table that resides in the CP/NET requester's SNIOS allows reassignment of logical devices
to networked servers. The configuration table creates a mapping of logical to physical devices that can be
altered during CP/NET processing. The configuration table specifies the system I/O to be accessed through
the network.

The requester configuration table is defined in Table 4-1.

Offset Explanation

000-000 Requester status byte

001-001 CP/NET requester processor ID

002-033
Disk Devices; 16 two-byte pairs, first byte high-order bit on = drive on network, with the
server drive code in the least significant 4 bits; the second byte contains the server processor
ID.

034-035
Console Device; first byte high-order bit on console I/O on network, with the server console
number in the least significant 4 bits; the second byte contains the server processor ID.

036-037
List Device; first byte high-order bit on = list to network, with the server list device number
in the least significant 4 bits; the second byte contains the server processor ID.

038-038 List Device buffer index.

039-043 List Device logical message header: FMT, DID, SID, FNC and SIZ.

044-044 List Device server list device number.

045-172 List Device buffer.

Table 4-1. Requester Configuration Table

4.2.3 Preconfiguring the Configuration Table

In many network systems, there is never any need to modify the device mappings specified through the
NETWORK utility. In such systems, you can preconfigure the device mappings in the configuration table. To
do this, select the devices to be networked and set the high-order bit of the first byte in the entries
corresponding to those devices. Set the remote device to which the local device is to be mapped in the low-
order four bits of the same byte. Finally, set the server ID of the remote device in the second byte of the
entry.

Be careful when preconfiguring devices to servers that might be off line. Some CP/NET functions send
messages to all servers referenced in the configuration table. If one of these servers is not capable of
receiving messages, functions that might subsequently send messages to servers on line can prematurely
abort.

For example, the CCP might issue a free drive function to initialize the server environment for a subsequent
application program. If the previous application had left files open on two on line servers, but a third server
was off line, those files are left open if the free drive message was sent to the off-line server before the on-
line servers. The next application program might damage the files that were inadvertently left open.

You can solve this problem by having the error recovery in the SNIOS remove any networked device that
experiences continuous timeouts, converting it back into a local device. This prevents the NDOS from
making continuous references to the off-line server. A major drawback of this scheme, however, is that an
application might suddenly begin referencing a local device, possibly destroying files on a local disk drive. A
more secure, but less friendly protocol for dealing with off-line servers is to force a warm boot whenever a
network error is encountered.

It is wise to enforce a protocol that prohibits devices from being networked until the server to which they are
assigned is on line. Special utilities can be written to accomplish this by sending a dummy message to every
server to which drives are mapped.

4.2.4 Sending and Receiving Messages Asynchronously

In some networks, a requester might have to receive and retransmit asynchronously a message destined for
another node. For example, consider a loop network, where every node has two network ports. The network
protocol specifies that all messages are sent via port #1, and all messages are received via port #2. If there is
only one server in the network, but more than one requester, all messages must pass through every other
requester, either as they are sent to the server or as the response returns from the server.

If a requester must asynchronously handle a communication channel, it must do so outside of the facilities
provided by the single-tasking CP/M operating system. The communication protocol must be interrupt
driven. An interrupt service routine must at least detect the start of a message; after that, the rest of the
message can be handled sequentially or under control of additional interrupt routines. If a requester cannot
support interrupts, asynchronous handling of messages might be impossible. Neither the application program
nor the NDOS can periodically check for incoming messages.

A mechanism must be provided so that the NDOS, sequentially calling the SNIOS to send a message, does
not collide with the asynchronous transmission of another message. Receiving messages cannot collide
because only one message can come over the network at a time. To accomplish this, consider implementing
the loop network described above.

As a requester's application is running, another node suddenly starts sending a message to it. The requester
must now receive the message, verify its correctness, and retransmit it to another node. All of these
operations must be performed without damaging the local application program. If the data-link routines do
not make CP/M system calls and do not modify the message buffers used by the NDOS, the entire message
can be received and transmitted transparently. When this operation is finished, the interrupt service routine
returns to the application program, and processing continues. When the NDOS needs to use the network, the
same data-link routines that handled the asynchronous message can be used to handle the sequential one.

It is even possible to transmit a message from the NDOS while receiving a message from some other node.
To do this, the message must be able to be received a piece at a time, giving both the send and receive
routines enough processor time to avoid timing out. Such a system requires a mechanism for preventing both
the NDOS and the interrupt service routine from attempting simultaneous transmission. A semaphore
variable can be used to control the system.

Figure 4-3 outlines a possible protocol for such a system. Both the SNIOS SENDMSG routine and the
asynchronous receive interrupt service routine access a piece of reentrant code to control access to the
message transmission system.

Three external events drive the system:

• The NDOS can request to send a message.

• The NDOS can request to receive a message.
• A message, unbidden, can cause an interrupt so that it can be received.

In this implementation, the message sending software is interrupt driven, started by enabling a transmitter
interrupt. The message sending software can also operate sequentially, called by the reentrant routine that
controls its use.

Figure 4-3. Algorithm for Interrupt-driven Requester Node that Stores and Forwards Messages

4.2.5 Generating and Debugging a Custom SNIOS

Follow these steps to generate and debug a custom SNIOS.

1. Prepare the SNIOS.SPR file, as shown below:

 A>RMAC SNIOS
 A>LINK SNIOS[OS]

The output of the linker is the SNIOS.SPR file.

If you do not use RMAC and LINK-80 use ASM, PIP, and GENMOD, as shown below:

Assemble with ORG 0000H.

 A>ASM SNIOS
 A>REN SNIOS0.HEX=SNIOS.HEX

Edit the SNIOS.ASM ORG statement. Assemble with ORG 0100H.

 A>ASM SNIOS
 A>REN SNIOS1.HEX=SNIOS.HEX

Concatenate the HEX files.

 A>PIP SNIOS.HEX=SNIOS0.HEX,SNIOS1.HEX

Generate the SNIOS.SPR file.

 A>GENMOD SNIOS.HEX SNIOS.SPR

The GENMOD program uses the difference in code origins to produce a bit map of addresses to be
relocated. GENMOD then places this bit map at the end of a copy of the origin 0 code and constructs
a 256-byte header to create an SPR file.

2. Copy the following files to the requester:

• CPNETLDR.COM = Loads CP/NET (NDOS.SPR and SNIOS.SPR)
• CPNETSTS.COM = Displays status of the system I/O
• NETWORK.COM = Redirects I/O from local to network
• LOCAL.COM = Redirects I/O from network to local
• DSKRESET.COM = Resets specified logical drives
• LOGIN.COM = Logs on to server
• LOGOFF.COM = Logs off from server
• MAIL.COM = Electronic mail utility
• NDOS.SPR = Network Disk Operating System
• SNIOS.SPR = Previously Customized Slave Network I/O System
• CCP.SPR = Console Command Processor

you can use DDT to debug the SNIOS as follows:

 A>DDT CPNETLDR.COM
 *IB

 *s103
 0103 07 xx
 *g

where xx is the restart the debugger uses, usually 7.

At this point, CP/NET loads, displaying the memory map, and then breaks at the specified restart.
You can place breakpoints at desired locations, and then issue a G command specifying the address
following the restart instruction where the CPNETLDR broke.

Communications software is difficult to debug. Because of its real-time nature, when the program is
interrupted to find out what is going on, the other side of the network overruns or times out. These pointers
might help you:

• Before debugging, disable any timeout logic in both the SNIOS and the NETWRKIF. This allows one
node to be examined without causing errors on the other node. The SNIOS example in Appendix E
accomplishes this with a conditional assembly switch called ALWAYS$RETRY.

• Never set a breakpoint in the SNIOS without setting a corresponding breakpoint in the NETWRKIF.
• Write a simulation module that mimics how you think the NETWRKIF should behave in response to

the actions the SNIOS takes to send a message. Disable the actual network transmission until the
SNIOS can successfully send messages to and from the simulation. Gather copious statistics because
when you finally transmit over a real network link the simulation and the real NETWRKIF probably
will not correspond. The statistics can help point up what was wrong with the simulation, the
NETWRKIF, or both.

• Carefully verify any communications handshakes between the two nodes. You can do this by stepping
through the code of both nodes simultaneously, using debuggers. Discover which data link operations
can be performed while the other node is halted or disabled. Quite often, making a mistake in your
debugging session points up holes in your protocol design. Once you have the protocol working with
this method, have someone step one node while you step the other. Do not coordinate the actions of
the two debuggers. If your protocol works without conscious synchronizing, try running it full speed.

• If possible, write one data-link module for both the SNIOS NETWRKIF, then interface them to the
appropriate module. This enhances the uniformity of the protocol, making it easier to debug.

4.3 Customizing the Server

This section addresses the problems of designing and implementing an efficient CP/NET server under the
MP/M II operating system. Because a CP/NET server must be capable of handling several simultaneous
requests in real-time, the Network Interface module (NETWRKIF) must take full advantage of the real-time
primitives of MP/M II.

The server's logical module, SERVER.RSP, consists of a set of processes, one for each requester supported.
This section also discusses how the NETWRKIF sends and receives messages to and from those processes.

Finally, this section explains the system generation options available to the server implementer once the
NETWRKIF has been implemented.

4.3.1 Detecting and Receiving Incoming Messages

The server is a passive, asynchronous system; it does not initiate CP/NET transactions. The server performs
two distinct functions:

1. The server must detect an incoming message and initialize the communications software to receive.

2. The server must actually receive the message.

The server detects incoming messages in two ways. The first is polling, where the server periodically checks
the status of the network interface. If the status changes from an idle to a ready state, the server receives a
message. The second method relies on the network interface's interrupting the server. The server then
transfers control to a service routine that receives the message. Either of these methods can accomplish the
two functions listed above. Both methods have advantages and drawbacks.

Polling the Server
Polling is a more active method, requiring more processing overhead. If the server has a fairly heavy,
continuous load of network traffic, then the status of the poll operation often indicates that a message is
to be received. In this kind of system, polling has a marked advantage: the server can immediately
begin receiving the message without switching contexts. But if the network traffic is subject to bursts
of data mixed with periods of traffic, then the extra overhead of interrogating the network interface is
inefficient.

Interrupting the Server
Interrupt driven operation is excellent for communication that occurs in bursts because no overhead is
required when no communication is taking place. But very high network loads cause the server to
waste a great deal of time saving the state of the process currently executing when the interrupt
occurred.

Once a message has been initiated, it can be received under interrupt control, where data is processed
on demand as it comes in, or under direct program control, where a process is dedicated to monitoring
the incoming message. The most efficient choice depends on the type of network being used and the
amount of traffic the network must handle.

In an interrupt driven communication scheme, the server responds to network events asynchronously.
The network interface determines when data is processed by the host CPU. For example, when the
network interface presents characters to the host, each character causes an interrupt. When the network
interface performs direct memory access to transfer blocks of data, only each complete DMA transfer
causes an interrupt. Depending on the protocol, each interrupt causes a specific action to be performed.
The CPU is free, however, to process other tasks in between processing each piece of data. Like
interrupt-driven message detection, saving the state of an interrupted process requires CPU overhead.
The greater the number of interrupts required to process a message, the more system performance is
degraded.

Overruns
One of the greatest problems of an interrupt-driven communications scheme develops when the
interrupts occur faster than the CPU can service them. This condition is known as an overrun, and it
can cause data to be lost. When an overrun occurs, the message appears to be garbled, and the sender
must retransmit it. If overruns occur only when the host is extremely busy, it might be more efficient to
accept the occasional garbled message in exchange for better overall response. If the number of
overruns is too high, however, serious system degradation sets in. Many protocols prevent overruns by
allowing the receiver to signal the sender that data is Coming in too fast.

Disabling Interrupts
The other approach to message processing uses MP/M II's facility to control processes. Unlike an
interrupt service routine, which is largely transparent to MP/M II, a process is a logically complete
task. Using a process-oriented protocol, you can eliminate the overrun problem by disabling interrupts
while the message is being received. Disabling interrupts gives the communication program exclusive
control of the CPU, so all other processing comes to a halt. If messages are fairly short, however, this
method might be preferable to an interrupt-driven scheme, because no overhead is incurred by
switching back and forth between a process and an interrupt service routine continually.

Selecting a Protocol
The actual data-link protocol used to process messages has not been discussed. Consider the selection

of a protocol when designing how the server is going to respond to incoming messages. For example,
in a CP/NET system where loosely coupled processors are communicating over a high-speed bus with
little or no error checking, DMA transfer of data can be efficiently interrupt driven. But complex cyclic
redundancy checks that involve extensive arithmetic operations require careful design in an interrupt-
driven system, or overruns might result. Such a protocol might be better implemented using a process-
oriented system.

4.3.2 NETWRKIF Module Architecture

Section 4.3.1 discusses general strategies for implementing a data-link layer protocol under MP/M II. This
section deals with integrating the data-link layer into a network and transport layer. This integration allows
the entire communications package to send logical requester messages to the SERVER.RSP module, and
then receive the SERVER's response message for transmission back to the requester.

A dedicated server process is associated with each requester logged on to a server node. These processes are
named SERVR<x>PR where <x> is an ASCII character between 0 and 9 or A and F. This character is a
sequence number that serves as a unique identifier for the server process. Each server opens two queues that
it expects the NETWRKIF module to have created. They are named NtwrkQI<x> and NtwrkQO<x>
where <x> is the same character as the server's sequence number. The server process always reads the
address of incoming messages from NtwrkQI<x>, and it always writes the address of the response message
to NtwrkQO<x>.

This is the basic interface between the SERVER.RSP module supplied by Digital Research and the user-
customized communications software. However, there are a variety of ways to implement the processes
driving the interface.

Appendix E includes an example of the simplest NETWRKIF architecture. In this architecture, one network
interface process is associated with each server. All processes execute the same reentrant code, but each
process maintains local data that identifies the communications port it is using and the sets of queues through
which it interfaces to the server process. This implementation handles its data-link software at the process
level. It uses polled console I/O functions in the XIOS to detect incoming messages. This architecture is
illustrated in Figure 4-4.

Figure 4-4. Server Architecture w/Reentrant NETWRKIF Processes

Another possible NETWRKIF architecture has only two network interface processes. An input process
receives data from the network, identifies the requester that sent the message, and writes the message to the
appropriate queue. An output process conditionally reads all the output queues and sends any messages it
finds back out over the network.

It is also possible to force all the server processes to write their messages to a single queue by patching
SERVER.RSP. In this case, the output network interface process reads the single output queue. When a
message is written to it, the output process sends the message out across the network and goes back to read
the queue again. An application note details how to patch SERVER.RSP. Figure 4-5 illustrates both
strategies. Note that a small patch to the SERVR<x>PR processes can consolidate the output queues.

Figure 4-5. Two-process NETWRKIF

You can design a single NETWRKIF process that receives a message, writes it to the appropriate queue, then
checks for any output activity. If NETWRKIF finds a message to send, it sends it, then it returns to checking
for input. This kind of process has the disadvantage of being constantly busy; there is no point at which it can
allow itself to become blocked. To do so might result in a deadlock or serious performance degradation.

Consider the network topology when designing the NETWRKIF architecture. For example, a NETWRKIF
that uses one process per requester is suitable in an active hub-star configuration, where a unique network
line is dedicated to each requester. This allows several messages to arrive at the server simultaneously.

For a multidrop topology, however, a single output and single input process NETWRKIF might be more
suitable, because the network. hardware guarantees that only one message is active on the network at any one
time. The same type of architecture could be applied to a loop topology.

For an active hub-star network that services several multidrop lines, it might be necessary to combine the two
architectures, so that several reentrant processes are routing input to the server processes, while a set of
output processes are collecting data from output queues and sending it back out of the appropriate multidrop
line.

Also consider what the NETWRKIF does when it has no traffic to process. If the NETWRKIF loops madly
while waiting, it will gobble up precious CPU resources, degrading the overall performance of the server
system. On the other hand, the NETWRKIF must be able to respond to traffic quickly.

A number of MP/M II system calls cause a process to become blocked, so that the operating system
dispatcher does not pass control back to the process until a critical condition is fulfilled. Reading an empty
queue, waiting on a flag, and performing a poll call are three of the most common ways to suspend the
execution of a process conditionally. Such quiescent points should be built into all NETWRKIF systems to
minimize the overhead of maintaining the process when it is idle.

The processes driving the input and output queues constitute one half of a message transport layer. The
NETWRKIF must also deal with how the raw message is received from the data-link and network layers that
are performing the actual communication control. This interface is governed by how the data-link and
network layer software is implemented.

Consider an architecture that has little or no network layer, so that the data-link software interfaces directly
with the transport processes. If the data-link is included in the processes that are also performing the queuing
functions, then no special interface is needed. The process can pass control from one function to another, first
performing input data-link and network activities to receive a message; then computing the routing to the
appropriate server input queue; then reading the response from an output queue; and finally returning to the
data-link level to send the response back to the requester. The sequence can be repeated indefinitely.

Some implementations require the data-link and network layers to be under process control, with a separate
set of processes controlling the transport layer. In these cases, the transport processes can use queuing for
both the low-level interface to the data-link layer and the upward interface to the server processes.

This kind of architecture has the drawback of slowing down the MP/M II dispatcher with extra queuing
overhead. For a small number of processes, however, the impact is slight. The architecture has the advantage
of being highly modular, facilitating the future upgrade of the data-link and network layers or the transport
layers. Figure 4-6 details the architecture.

Figure 4-6. A Single Transport Process Interfacing to Low-level Data-link Processes

To implement some network interfaces, it is necessary to modify the MP/M II XIOS. Interrupt service
routines must access the system interrupt vector, which is usually maintained by the XIOS. If an interface

routine requires polling, the routine to accomplish the polling must be placed on the list maintained by the
XIOS POLLDEVICE routine.

Interfacing to data-link and network routines that reside in the XIOS is slightly more complex than
interfacing to routines contained in the NETWRKIF. These routines are often not processes, but shared code
fragments or interrupt service routines. They cannot use queues as an interface mechanism. Routines that are
not process-oriented must communicate through a direct function linkage, through polling, or through the
Flag Set/Flag Wait functions supported by MP/M II.

Because the NETWRKIF might not be able to resolve references to such routines directly, it is often
necessary to enter the XIOS through its jump vector. The XIOS jump vector table is always page aligned; a
pointer to that page is located in byte 7 of the MP/M II system data page - From this point, data-link routines
can be called by specifying dummy console I/O or dummy list device I/O.

If dummy console or printer I/O is used, the NETWRKIF loads a non-existent device number in register D
and, if necessary, a pointer to a message buffer. The I/O routine specified checks for the non-existent device
number and dispatches the call to the appropriate network routine.

Figure 4-7 illustrates how the NETWRKIF module can perform calls to subroutines resident in the XIOS.

Figure 4-7. Directly Interfacing the NETVRKIF to XIOS Routines

Another method of interfacing data-link and network layer routines to a transport NETWRKIF is to have the
low-level routines set a flag when a message has been processed. For example, consider a data-link routine
that reads in an incoming message and checks it for validity. This routine might be a set of vectored interrupt
service routines.

At this point, the NETWRKIF is not synchronized with the data link routine. When the NETWRKIF requires
a message, it issues a flag-wait call to MP/M II. When the data-link routine has a complete message, it issues
a flag set call. The NETWRKIF does not proceed until the flag has been set. The NETWRKIF can then
transfer the message from a predefined buffer and transport it to the appropriate server process.

This type of architecture is ideal for allowing intelligent network controllers to drive the NETWRKIF
transport processes. A simple interrupt service routine locates the message, builds a control block, and sets a
flag to inform the NETWRKIF of the status and location of the message. Figure 4-8 shows a similar
interface.

Figure 4-8. Synchronizing Data-link Activity Using Flags

To send a response message back to a requester using flags, the transport process must first identify the
message to be sent and instruct the data-link layer to send it. A predefined control block can accomplish both
operations. The transport process then waits on a flag until the message is sent and the flag set by the data-
link.

Another possible synchronization mechanism is through the MP/M II Poll function. With this function,
MP/M II suspends the calling NETWRKIF process but periodically interrogates the status of the data-link
and network software through a small code fragment defined in the XIOS POLLDEVICE routine. When the
status becomes true, MP/M II allows the NETWRKIF process to proceed.

If the server system supports vectored interrupts, and the location of the system's interrupt vector is known,
you can write interrupt service routines that reside inside the NETWRKIF module. When the NETWRKIF
performs its initialization, it simply writes the addresses of various interrupt service routines into the vector.
From then on, any reference to those vector locations results in the execution of the NETWRKIF's ISRs.

This approach preserves system modularity and allows the network implementer to implement low-level
routines when the XIOS itself is not available for modification. This approach still requires a synchronization
mechanism between code fragments that are not part of any process and the more well-defined transport
processes of the NETWRKIF.

In addition to synchronizing with low-level communications software, NETWRKIF processes might have to
compete for data-link resources. For example, a transport process that wants to send a message might have to
be suspended while another process is busy receiving a message. Or two reentrant processes might try to
send a message out across the same network line simultaneously. These conflicts can be resolved through use
of mutual exclusion (MX) queues.

An MX queue contains only one dummy message, called a token. In order to control a resource, a process
must first acquire the token, leaving the MX queue empty. If another process already has the token, the first
process is suspended until the second completes its resource-critical operation and replaces the token.

In this way, two low-level data-link routines--one for sending and one for receiving--can be driven without
collisions by their higher-level transport processes, even if the low level routines have no explicit mechanism
for sharing a network resource.

Just as the design of the network topology and error recovery schemes for CP/NET must be examined for
potential deadlocks, so must the server architecture itself. A simple example of a deadlock is a process that
competes for a resource using an MX queue but never restores the token to the queue when it is finished with

the resource. All the other processes waiting for the resource come to a grinding halt, the network becomes
congested, and eventually everything stops.

Finally, you can design an architecture that distinctly divides the data-link, network, and transport layers. The
preceding synchronization strategies can be generalized to work across several layers just as easily as they
can work when the server architecture divides the communications software into low-level and high-level
segments. Remember that as the architecture grows more and more complex, performance of the MP/M II
dispatcher and nucleus software degrade further and further. It is always wise to keep the architecture as
simple as possible.

4.3.3 Elements of the NETWRKIF

This section defines the data objects and processing required to allow the server to be initialized and to
operate smoothly and continuously. Through these objects, you define how many requesters a server can
handle at once and how many messages can be simultaneously processed.

The following objects must be present to create the NETWRKIF.RSP module:

• XDOS entry point
• Transport Process Process Descriptors
• Transport Process Stacks
• Queue control blocks (QCBs) for the interface between the NETWRKIF and the server processes
• User queue control blocks (UQCBs) to allow the NETWRKIF to access the queues
• Message buffers
• The server configuration table
• Stack space for additional server processes, if more than one requester is to be serviced at a time
• Areas allocated to contain more server Process Descriptors, if more than one requester is to be

serviced at a time
• Network initialization code
• Data-link interface code
• Message validity checking and reformatting
• Server process interface code

XDOS Entry Point
All resident system processes (RSPs) require a linkage to MP/M II's XDOS entry point because the
Command Line Interpreter does not prepare an execution environment for them. This linkage is always
the first two bytes of the module. When the implementer runs the MP/M II GENSYS utility to include
the server modules into the operating system, GENSYS automatically fills in these two bytes with a
pointer to the XDOS entry point. This allows the execution of MP/M II system functions within the
body of the RSP by setting up the function parameters, loading this pointer, and dispatching.

NETWRKIF Process Descriptors
Immediately following this pointer, MP/M II expects to see a Process Descriptor. It automatically
creates and executes the process to which the Descriptor refers. In the case of the NETWRKIF, this
Process Descriptor controls the execution of one of the server transport processes. These processes
perform the queue read and write operations to move messages into and out of the server processes.
The first process must also be responsible for server and network initialization and for creating any
additional transport processes.

Process Descriptors for additional transport processes must also be included, if the processes are
necessary. These processes can be automatically created by linking them to the first Process Descriptor.
Linking is accomplished by placing a pointer to the second Process Descriptor in the PL field of the
first Process Descriptor, a pointer to the third in the PL field of the second, and so on. The chain of

links terminates with a zero in the PL field of the last Process Descriptor to be created.

If you choose to have processes automatically created, remember that once processes are created, they
are completely independent unless they are explicitly synchronized. The processes should not be
dependent upon the first process to perform initialization for them.

Run transport processes at a very high priority, so that messages tie up the communications software
for as little time as possible. The example in Appendix E runs at priority level 64, exactly the same
priority as the server processes. For compute bound NETWRKIF processes, it is advisable to give the
server a slightly higher priority than the NETWRKIF. The implementation in Appendix F, for example,
runs at a priority of 66. This forces MP/M II always to process logical messages first if both the server
and transport processes are ready at the same time.

Each transport process must have its own local stack area. Because RSPs do not have access to the
extra user stack space on system calls, each stack must be capable of supporting the local storage
required by the MP/M II XDOS and XIOS in addition to its own local storage.

When a process is created, its Process Descriptor's STKPTR field should point to the top of its
associated stack. The top of the stack must contain the starting execution address for the process.

Queue Control Blocks
The NETWRKIF module must contain all of the queue control blocks for the entire server system. The
number of QCBs varies depending on how many requesters the server system supports at one time. For
each requester, there must be one input queue, named NtwrkQIO, NtwrkQI1, and so on. There must
also be one output queue per requester, named NtwrkQOO, NtwrkQOI, and so on. These queues must
also be created by the NETWRKIF module.

You can patch the server process code so that all processes open the same output queue, NtwrkQOO. If
this patch is applied, the NETWRKIF need only include the one output QCB. The NETWRKIF
examples in Appendixes F and G use this method.

The input and output queues communicate the address of the message buffer containing the message to
be processed by the server or the response to be sent back to the requester. Because the message passed
through the queue is only two bytes long, circular queues can be used. Both input and output queues
need only buffer one message at a time because a requester must have always received a response
before sending another request. Consequently, there is never more than one message from a given
requester at the server at a time.

A queue capable of buffering more than one message is required only when the server processes have
been patched to write all of their responses to a single queue. In this case, the queue must be capable of
buffering the output from all of the servers simultaneously.

User Queue Control Blocks
Transport processes must read and write queues using user queue control blocks. These data structures
contain a pointer to the appropriate QCB and a pointer to the message to be written. The queue passes
only the addresses of message buffers rather than the message buffers themselves. The address of the
message buffer to be accessed must be written to a location in memory, and a pointer to that location
must be loaded into the appropriate UQCB.

If the UQCB can resolve the address of its associated QCB, there is no need for the NETWRKIF to
open the queue using MP/M II Function 135 once the queue has been created. A pointer to the QCB
can be placed in the UQCB at link time, instead. If, however, the QCB address cannot be resolved, an
open queue operation must be performed. This might be the case if the system implementer breaks the
NETWRKIF module into an RSP and a Banked Resident System Process (BRS).

Message Buffers

The message buffers must each be at lease 262 bytes long, 5 bytes for the CP/NET header information,
and 257 bytes for the actual CP/NET message. Even though the longest CP/NET message is only 256
bytes long, the extra byte is required because the server processes use the message buffer they are
passed as a temporary scratch area.

If the data-link and network layers require additional header information, the message buffers must be
even longer. If the message format used by the network is different from that used by CP/NET, the
message must be converted into the standard CP/NET format before it is passed to the server process.
The server process expects a one-byte format code of 0, a one-byte destination code equal to the server
ID, a one-byte source code, a one-byte function code, a one-byte size code, and a contiguous message
in binary format. The server returns an error for any deviation from this format.

A server process always returns its response to a requester in the same message buffer that it is passed.
Consequently, no transport process should modify a message in between the time that its address is
written to NtwrkQI<x> and the time that its address is read back from NtwrkQO<x>. To do so can
cause the server to crash.

It is not always necessary to have one buffer for every server process in the server system. Fewer
buffers can be provided if the network implementer limits the number of transactions that can occur
simultaneously. It is important to recognize the distinction between the number of requesters supported
(the number of sessions that can be ongoing at any one time) and the number of simultaneous
transactions supported (the number of messages the server can process at any one time).

Because many server processes can be idle, the number of transactions can be much lower than the
number of requesters. Limiting the number of transactions can sometimes drastically improve the
performance of a CP/NET server because it reduces the amount of time the operating system switches
from process to process trying to service a number of file-oriented requests simultaneously.

The Server Configuration Table
The server process must interface directly with a set of objects within the NETWRKIF to perform its
own initialization, maintain its own reentrant processes, and perform validity checking on its incoming
messages. These three sets of objects are the server configuration table, server Process Descriptor
areas, and server process stacks.

The server configuration table is defined in Table 4-2.

Offset Explanation

00-00
Server status byte. The communications software can use this byte to signal the current state of
the network. This byte has no fixed function, however.

01-01

Server processor ID. The server processes compare this field against the destination ID field of
all incoming messages. An error is returned if they do not match. A server ID of FF hex is
illegal. Requester utility programs use a default server ID of 0, so a CP/NET network
containing only one server identifies it as node 0, for convenience.

02-02 Maximum number of requesters supported at once. Up to 16 requesters can be supported.

03-03 Number of requesters currently logged in. This field is incremented by a server process when a
login takes place and decremented when a logoff takes place. Logins return an error if the
maximum equals the number currently logged in.

04-05

Log-in vector. Each bit of this field indicates whether the corresponding requester ID table
entry is valid and refers to a logged-in requester. When a successful login takes place, a bit is
set in this vector and the corresponding table entry is updated. When a logoff occurs, the table
is searched and the corresponding bit is reset.

Offset Explanation

06-21
Requester ID table. When a requester is successfully logged in, a server process locates an
empty slot by checking the log-in vector, marks the slot as used, and then writes the source ID
of the log-in message into this table, using the bit vector position as an index.

22-29
Log-in password. The password sent in the log in message must match this password, or the
login fails, and an error is returned.

Table 4-2. Server Configuration Table

Just as the requester configuration table can be preconfigured to map certain devices as networked, the
server configuration table can be preconfigured to define certain requesters as logged in without
performing a login operation.

To do this, set the current number of logged-in requesters to the number of predefined logins desired.
Make sure the number is less than the maximum number of requesters permitted. Otherwise, the
server's behavior becomes unpredictable.

The log-in vector should have a bit set for every requester to be prelogged in, and the requester ID table
should contain the logged-in requesters. For example, for a five-requester server where requesters 1, 2,
and 5 are defined as already logged in, the server configuration table might look like this:

configtbl: db 0 ; server status
 db 0 ; server ID
 db 5 ; max number of requesters
 db 3 ; currently logged in
 dw 8009h ; log-in vector
 db 1 ; requester ID table
 ds 2
 db 2
 ds 11
 db 5
 db 'WUGGA' ; password

The requester ID table is position independent. When a server process checks to see if a requester is
logged in, it searches the entire requester table, using the entire log-in vector to check the entries for
validity. Consequently, the configuration table is not sufficient to specify the process to which an
incoming message should be routed.

The transport software must maintain its own routing mechanism. For example, the NETWRKIF in
Appendix E maintains its routing implicitly as local data in its reentrant processes. The example in
Appendix F, on the other hand, relies on a requester control block that associates a source ID number
with a UQCB.

Descriptors and Stacks
The module SERVER.RSP contains only one Process Descriptor and stack area. It is consequently
initialized as only one process. SERVER.RSP must have some way of creating additional copies of
itself. To do this, SERVER.RSP must know how many copies to create, and where to put the additional
Process Descriptors and stacks.

By convention, the NETWRKIF process writes the address of the server configuration table into
location offset 0009 in the system data page. The SERVER module uses this address to locate the
maximum number of requesters from the configuration table. It then creates the maximum number, less

one, of processes. To locate storage to create the additional processes, the SERVER module expects to
find stack areas for the extra processes directly following the configuration table.

Server process stacks must be exactly 150 bytes long, and there Must be one stack for each additional
server. For example, to support a total of five servers, 4*150 = 600 bytes of storage must he allocated
after the configuration table.

The server expects the top of each additional server stack to contain a pointer to a 52-byte data area in
which to create the new Process Descriptor. All of the Process Descriptor data areas must be
contiguous.

Here is an example of the structure required for a four requester server:

server$pds: ds (4-1)*52 ;server Process Descriptors

; (other data or code can be defined here)

configtbl: ds 30 ;configuration table allocation
srvr$stkl: ds 148 ;second server stack area
 dw server$pds
 ds 148 ;third server stack area
 dw server$pds+52
 ds 148 ;fourth server stack area
 dw server$pds+104
Listing 4-2. Stack and Process Descriptor Allocation for a Four-requester
Server

NETWRKIF Execution Requirements
The initialization code must perform the following actions:

• Initialize the network hardware, or cause lower-level routines to initialize it.
• Via MP/M II Function 134, make all input and output queues required to run the server.
• Write the address of the configuration table into the system data page.

These initialization functions need not be performed by a single process; they can be distributed among
a variety of processes and interrupt service routines. The address of the configuration table should be
written to the system data page with interrupts disabled. This prevents the server from loading an
incorrect partial address and making its process-creation decisions on invalid data.

Figure 4-9 shows a memory map, detailing how the SERVER.RSP and NETWRKIF.RSP modules fit
into the rest of MP/M II, and how they communicate with one another during initialization.

Figure 4-9. A Typical Server Memory Map

Most of the other NETWRKIF run-time functions are discussed in previous sections. The general form
of the NETWRKIF is the following:

1. Allocate a message buffer and receive a message. Check the message for data-link or network
errors.

2. Reformat the message, if necessary, into the standard CP/NET format.
3. Compute the server process to which the message should be routed.
4. Write the message to the server's input queue.
5. Read the response from the server's output queue.

6. Send the response back to the requester, and free the buffer.
7. Repeat this process indefinitely.

4.3.4 Enhancements and Additions to the NETWRKIF

This section deals with extensions to the basic elements required to allow a CP/NET server to run under
MP/M II. These extensions can increase the capabilities and improve the performance of the basic system.

Network Initialization and Maintenance
The network interface initialization can do much more than get the server processes ready to run. In
addition to passing information about the network environment to the server and physical device
initialization, the NETWRKIF can interrogate the network environment to identify other nodes in the
system, their status, and their resources.

For example, the NETWRKIF network layer software might send out special packets to discover on-
line nodes. When other NETWRKIFs and SNIOSs detect these packets, they respond with special
routing packets of their own. If these routing messages are carefully designed, each node can build a
table of routes to various nodes and mark other nodes as inaccessible.

Once the network has been initialized, a special network communications process intermittently
circulates the routing packets. This circulation keeps the network routing information current as nodes
go on and off line.

Nodes can be interrogated to identify their system resources for networking. For example, when a
process similar to the routing process just described detects the existence of a node, it logs in to the
node and sends out a series of dummy select disk messages. According to the error conditions returned,
the process can identify the disk drives the node has available. This can also be accomplished by
having a network-layer process issue its own select disk calls in response to receiving a special
message.

In implementing these schemes, make sure these special messages do not interfere with regular
CP/NET traffic. Some provisions are required to ensure that requests are not made to requesters that
ignore the requests or mistake them for legitimate responses to previous requests. You might have to
modify the SNIOS to allow it to deal with these strange messages.

Error Handling with Timeouts
Although the transport layer software of a CP/NET system is probably extremely reliable, and the
possibility of garbled messages can be ignored, network data-link errors are likely in the long run.
Section 3.2.2 includes a general discussion of error handling. This section details a specific error-
handling implementation, using timeouts.

Once the data-link software sends a message, it waits for an acknowledgment that the message was
received. If no acknowledgment arrives, a timeout is triggered and the message is retransmitted.

You can implement a watchdog timeout mechanism as an interrupt service routine or as a process.
When the transport process requests transmission from the data-link software, the process initializes a
timeout variable and then waits on a flag. If the watchdog routine is implemented as an interrupt
service routine (ISR), it decrements the timeout variable as a multiple of the clock interrupt frequency.
If the watchdog routine is implemented as an extremely high priority process, it simply decrements the
variable and then executes the MP/M II delay function for a fixed number of cycles.

With either method, a timeout status and the flag on which the transport process is waiting are set if the
timeout variable is decremented to zero. At the same time, the data-link software sets the same flag and
a transmission success status if it receives an acknowledgment.

When the transport process resumes processing after the flag wait operation, it checks the status
variable to see which event occurred first. If the transmission timed out, the process attempts to
retransmit. If the transmission succeeded, the transport process Continues.

There are many variations to this method. The preceding one assumes that the message is transmitted
with no handshake or initial signal to the receiver that a message is about to follow. If a handshake is
implemented, it might require a timeout of its own. Several timeout points might have to be set
throughout a single message, depending on how the receiver intends to acknowledge that message.

Other error conditions can occur; they can be integrated into the error-handling structure described
above. For example, the receiver can transmit a negative acknowledgment, indicating that the message
was received but that it was garbled. In this case, the data-link software need only set the same event
flag, but instead of setting a message received status, it sets a transmit error variable. The transport
process must now differentiate between three statuses rather than two when it resumes execution, but
the overall structure is the same. The architecture required to implement timeouts is shown in Figure 4-
10.

Figure 4-10. Implementing Timeouts with Flags

Store-and-Forward Networks
In some networks, the NETWRKIF can receive a message destined for another node that the sender
could not reach directly. For these networks, implement network layer software to check the ultimate
destination and send the message out along some other network line. These NETWRKIFs might need
some of the following features.

The NETWRKIF might need more message buffers than there are supported requesters. Some
messages are actually destined for the server processes resident on the current node, but a potentially
high volume of the messages might be headed elsewhere.

The NETWRKIF must have a mechanism for receiving a message and then immediately sending it
elsewhere without an intervening Queue Write-Queue Read operation. You can facilitate this type of
operation by making the NETWRKIF software highly modular. It is advisable to have both network
layer processes and transport layer processes, in addition to the data-link implementation you use. This
gives the network layer process exclusive control of the data link layer, simplifying interprocess

competition for the data-link resource.

Finally, the network software must have a method of knowing which nodes can be reached through
which network lines. This method can be a static, predefined table or a dynamic message-passing
scheme like the one described in the preceding "Network Initialization and Maintenance" section.

Dynamic Login Handling
A CP/NET server under MP/M II can handle 16 requesters at a time. Many more physical requester
nodes might want to access the server. The source ID byte in the standard CP/NET message allows up
to 255 nodes. Theoretically, 254 requesters can be waiting to access one server.

Obviously, it would be useful to have a method whereby a server process can be reused by another
requester after its previous owner has logged off, Unfortunately, the information contained in the server
configuration table is not sufficient to identify which specific server processes are free and which are in
use.

To solve this problem, define one requester control block (RCB) for each requester to be
simultaneously supported by the server. The RCB is defined in Table 4-3.

Offset Explanation

00-00 Requester ID, If the control block is not in use, this field is set to FF hex.

01-03 Pointer to a particular server's input QCB.

04-05 A predefined pointer to byte 6 of this RCB.

06-07
A buffer that contains the address of the received message to be handled by this server
process.

Table 4-3. Requester Control Block

Notice that this control block is a requester ID that can be matched with an incoming source ID,
followed by a user queue control block. With this simple data structure, servers can be dynamically
allocated to requesters with the following algorithm:

1. Receive a message.
2. Scan the RCBs for a match between the source ID of the message and the requester ID field of

the RCB.
3. If a match is found, write the message buffer address into the RCB's message buffer address

field in bytes 6 and 7. Then write to the queue, using the RCB's internal UQCB.
4. If a match is not found, but the scan reveals a free RCB (indicated by a requester ID field of FF)

, and the incoming message is a login, then flag the RCB in use by writing the message's source
ID into the RCB; update the message buffer address field; and write to the queue.

5. If a match is not found and the message is not a login, send a message back to the requester with
extended error 12, requester not logged in.

6. If a match is not found, and there are no free RCBs, and the message is a login, send a message
back indicating login failed.

7. When a response message is read from the queue and the message is a logoff, then free the
appropriate RCB before sending the message back to the requester.

This algorithm still does not allow more than 16 requesters to be logged in at the same time. But the
algorithm does permit more than 16 requester nodes to compete for access to the server node. When
more than 16 requester nodes log in, they receive login failed messages. These requester nodes cannot
access the server until another requester logs off. In this kind of network it is advisable to implement an

automatic logoff feature for requesters that have not used the network for a fixed period of time.
Handling Special Messages

Special messages exchange network maintenance information between nodes. These messages have
almost unlimited uses. For example, you can define a special message format for a special feature,
high-performance print spooler. Once the format has been implemented, custom application packages
can access it using Function 66 (Send Message on Network).

There are two basic steps to processing special message formats. First, the transport processes must be
able to recognize special message formats and prevent them from entering the server processes.
Second, the transport processes must have an interface to pass the messages off for special processing.

The first step can be accomplished by defining additional codes in the format field of the standard
CP/NET message. When the transport software recognizes a strange format, it takes the appropriate
action. If the message does not contain the standard CP/NET header, the data-link software can
recognize this fact and notify the transport layer.

The problem of what to do with the message once it has been recognized can be solved using the same
methods that are used for transporting messages throughout the more normal portions of the
NETWRKIF. For example, the special print spooler and the transport layer can communicate via a
predefined queue.

Some special formats require a logical response message. Functions 66 and 67 are intentionally exempt
from the standard logical protocol of CP/NET. If a logical acknowledgment is required, then the
transport layer must know how to accept it from the defined interface. Otherwise, the transport layer
can forget that the special message occurred.

Bank-switched NETWRKIF Modules
Because of the size of the SERVER.RSP and NETWRKIF.RSP modules in a CP/NET server, MP/M II
servers usually need more common memory than is available on the server system. Because of this,
CP/NET users can use only one bank of their systems, completely wasting additional banks that might
be used to run auxiliary processes or as additional disk buffer.

However, you can reduce the common memory requirements of an RSP by breaking it into two
modules. One, still named a resident System process, contains only the code and data that must reside
in Common memory to allow MP/M II to work. The rest of the module is reformatted and placed in a
banked resident system process (BRS) that can be banked out when it is not executing, allowing its
address space to be used by another process.

Process Descriptors and queue control blocks are the only sections of the server code that must reside
in common memory. Prepare source module containing the XDOS entry point, all transport Process
Descriptors, area for server Process Descriptors, all the NETWRKQIx QCBs, and all NTWRKQOx
QCBs.

The first NETWRKIF Process Descriptor still must be allocated immediately after the XDOS entry
point for the module, at relative address 0002H. However, this Descriptor's memory segment value
should be 0FFH identifying that a BRS module is associated with it.

If any other processes exist in the NETWRKIF--for example, watchdog timeout processes--their
Process Descriptors must also be included in this module. Assemble this source module and link it into
RSP format. Name the object module <netprocess>.RSP where <netprocess> is the name of the
first Process Descriptor in the module.

Then use the main body of the NETWRKIF source module to form a second source module. Remove
all Process Descriptors and QCBs and place the following header at relative location 0:

rsp$adr: ds 2 ;address of associated RSP
stk$adr: dw stk$top ;top of stack containing entry point
brs$name: db '<netprocess>'

where stk$top is the address of the top of the stack for the first process, and <netprocess> matches the
name of the associated RSP. This is the standard format for a BRS module; it is described in more
detail in the MP/M II Operating System System Guide.

Because the Process Descriptors and queue control blocks are in a completely separate RSP, they
cannot be resolved as simple externals. They must be defined in terms of known offsets from the
beginning of <netprocess>.RSP. At run-time, the variable rsp$adr contains a pointer to the beginning of
this RSP, placed there by MP/M II's GENSYS utility. Using this pointer and the predefined offsets,
required references to these data objects can be resolved.

On startup, the NETWRKIF processes perform the following initialization:

1. Initialize the stack pointer fields in all NETWRKIF Process Descriptors with a pointer to the top
of the stack associated with each process. This is not necessary for the first process because
GENSYS provides the stack pointer linkage via the header data in the BRS.

2. The make queue operations the NETWRKIF requires can be complicated because the QCB
addresses must be resolved. Once they are, however, update the UQCBs associated with them
with those addresses, avoiding the necessity of performing open queue functions.

The NETWRKIF.BRS module requires a different way of referencing the operating system because it
does not contain a pointer to the XDOS entry point. The RSP associated with the BRS module,
however, does contain such a pointer as its first two bytes. The following subroutine performs
operating system calls transparently:

do$os: lhld rsp$adr
 mov a,m
 inx h
 mov h,m
 mov l,a
 pchl

you must also assemble this module and link it into RSP format; but name it <netprocess>.BRS.

Banking out the NETWRKIF module alone might raise the BNKXIOS COMMONBASE entry point
above the hardware bank-select point, allowing banked operation of MP/M II. If banking out the
module does not accommodate this, you can use a patch to convert SERVER.RSP into a banked
module in a similar way. The patch is detailed in CP/NET V1.2 Application Note #2, 11/11/82.

Perform GENSYS with a specified banked system. You can add memory segments to occupy the new
banks. The address ranges of the new memory segments are prompted for at the end of GENSYS.

If the number of requesters to be supported still requires more common memory than is available, there
is no purpose in implementing a banked version of the server.

A banked-out server has a marginally slower response time because the dispatcher must select the
system bank and because of the added level of indirection in calling the operating system. This
degradation, however, is insignificant.

Although banking out the server provides additional user Segments under MP/M II, resist the
temptation to add additional consoles to the system. Because of the extremely high priority at which the
server runs, performance on additional consoles is very poor. However, these extra banks do provide
the user with a means of performing occasional jobs directly from the MP/M II level. more importantly,
extra segments can enhance the server itself by using special CP/NET messages.

4.3.5 MP/M II Performance Factors Affecting the NETWRKIF

The characteristics of the network for which a server is being implemented influence the architecture of the
NETWRKIF and the rest of the server software. Another important factor in designing efficient servers under
MP/M II is the nature of MP/M II itself. This section points out the overhead MP/M II incurs in
implementing multitasking programming environment.

The heart of the MP/M II operating system is its dispatcher. This routine is entered every time a system call
is made. The dispatcher protects system resources, tests for events that could influence the execution of any
process in the system, and finally chooses the processes to execute and their order. The dispatcher takes
roughly 900 microseconds to execute, but interrupts are disabled for no longer than 90 microseconds. This
overhead is incurred on every system call.

The limitations of the dispatcher alone place some basic constraints on communications speed. If the network
is using a serial I/O device capable of buffering three characters at 10 bits per character, then the
NETWRKIF had better not rely on a system call like console input to receive network messages if the
transmission rate is faster than 33K bits per second and the sender sends characters as fast as possible. Even
below this speed, overruns are likely if there are any other processes in the system. This assumes an
extremely simple protocol. If the network has extra signal lines, most serial I/O devices permit the receiver to
signal a clear to send condition back to the sender. But networks often must work without these extra signals.

Because interrupts are disabled for no longer than 90 microseconds, a network that works at the character-
interrupt level functions properly at transmission speeds up to 333K bits per second. Beyond that speed,
overruns are likely to occur too often for adequate performance.

At speeds higher than 333K bits per second, the network interface software can use one of three approaches:

• A process can disable interrupts and perform no system calls, preventing the dispatcher from being
entered, and perform its own direct network 1/0, character by character.

• The network interface can use DMA to transfer large blocks of message data and perform validity
checking after the message has been transferred.

• The network interface can use an intelligent protocol controller that also does DMA or it can map
completed messages from its own memory space into MP/M II's memory space.

Serial I/O is not the only possible network transmission medium. The example is provided to acquaint you
with the performance of MP/M II.

The amount of time spent in the dispatcher varies depending on a number of factors. Because the dispatcher
must check suspended processes against system events, keep the number of processes, queues, flags, and poll
calls to a minimum. Poll calls are especially degrading. Every time the dispatcher is entered, it executes
every code fragment associated with every outstanding poll call. If all 16 reentrant NETWRKIF processes
polled output ports at once, the dispatcher would be very busy. In fact, enough poll calls can lengthen the
dispatcher's execution time so much that it exceeds the clock interval. When this happens, the dispatcher is
reentered before it has even been exited.

The design of interrupt service routines Must take the structure of the dispatcher into account. ISRs must first

of all save the register image of the process they interrupted--the service routine then executes. When the ISR
terminates itself, it should restore the interrupted process's registers and take one of two actions:

• If the service routine winds up setting a flag, the flag set call to MP/M II should be made, followed by
a jump into the dispatcher. This allows the dispatcher to ready the process waiting on the flag as
quickly as possible.

• If no flag is to be set, the ISR can simply return to the interrupted process.

ISRs should perform no MP/M II system calls except for the Flag Set function. There are two reasons for
this. First, ISRs are not processes, so the dispatcher has no way of saving the status of the ISR in a Process
Descriptor before allowing the function to be performed. Second, the dispatcher reenables interrupts and
possibly dispatches another process, leaving the ISR and the interrupted process in an indeterminate state.
The Flag Set function is specifically recognized by the dispatcher to avoid dispatching a different process.

Several factors determine how often the NETWRKIF and server processes are dispatched. The most obvious
is, once again, the number of processes. If MP/M II must share the CPU with more tasks, there is less CPU
available. Consider the priority of the various network server processes carefully. All processes in the
SERVER module run at a high priority level of 100. processes in the NETWRKIF might require other
priorities. In general, assign compute-bound processes lower priorities than I/0-bound processes, to prevent
processes that perform few system calls from hogging the CPU.

The dispatcher always schedules processes according to priority. Improperly setting priorities can cause
processes to be permanently suspended. For example, consider a NETWRKIF module that performs all direct
I/O and busy-waits for network input. Suppose this process has a priority of 60, slightly higher than the
server processes. Although the dispatcher is entered every time the system clock ticks, the NETWRKIF is
ready. Because the NETWRKIF has a higher priority than the server processes, the server processes never
execute.

Note that because of the extremely high priority of the server process, normal user processes running under
MP/M II perform very poorly. In addition, the extra process load degrades the server performance. It is
recommended that normal work station terminals not be provided on an MP/M II system that is functioning
as a server, although a system console can be convenient for monitoring system performance and giving the
operator a means of maintaining the server's data base.

The last factor affecting the dispatch rate is the system clock frequency. Every time a clock tick occurs, the
dispatcher is entered and recomputes the process to be executed next. Processes of equal priority are
dispatched on a first come, first served basis. The system clock can be tuned for optimal network
performance . There are no general rules on tuning because each network and the applications run on the
network determine the optimal clock period. Experiment with the clock frequency to determine the best
performance for the server.

In addition to designing the NETWRKIF for the server system, you might want to reexamine the XIOS used
in the system. Many CP/NET users discover that once their communications system has been optimized,
server performance has improved only slightly because several requesters are forcing the disk system to
thrash.

Thrashing can be minimized if the XIOS is provided with efficient blocking/deblocking algorithms like those
discussed in the MP/M II Operating System System Guide. These algorithms buffer disk accesses, deferring
physical Read-Write operations until they are absolutely necessary. As a result, many file record Read-Write
operations occur at memory speed, instead of having to wait for physical I/O from a disk drive.

Extra blocking/deblocking buffers can also improve overall server performance enormously. Because a

dedicated server only requires a single tiny user program segment, or, in some cases, no user segment at all,
almost all additional memory remaining after the server has been implemented can be used for disk buffers.
In a bank-switched or memory-managed system, potentially huge amounts of memory can be made available
for disk buffers. Providing one or more disk buffers per supported requester potentially eliminates
competition between two requesters for buffer resources.

Another way to improve disk performance with limited memory for disk buffers is to limit the number of
transactions that can be present in the server at one time. Even if a server is supporting 16 requester sessions,
it is possible, for example, to permit only four or five messages to be active at a time. This limit reduces the
amount of competition between actual processes, although competition continues between individual
transactions. Quite often, however, the overhead incurred by refusing network messages and forcing
requesters to retransmit them is considerably less than the overhead incurred by repeatedly having to flush
disk buffers for use and reuse by individual processes.

You can estimate the average number of disk accesses an application program is likely to perform in a short
time. The NETWRKIF processes can then selectively transport messages from only one requester for a short
amount of time, then service another requester for an equal amount of time. The scheme allows a single
process to take maximum advantage of the blocking and deblocking algorithms implemented in the server's
XIOS. The major disadvantage of such a scheme is that it is extremely complex and difficult to implement
efficiently. Carefully tuned, however, it can greatly improve performance.

4.3.6 Generating the NETWRKIF

To create the MP/M II server, perform the following steps:

1. If the XIOS has been modified, generate a new version of RESXIOS.SPR or BNKXIOS.SPR or
BNKXIOS.SPR, according to the instructions provided in the MP/M II Operating System System
Guide.

2. Assemble and link the NETWRKIF module:

 A>RMAC NETWRKIF
 A>LINK NETWRKIF[NR,OR]

The linker generates the NETWRKIF.RSP file.

If RMAC and LINK are not available, you must use ASM, PIP, and GENMOD, as shown below:

Assemble with ORG 0000H.

 A>ASM NETWORKIF
 A>REN NTWRK0.HEX=NETWRKIF.HEX

Now edit the NETWRKIF.ASM ORG statement to locate the module at 100 hex. Assemble with
ORG 0100H.

 A>ASM NETWRKIF
 A>REN NTWRK1.HEX=NETWRKIF.HEX

Concatenate the HEX files.

 A>PIP NETWRKIF.HEX=NTWRKO.HEX,NTWRK1.HEX

Generate the NETWRKIF RSP file.

 A>GENMOD NETWRKIF.HEX NETWRKIF.RSP

3. Copy the following files to the server boot disk.

• SERVER.RSP = Server process Module
• NETWRKIF.RSP = Custom Network Interface Process
• MAIL.COM = Mail Utility

4. Perform a GENSYS on the MP/M II system. The GENSYS must include the SERVER.RSP file and
the customized NETWRKIF.RSP; it can also include the SPOOL.RSP.

When GENSYS asks for the number of consoles, do not include the consoles (character I/O drivers) that
support the requesters. Usually, the response is 1.

You must also configure the file system for the types of applications CP/NET runs, enable compatibility
attributes, if necessary, and so on. These issues are discussed in the MP/M II Operating System System
Guide.

4.3.7 Debugging the NETWRKIF

The MP/M II server is now ready to be debugged. There are three general strategies for debugging the server.

Debugging MP/M II Under CP/M
To debug MP/M II under CP/M, follow these steps:

1. GENSYS the MP/M II with the top of memory set below where a CP/M system running on the
same hardware would reside when it is running DDT, SID, or ZSID.

2. Boot up CP/M on the server target computer system.
3. Run MPMLDR under the debugger. You can halt the loader just before passing control to

MP/M II through the following sequence:

 A>DDT MPMLDR.COM
 *I$B
 *G

When the loader breaks, you can insert breakpoints and restart the loader.
When using this method, remember that, because CP/M is a single-tasking operating system, the entire
CP/M operating system becomes part of the process in which a breakpoint is inserted every time the
system encounters a breakpoint. Furthermore, DDT and SID reenable interrupts on breakpoints. If a
clock tick goes off, the MP/M II dispatcher is likely to suspend CP/M and continue with other
processing. This might not inconvenience you because the process that was breakpointed is also
suspended. If it does affect the operation of the system, you might have to disable the system clock.

Debugging the NETWRKIF as a COM file
The example in Appendix E is set up to debug the NETWRKIF as a COM file. Debugging instructions
are also included in Appendix E.

Inserting Trace Code Into the NETWRKIF
Gather run-time statistics by inserting trace code into the NETWRKIF. Although this is not very
helpful for debugging real-time problems, it is the least destructive method of gathering real-time

statistics. This method can also be useful when tuning the network for increased performance.

4.4 Implementing Non-MP/M II Servers

It is possible to implement a CP/NET server on any computer system, under any operating system. There are
several reasons why you might choose another operating system:

• MP/M II servers limit the number of requesters to 16. You might want more than 16 work stations to
have access to a common database.

• You might require higher performance levels. The high speed of a mainframe CPU can substantially
increase CP/NET performance.

• You might want your system to take advantage of the large base of CP/M applications programs, but
maintain its files under another operating system. Or you might want to create a gateway to one of the
other commercially available network systems. A special server could translate CP/NET messages
into an appropriate format for the other network.

The module SERVER.RSP cannot be used on a different processor or under a different operating system. So
you must not only create the equivalent of the NETWRKIF for the target computer system; you must also
write the logical portion of the server.

The server processes under MP/M II act essentially as a proxy for the requester assigned to them. For
example, the requester wants to open a file on a networked drive but it does not have access to the operating
system controlling that drive. Instead, the requester sends a message to a server process that does have direct
access to the controlling operating system and asks that process to open the file for the requester. The server
obligingly performs the operation for the requester and tells it what happened. This is often referred to as a
ghosted process model of a server because the operating system thinks it is running the entire application
program as a process, while in fact the application is running somewhere else, but has a friend to help out.

Using the logical messages included in this manual, you can write a ghosted process server for CP/NET
under almost any multitasking operating system. You can even write a CP/NET server under a single-tasking
operating system. (CP/NET servers have actually been implemented under CP/M.)

The basic elements of such a server are

• A communications interface.
• A function interpreter. This module must interpret the logical messages sent by the CP/NET requester

and take the appropriate action.
• A file system translator. This module must convert CP/M BDOS File Control Blocks passed by the

requester into native operating system File Control Blocks.
• An operating system interface. This module must translate a CP/NET function that corresponds

exactly to a function supported by MP/M II into a function or set of functions supported by the native
operating system.

Each of these functional modules varies depending on the environment under which it is forced to execute.
The communications interface is governed by the types of process architectures the target operating system
can support. The remaining modules can be a set of reentrant processes, as they are under MP/M II, or they
can be a single process that keeps track of the requester it is currently servicing. If the latter method is used,
the server must keep track of such context sensitive information as directory search first/search next
information and shared files.

It might not be possible to support all CP/M functions under a non-MP/M II server. If this is the case, choose
applications that do not require the use of the unsupportable functions.

Finally, it might be necessary to have several different computer systems and operating systems acting as
servers in the same network. It is best to make the server implementation as portable as possible.
Implementing the server in a high-level language is a first step to portability.

Making the system highly modular can improve its portability. For example, break the communications
interface into a hardware interface module, a data link module, a network module, and a transport module.
All of these modules, with the exception of the hardware interface, can port to different systems with
minimal modification.

The server's function interpreter should be completely portable, but you will probably have to rewrite the file
system interpreter and the operating system interface modules.

Appendix A
CP/NOS Overview

A.1 overview

CP/NOS is a version of the CP/M operating system that performs all file handling across a CP/NET network
system. CP/NOS supports one local console and one local printer, but it supports only remote mass storage
media. Because of this, the BDOS and BIOS modules in a CP/NOS system are considerably smaller than
their counterparts in a standard CP/M system. This allows CP/NOS to fit in a fairly small (usually 4K bytes)
Read-Only memory, so you do not need a bootstrap loader. CP/NOS can also be downloaded from a server.
Using a small loader, you can also download a CP/NOS system from a centralized server.

Programs written under any CP/M 2.x system are fully compatible with a comparable CP/NOS system,
provided that mass storage devices referenced by the application are available across the network. When
BDOS calls that service, these devices are automatically translated into network functions.

Unlike CP/NET, CP/NOS cannot be loaded under an existing CP/M system. The network modules and CP/M
modules must be linked together and executed in a stand-alone environment. The special problems this
creates in debugging CP/NOS are discussed in this appendix.

A.2 System Requirements

CP/NOS can run on an 8080, 8085, or Z80 microprocessor, with a maximum of 64K of memory. A usual
CP/NOS system can be placed in a 4K ROM.

The CP/NOS requester must be networked to an MP/M II server. The server is the same as the one used by
CP/NET. CP/NOS and CP/NET requesters can even be networked to the same server.

A.3 Customizing CP/NOS

Three of the modules incorporated in CP/NOS are system dependent and must be modified to work on a
particular hardware configuration. They are the CPBIOS, CPNIOS, and NETWRKIF modules

The CPBIOS can be exactly the same as the BIOS used in a CP/M system that runs on the same hardware,
except that only a small portion of the BIOS is required. The only routines required are:

BOOT cold start
CONST read console status
CONIN read console character
CONOUT write console character
LIST write character to the list device
LISTST read list device status

The CPBIOS jump vector must be the same as that of a regular BIOS, but all other entry points can be null.

The CPNIOS module takes the place of the SNIOS module in CP/NET and requires only minimal
modification. The only difference is that all variables must be initialized upon cold start, including the
requester configuration table. The utilities NETWORK and LOGIN are not sufficient to define the
configuration table after cold start because CP/NOS has no local disk drives from which to load these
utilities. The CPNIOS must also prompt the user for login information upon cold start, or a warm boot results

in continuous requester not logged in extended errors as the CP/NOS requester tries to load the file CCP.SPR
from a server that has no knowledge of the requester.

The SNIOS example in Appendix E contains a sample CPNIOS, conditionally assembled out. To obtain the
CPNIOS version, equate the literal CPNOS to true.

Note: if the two preceding routines are to reside eventually in ROM, all variable data must be contained in
data segments and cannot be initialized at run-time. Initializing values must reside in a code segment, and
they must be copied down to their corresponding data segment locations at cold start. The assembly of these
modules requires an assembler capable of supporting separate code and data segments; the segments must be
assembled into REL file format. Use RMAC with 8080 source files.

The NETWRKIF module resides on the server and is identical to the NETWRKIF required to support
CP/NET. See Section 4.3 for a discussion of NETWRKIF preparation.

A.4 Building the CP/NOS System

To generate a CP/NOS system ready for insertion into ROM, follow these steps:

1. Assemble the modules CPBIOS and CPNIOS.
2. Link the following modules together in the order shown, using LINK-80:

CPNOS, CPNDOS, CPNIOS, CPBDOS, CPBIOS

Locate the code segment where the ROM sits in the address space of the finished system. At least 1K
(400 hexadecimal bytes) of RAM must be allocated for data segments. If the code segments are to be
loaded into high memory (at F000H for a 4K system), data must be explicitly linked, using the D
option, at least 1K in front of the code segments. For example,

 A>LINK CPNOS,CPNDOS,CPNIOS,CPBDOS,CPBIOS[LF000,DEC00]

These two steps produce an executable CP/NOS, capable of being programmed into ROM. At this stage,
however, the system cannot be debugged from CP/M.

A.5 Debugging the System

You can create a version of CP/NOS that can be cold started from CP/M if a CP/M system with 64K RAM is
available. First, type the following commands:

 A>RMAC CPNIOS
 A>RMAC CPBIOS
 A>LINK CPNOS,CPNDOS,CPNIOS,CPBDOS,CPBIOS[LF000,DEC00]
 A>GENHEX MVCPN0S 0100
 A>GENHEX CPNOS 0200
 A>PIP LDCPNOS.HEX=MVCPNOS.HEX[I],CPNOS.HEX[H]
 A>LOAD LDCPNOS

This procedure produces a file LDCPNOS.COM that is directly executable from CP/M. LDCPNOS relocates
the CPNOS module to location F000H and passes control to it, destroying CP/M and replacing it with
CP/NOS.

Because CP/M is destroyed by this procedure, it is not advisable to run LDCPNOS under software debugger
like DDT or SID, although you can run LDCPNOS under an in-circuit emulator. To run CP/NOS under DDT

or SID, use the following procedure:

1. Link CPNOS so that all code and data reside below the address specified as END when the debugger
is brought up:

 A>LINK CPNOS,CPNDOS,CPNIOS,CPBDOS,CPBIOS[L<org>,D<org-400H>]

where <org> is the link origin.
2. A>DDT CPNOS.COM
3. Relocate CPNOS from location 100, where DDT loads it, to its link origin:

 -M100,<100+next-1>,<org>

where next is the field specified by NEXT when the debugger loads CPNOS.COM, and <org> is the
link origin.

4. Begin execution with appropriate diagnostics:

 -G<org>

where <org> is the link origin.

Appendix B
CP/NET 1.2 Standard Message Formats

FMT DID SID FNC SIZ MSG

• FMT = Message format code
• DID = Message destination processor ID
• SID = Message source processor ID
• FNC = MP/M function code
• SIZ = Data field length - 1
• MSG = Actual message, SIZ + 1 bytes long

Figure B-1. CP/NET 1.2 Logical Message Format

FMT
CODE

FMT DID SID FNC siz MSG Comment

00 1 1 1 1 1 1-256 Preferred format

01 1 1 1 1 1 1-256 Returned result

02 1 1 1 1 2 1-65536

03 1 1 1 1 2 1-65536 Returned result

04 1 2 2 1 1 1-256

05 1 2 2 1 1 1-256 Returned result

06 1 2 2 1 2 1-65536

07 1 2 2 1 2 1-65536 Returned result

Table B-1. Message Field Length Table

Appendix C
CP/NET 1.2 Logical Message Specifications

Messages for all CP/NET functions are defined in this appendix. These messages are logical messages. Any
implementation of the SNIOS or NETWRKIF modules must always present messages to the NDOS or
SERVER modules in the form presented here.

You must adhere to these formats when implementing a server that runs under an operating system other than
MP/M II.

Notes: • ss = Server ID
rr = Requester ID
xx = Don't care byte
nn = Value specified

• All numeric values are in hexadecimal.
• All functions capable of returning extended errors are marked *EE*. Extended errors are assumed whenever the response is two

bytes in length, with the following message format:

SIZ = 01
MSG(0) = FF
MSG(1) = Extended Error Code

Any response with SIZ = 01 is interpreted as an error, regardless of the value in MSG(0).
• Any message can return the server not logged in or function not implemented on server extended error, extended error 0C.

For functions that return with the user's FCB updated (messages that have an FCB in their response), the first
byte of the FCB (drive designator) is never copied back from the response message. In some cases, the
random record bytes are also not copied back.

For search functions, the entire directory entry (which is NOT an FCB) is copied back to the current DMA
buffer, into the position indicated by the Directory Code result byte. This means that the DMA buffer is not
the actual directory sector from the disk, but merely an accumulation of directory entries in an order
determined by how they were found.

Functions that return the address of a system resource (Get Allocation Vector, Get DBP, Get Server Config),
the data is kept in an NDOS buffer which is overwritten on subsequent calls. The user must copy data out as
needed. The NDOS guarantees that the low byte of the address is never 0FFH, so that a valid address can be
distinguished from an Extended Error Code.

For functions that return a drive vector (Get Login, Get R/O), there is no way to distingush between valid
vectors and errors. The message format does not allow for errors, and the NDOS ignores the possibility of an
error in the response. The actual vector returned to the user is a composite of data retrieved from all known
servers and the local BDOS.

FMT DID SID FNC SIZ MSG

0 SYSTEM RESET:
NOT IMPLEMENTED AT SERVER

00 ss rr 00 00 • 00-00 = xx

01 rr ss 00 01
• 00-00 = 0FFh
• 01-01 = 00Ch

FMT DID SID FNC SIZ MSG

1 CONSOLE INPUT:
NOT IMPLEMENTED AT SERVER

00 ss rr 01 00 • 00-00 = xx

01 rr ss 01 01
• 00-00 = 0FFh
• 01-01 = 00Ch

2 CONSOLE OUTPUT:
NOT IMPLEMENTED AT SERVER

00 ss rr 02 00 • 00-00 = xx

01 rr ss 02 01
• 00-00 = 0FFh
• 01-01 = 00Ch

3 RAW CONSOLE INPUT:

00 ss rr 03 00 • 00-00 = Server Console #

01 rr ss 03 00 • 00-00 = Character Input

4 RAW CONSOLE OUTPUT:

00 ss rr 04 01
• 00-00 = Server Console #
• 01-01 = Character to Output

01 rr ss 04 00 • 00-00 = 00

5 LIST OUTPUT:

00 ss rr 05 nn
• 00-00 = Server List #
• 01-nn = Characters to List Device (nn = 01 to

80)

01 rr ss 05 00 • 00-00 = 00

6 DIRECT CONSOLE 1/0:
NOT IMPLEMENTED AT SERVER

00 ss rr 06 00 • 00-00 = xx

01 rr ss 06 01
• 00-00 = 0FFh
• 01-01 = 00Ch

7 GET I/O BYTE:
NOT IMPLEMENTED AT SERVER

00 ss rr 07 00 • 00-00 = xx

01 rr ss 07 01
• 00-00 = 0FFh
• 01-01 = 00Ch

8 SET 1/0 BYTE:
NOT IMPLEMENTED AT SERVER

00 ss rr 08 00 • 00-00 = xx

01 rr ss 08 01
• 00-00 = 0FFh
• 01-01 = 00Ch

9 PRINT STRING:
NOT IMPLEMENTED AT SERVER

FMT DID SID FNC SIZ MSG

00 ss rr 09 00 • 00-00 = xx

01 rr ss 09 01
• 00-00 = 0FFh
• 01-01 = 00Ch

10 READ CONSOLE BUFFER:
NOT IMPLEMENTED AT SERVER

00 ss rr 0A 00 • 00-00 = xx

01 rr ss 0A 01
• 00-00 = 0FFh
• 01-01 = 00Ch

11 GET CONSOLE STATUS:

00 ss rr 0B 00 • 00-00 = Server Console #

01 rr ss 0B 00 • 00-00 = Console Status Byte

12 RETURN VERSION NUMBER:
NOT IMPLEMENTED AT SERVER

00 ss rr 0C 00 • 00-00 = xx

01 rr ss 0C 01
• 00-00 = 0FFh
• 01-01 = 00Ch

13 RESET DISK SYSTEM:
NOT IMPLEMENTED AT SERVER

00 ss rr 0D 00 • 00-00 = xx

01 rr ss 0D 01
• 00-00 = 0FFh
• 01-01 = 00Ch

14 SELECT DISK: *EE*

00 ss rr 0E 00 • 00-00 = Selected Disk

01 rr ss 0E 00 • 00-00 = Return Code

15 OPEN FILE: *EE*

00 ss rr 0F 2C
• 00-00 = User Number
• 01-24 = FCB
• 25-2C = Password

01 rr ss 0F 24

• 00-00 = Directory Code
• 01-24 = FCB

01 not copied to user; 22-24 (file ID)
not copied to user unless F5' set and not F6'.

16 CLOSE FILE: *EE*

00 ss rr 10 2C
• 00-00 = User Number
• 01-24 = FCB
• 25-2C = Password (ignored)

01 rr ss 10 24

• 00-00 = Directory Code
• 01-24 = FCB

01 not copied to user; 22-24 (file ID)
not copied to user unless F5' set and not F6'.

FMT DID SID FNC SIZ MSG

17 SEARCH FOR FIRST: *EE*

00 ss rr 11 25
• 00-00 = Current Disk if FCB(0)='?'
• 01-01 = User Number
• 02-25 = FCB

01 rr ss 11

20

• 00-00 = Directory Code
• 01-20 = Directory Entry

Directory Entry copied to current DMA buffer
based on Directory Code.

80/0

• 00-00 = Directory Code
• 01-80 = Directory Sector
• 00-00 = Directory Code

Extensions for "full search" mode, incl. CP/M 3.

18 SEARCH FOR NEXT: *EE*

00 ss rr 12 01
• 00-00 = xx
• 01-01 = User Number

01 rr ss 12

20

• 00-00 = Directory Code
• 01-20 = Directory Entry

Directory Entry copied to current DMA buffer
based on Directory Code.

80/0

• 00-00 = Directory Code
• 01-80 = Directory Sector
• 00-00 = Directory Code

Extensions for "full search" mode, incl. CP/M 3.

19 DELETE FILE: *EE*

00 ss rr 13 24
• 00-00 = User Number
• 01-24 = FCB

01 rr ss 13 00 • 00-00 = Directory Code

20 READ SEQUENTIAL: *EE*

00 ss rr 14 24
• 00-00 = User Number
• 01-24 = FCB

01 rr ss 14 A4

• 00-00 = Return Code
• 01-24 = FCB
• 25-A4 = Sector of Data Read

01 and 22-24 not copied to user.

21 WRITE SEQUENTIAL: *EE*

00 ss rr 15 A4
• 00-00 = User Number
• 01-24 = FCB
• 25-A4 = Sector of Data to Write

01 rr ss 15 24
• 00-00 = Return Code
• 01-24 = FCB

01 and 22-24 not copied to user.

22 MAKE FILE: *EE*

FMT DID SID FNC SIZ MSG

00 ss rr 16 24
• 00-00 = User Number
• 01-24 = FCB

01 rr ss 16 24

• 00-00 = Directory Code
• 01-24 = FCB

01 not copied to user; 22-24 (file ID)
not copied to user unless F5' set and not F6'.

23 RENAME FILE: *EE*

00 ss rr 17 24
• 00-00 = User Number
• 01-24 = FCB in RENAME format

01 rr ss 17 00 • 00-00 = Directory Code

24 RETURN LOGIN VECTOR:
Message Sent for Each Remote Drive, Results combined with local BDOS

00 ss rr 18 00 • 00-00 = xx

01 rr ss 18 01 • 00-01 = Login Vector

25 RETURN CURRENT DISK:
NOT IMPLEMENTED AT SERVER

00 ss rr 19 00 • 00-00 = xx

01 rr ss 19 01
• 00-00 = 0FFh
• 01-01 = 00Ch

26 SET DMA ADDRESS:
NOT IMPLEMENTED AT SERVER

00 ss rr 1A 00 • 00-00 = xx

01 rr ss 1A 01
• 00-00 = 0FFh
• 01-01 = 00Ch

27 GET ALLOCATION VECTOR ADDRESS: *EE*

00 ss rr 1B 00 • 00-00 = Current Disk

01 rr ss 1B 02-FF
• 00-FF = Allocation Vector

NDOS guarantees low byte of
returned address cannot be FF.

28 WRITE PROTECT DISK: *EE*

00 ss rr 1C 00 • 00-00 = Current Disk

01 rr ss 1C 00 • 00-00 = 00

29 GET R/O VECTOR:
Message Sent for Each Remote Drive, Results combined with local BDOS

00 ss rr 1D 00 • 00-00 = xx

01 rr ss 1D 01 • 00-01 = R/O Vector

30 SET FILE ATTRIBUTES: *EE*

00 ss rr 1E 24
• 00-00 = User Number
• 01-24 = FCB with File Attributes Set

FMT DID SID FNC SIZ MSG

01 rr ss 1E 00 • 00-00 = Directory Code

31 GET DISK PARAMETER ADDRESS: *EE*

00 ss rr 1F 00 • 00-00 = Current Disk

01 rr ss 1F 0F • 00-0F = Disk Parameter Block

32 SET/GET USER CODE:
NOT IMPLEMENTED AT SERVER

00 ss rr 20 00 • 00-00 = xx

01 rr ss 20 01
• 00-00 = 0FFh
• 01-01 = 00Ch

33 READ RANDOM: *EE*

00 ss rr 21 24
• 00-00 = User Number
• 01-24 = FCB

01 rr ss 21 A4

• 00-00 = Return Code
• 01-24 = FCB
• 25-A4 = Sector of Data Read

01 not copied to user.

34 WRITE RANDOM: *EE*

00 ss rr 22 A4
• 00-00 = User Number
• 01-24 = FCB
• 25-A4 = Sector of Data to Write

01 rr ss 22 24
• 00-00 = Return Code
• 01-24 = FCB

01 not copied to user.

35 COMPUTE FILE SIZE: *EE*

00 ss rr 23 24
• 00-00 = User Number
• 01-24 = FCB

01 rr ss 23 24
• 00-00 = Return Code
• 01-24 = FCB

36 SET RANDOM RECORD: *EE*

00 ss rr 24 24
• 00-00 = User Number
• 01-24 = FCB

01 rr ss 24 24
• 00-00 = Return Code
• 01-24 = FCB

01 not copied to user.

37 RESET DRIVE: *EE*
Message Sent to All Affected Servers

00 ss rr 25 01 • 00-01 = Drive Vector

01 rr ss 25 00 • 00-00 = Return Code

38 ACCESS DRIVE: *EE*
Message Sent to All Affected Servers

FMT DID SID FNC SIZ MSG

00 ss rr 26 01 • 00-01 = Drive Vector

01 rr ss 26 00 • 00-00 = Return Code

39 FREE DRIVE: *EE*
Message Sent to All Affected Servers

00 ss rr 27 01 • 00-01 = Drive Vector

01 rr ss 27 00 • 00-00 = Return Code

40 WRITE RANDOM WITH ZERO FILL: *EE*

00 ss rr 28 A4
• 00-00 = User Number
• 01-24 = FCB
• 25-A4 = Sector of Data to Write

01 rr ss 28 24
• 00-00 = Return Code
• 01-24 = FCB

01 not copied to user.

42 LOCK RECORD: *EE*

00 ss rr 2A 26
• 00-00 = User Number
• 01-24 = FCB
• 25-26 = File ID

01 rr ss 2A 24
• 00-00 = Return Code
• 01-24 = FCB

01 not copied to user.

43 UNLOCK RECORD: *EE*

00 ss rr 2B 26
• 00-00 = User Number
• 01-24 = FCB
• 25-26 = File ID

01 rr ss 2B 24
• 00-00 = Return Code
• 01-24 = FCB

01 not copied to user.

45 SET BDOS ERROR MODE:
NOT IMPLEMENTED AT SERVER

00 ss rr 2D 00 • 00-00 = xx

01 rr ss 2D 01
• 00-00 = 0FFh
• 01-01 = 00Ch

46 GET DISK FREE SPACE:
Extension for CP/M 3.

00 ss rr 2E 00 • 00-00 = Drive

01 rr ss 2E 02 • 00-02 = Free Space, little-endian
Copied to current DMA buffer.

48 FLUSH BUFFERS:
Extension for CP/M 3.

00 ss rr 30 00 • 00-00 = Purge Code

FMT DID SID FNC SIZ MSG

01 rr ss 30 00 • 00-00 = Return Code

64 LOGIN: *EE*

00 ss rr 40 07 • 00-07 = Password, 8 ASCII Chars

01 rr ss 40 00 • 00-00 = Return Code

65 LOGOFF: *EE*

00 ss rr 41 00 • 00-00 = xx

01 rr ss 41 00 • 00-00 = Return Code

66 SEND MESSAGE ON NETWORK:
NOT IMPLEMENTED AT SERVER

00 ss rr 42 xx • 00-FF = xx

01 rr ss 42 01
• 00-00 = 0FFh
• 01-01 = 00Ch

67 RECEIVE MESSAGE ON NETWORK:
NOT IMPLEMENTED AT SERVER

00 ss rr 43 00 • 00-00 = xx

01 rr ss 43 01
• 00-00 = 0FFh
• 01-01 = 00Ch

68 GET NETWORK STATUS:
NOT IMPLEMENTED AT SERVER

00 ss rr 44 00 • 00-00 = xx

01 rr ss 44 01
• 00-00 = 0FFh
• 01-01 = 00Ch

69 GET CONFIGURATION TABLE ADDRESS:
NOT IMPLEMENTED AT SERVER

00 ss rr 45 00 • 00-00 = xx

01 rr ss 45 01
• 00-00 = 0FFh
• 01-01 = 00Ch

70 SET COMPATIBILITY ATTRIBUTES:
Message Sent to All Known Servers

00 ss rr 46 00 • 00-00 = Compatibility Attributes

01 rr ss 46 00 • 00-00 = xx

71 RETURN SERVER CONFIGURATION: *EE*

00 ss rr 47 00 • 00-00 = xx

01 rr ss 47 16 • 00-00 = Server Temporary File Drive
• 01-01 = Server Status Byte
• 02-02 = Server ID
• 03-03 = Maximum Number of Requesters
• 04-04 = Number Logged In
• 05-06 = Login Vector

FMT DID SID FNC SIZ MSG

• 07-16 = Requester ID's

98 FREE BLOCKS:
Extension for CP/M 3.

00 ss rr 62 00 • 00-00 = xx

01 rr ss 62 00 • 00-00 = Return Code

99 TRUNCATE FILE: *EE*
Extension for CP/M 3.

00 ss rr 63 24
• 00-00 = User Number
• 01-24 = FCB

01 rr ss 63 24
• 00-00 = Directory Code
• 01-24 = FCB

101 GET DIRECTORY LABEL BYTE:
Extension for CP/M 3.

00 ss rr 65 00 • 00-00 = Drive

01 rr ss 65 00 • 00-00 = Dir Mode Byte

102 GET FILE TIME STAMPS: *EE*
Extension for CP/M 3.

00 ss rr 66 24
• 00-00 = User Number
• 01-24 = FCB

01 rr ss 66 24
• 00-00 = Directory code
• 01-24 = FCB with timestamps in d8-d15

105 GET DATE AND TIME:
Extension for CP/M 3. Not issued by NDOS.

00 ss rr 69 00 • 00-00 = xx

01 rr ss 69 04

• 00-01 = Date, days since 12/31/1977
• 02 = Hours (BCD)
• 03 = Minutes (BCD)
• 04 = Seconds (BCD)

106 SET DEFAULT PASSWORD:
Message Sent to All Known Servers

00 ss rr 6A 07 • 00-07 = Default Password to be Set

01 rr ss 6A 00 • 00-00 = Return Code

Table C-1. Conventional CP/NET Messages

Appendix D
NDOS Function Summary

Code Function Name Input Parameters Output Results

38 Access Drive DE = Drive Vector none

39 Free Drive DE = Drive Vector none

42 Lock Record DE = FCB Address A = Err Code

43 Unlock Record DE = FCB Address A = Err Code

45 Set BDOS Error Mode E = Error Mode none

64 Login see definition A = Err Code

65 Logoff E = Server ID none

66
Send Message on
Ntwrk

DE = Message Adr A = Err Code

67
Receive Msg from
Ntwk

DE = Message Adr A = Err Code

68 Get Network Status none A = Status byte

69 Get Config Table Adr none HL = Table Adr

70 Set Compat. Attrs. E = attributes none

71 Get Server Config. E = Server ID HL= Table Adr

106 Set Default Password see definition none

Table D-1. NDOS Functions

Appendix E
A Simple RS-232C CP/NET System

Digital Research developed a relatively simple RS-232C point to-point protocol to provide a demonstration
vehicle for CP/NET and to encourage compatibility among hardware vendors. The protocol, as implemented
in the sample SNIOS and NETWRKIF in this appendix, breaks the logical message into a fixed header and a
variable length data portion the size of which is obtained from the fixed header. This simplifies operation
with DMA channels that need terminal counts and also provides a checksum for the header that contains the
SIZ field.

This protocol can be implemented between any requester and server that support an extra RS-232 console
port.

E.1 Protocol Handshake

The protocol handshake is detailed in Figure E-1.

Figure E-1. Protocol Handshake

E.2 Binary Protocol Message Format

Data integrity for this protocol is maintained by a simple checksum, shown in Figure E-2, on both the header
and the actual message.

Figure E-2. Binary Protocol Message Format

Message format codes 00 & 01 are recommended.

Field Description:

• ENQ = Enquire, one byte, 05H.
• SOH = Start of Header, one byte, 01H.
• FMT,DID,SID,FNC,SIZ = as defined in Appendix A, one byte per field.
• HCS = Header Checksum, one byte. This is a simple horizontal checksum, computed by adding

together all the bytes of the message, starting with the SOH, to the SIZ byte of the header field
modulo 256, complementing the result, and adding one. The entire message, from the SOH to and
including the HCS, should add up to zero.

• STX = Start of Data, one byte, 02H.
• MSG = SIZ + 1 byte long.
• ETX = End of Data, one byte, 03H.
• CKS = Checksum, one byte. This is a simple horizontal checksum, computed by adding together all

the bytes of the message, starting with the STX, to the last byte of the MSG field modulo 256,
complementing the result, and adding one. The entire message, from the STX to and including the
CKS, should add up to zero.

• EOT = End of Transmission, one byte, 04H.

E.3 ASCII Protocol Message Format

If the RS-232 link is not capable of transmitting 8-bit binary data, you might have to transmit each nibble of
the message as a 7 bit ASCII character.

Note: the 7-bit ASCII network protocol is identical to the 8-bit protocol except that it requires twice as many
bytes because each byte is transmitted in hexadecimal ASCII format.

The ASCII network protocol message format is detailed in Figure E-3.

Figure E-3. ASCII Protocol Message Format

Message format codes 00 & 01 are recommended.

Field Description:

• ENQ = Enquire, one byte, 05H.
• SOH = Start of Header, one byte, 01H.
• FMT,DID,SID,FNC,SIZ = as defined in Appendix A, two bytes per field.
• HCS = Header Checksum, 2 bytes (Hex-ASCII) . This is a simple horizontal checksum. It is

computed by adding together all the bytes of the message, starting with the SOH, to the SIZ of the
header field modulo 256, complementing the result, and adding one. The entire message, from the

file:///home/drmiller/git/heathkit/h89/docs/SecA
file:///home/drmiller/git/heathkit/h89/docs/SecA

SOH to the including the HCS, should add up to zero.
• STX = Start of Data, one byte, 02H.
• MSG = 2 * (SIZ + 1) bytes long.
• ETX = End of Data, one byte, 03H.
• CKS =Checksum, two bytes (Hex-ASCII) . This is a simple horizontal checksum. It is computed by

adding together all the bytes of the message, starting with the STX, to the last byte of the MSG field
modulo 256, complementing the result and adding one. The entire message, from the FMT to and
including the CKS, should add up to zero.

• EOT = End of Transmission, one byte, 04H.

E.4 Modifying the SNIOS

The sample SNIOS can be modified for almost any requester that has a spare console port. To do so, follow
these steps:

1. Obtain assembled listings of the SNIOS.ASM source file that require modification. You can use
MAC, RMAC, or ASM. if you use ASM, the title, name, if, and else statements must be removed
from the source files to assemble correctly. Using RMAC is highly recommended because it
simplifies the task of generating the SPR files when used in conjunction with LINK. Otherwise, the
SPR files must be generated in the same manner as for MP/M II XIOS.SPR generation.

 A>RMAC SNIOS

2. Study the SNIOS.PRN listing. Notice the ASCII equate. If true, it specifies that the message format is
7-bit ASCII. If false, it specifies a binary 8-bit message format. The ASCII mode is sometimes useful
in debugging, but in practice do not use it where it is possible to transmit 8 bit serial data.

The only code that requires modification in the SNIOS.ASM file is contained in the CHAROUT, CHARIN,
and DELAY procedures. The CHAROUT and CHARIN procedures can be conditionally assembled for a
Dynabyte DB8/2, now called DB8/5200, a Digital Microsystems DSC-2 or an ALTOS 8000-2. The NOPs in
the CHAROUT procedure are simply padding, so the length of the DB8/2 SNIOS and DSC-2 SNIOS is the
same, which helps in the debugging of these two versions.

Perhaps the most critical area in the SNIOS that requires adjustment for a specific network configuration is in
the timeout code of the CHARIN procedure. If too little time is allowed, the server might not be able to
complete the function because of a heavy request load from the requesters. If too much time is specified,
communication breaks on the network can go undetected for a period of time, making both error recovery
and precise detection difficult. Note that this is a logical timeout, not a data-link timeout. The logical timeout
determines how long the requester expects the server to take between the time it receives the message and the
time it returns a response message.

Another critical parameter that requires adjustment for different environments is ALWAYS$RETRY. This
equate, when true, controls conditional assembly that always produces retries on network failures. In this
mode of operation, it is possible to recover from broken communication between the requester and a server.
However, ALWAYS$RETRY does hang the requester in a busy retry mode when failures occur.

CP/M RMAC ASSEM 1.1 #001 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

 1 title 'Requester Network I/O System for CP/NET 1.2'
 2 page 54
 3
 4 ;***
 5 ;***
 6 ;** **
 7 ;** R e q u e s t e r N e t w o r k I / O S y s t e m **
 8 ;** **
 9 ;***
 10 ;***
 11
 12 ;/*
 13 ; Copyright (C) 1980, 1981, 1982
 14 ; Digital Research
 15 ; P.O. Box 579
 16 ; Pacific Grove, CA 93950
 17 ;
 18 ; Revised: October 5, 1982
 19 ;*/
 20
 21 0000 = false equ 0
 22 FFFF = true equ not false
 23
 24 0000 = cpnos equ false ; cp/net system
 25
 26 0000 = DSC2 equ false
 27 0000 = DB82 equ false
 28 FFFF = Altos equ true
 29
 30 FFFF = always$retry equ true ; force continuous retries
 31
 32 0000 = modem equ false
 33
 34 0000 = ASCII equ false
 35
 36 0000 = debug equ false
 37
 38 CSEG
 39 if cpnos
 40 extrn BDOS
 41 else
 42 0005 = BDOS equ 0005h
 43 endif
 44
 45 NIOS:
 46 public NIOS
 47 ; Jump vector for SNIOS entry points
 48 0000 C3A900 jmp ntwrkinit ; network initialization
 49 0003 C3B800 jmp ntwrksts ; network status
 50 0006 C3C300 jmp cnfgtbladr ; return config table addr
 51 0009 C3C700 jmp sendmsg ; send message on network
 52 000C C33301 jmp receivemsg ; receive message from network
 53 000F C3DD01 jmp ntwrkerror ; network error
 54 0012 C3DE01 jmp ntwrkwboot ; network warm boot

CP/M RMAC ASSEM 1.1 #002 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

 55
 56 if DB82
 57 slave$ID equ 12h ; slave processor ID number
 58 endif
 59 if DSC2
 60 slave$ID equ 34h
 61 endif
 62 if Altos
 63 0056 = slave$ID equ 56h
 64 endif
 65
 66 if cpnos
 67 ; Initial Slave Configuration Table
 68 Initconfigtbl:
 69 db 0000$0000b ; network status byte
 70 db slave$ID ; slave processor ID number
 71 db 84h,0 ; A: Disk device
 72 db 81h,0 ; B: "
 73 db 82h,0 ; C: "
 74 db 83h,0 ; D: "
 75 db 80h,0 ; E: "
 76 db 85h,0 ; F: "
 77 db 86h,0 ; G: "
 78 db 87h,0 ; H: "
 79 db 88h,0 ; I: "
 80 db 89h,0 ; J: "
 81 db 8ah,0 ; K: "
 82 db 8bh,0 ; L: "
 83 db 8ch,0 ; M: "
 84 db 8dh,0 ; N: "
 85 db 8eh,0 ; O: "
 86 db 8fh,0 ; P: "
 87 db 0,0 ; console device
 88 db 0,0 ; list device:
 89 db 0 ; buffer index
 90 db 0 ; FMT
 91 db 0 ; DID
 92 db slave$ID ; SID
 93 db 5 ; FNC
 94 initcfglen equ $-initconfigtbl
 95 endif
 96
 97 0000 = defaultmaster equ 00h
 98
 99 wboot$msg: ; data for warm boot routine
 100 0015 3C5761726D db ''
 101 0020 24 db '$'
 102
 103 networkerrmsg:
 104 0021 4E6574776F db 'Network Error'
 105 002E 24 db '$'
 106
 107
 108 page

CP/M RMAC ASSEM 1.1 #003 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

 109
 110 DSEG
 111
 112
 113 ; Slave Configuration Table
 114 configtbl:
 115
 116 Network$status:
 117 0000 ds 1 ; network status byte
 118 0001 ds 1 ; slave processor ID number
 119 0002 ds 2 ; A: Disk device
 120 0004 ds 2 ; B: "
 121 0006 ds 2 ; C: "
 122 0008 ds 2 ; D: "
 123 000A ds 2 ; E: "
 124 000C ds 2 ; F: "
 125 000E ds 2 ; G: "
 126 0010 ds 2 ; H: "
 127 0012 ds 2 ; I: "
 128 0014 ds 2 ; J: "
 129 0016 ds 2 ; K: "
 130 0018 ds 2 ; L: "
 131 001A ds 2 ; M: "
 132 001C ds 2 ; N: "
 133 001E ds 2 ; O: "
 134 0020 ds 2 ; P: "
 135
 136 0022 ds 2 ; console device
 137
 138 0024 ds 2 ; list device:
 139 0026 ds 1 ; buffer index
 140 0027 00 db 0 ; FMT
 141 0028 00 db 0 ; DID
 142 0029 56 db Slave$ID ; SID (CP/NOS must still initialize)
 143 002A 05 db 5 ; FNC
 144 002B ds 1 ; SIZ
 145 002C ds 1 ; MSG(0) List number
 146 002D ds 128 ; MSG(1) ... MSG(128)
 147
 148 msg$adr:
 149 00AD ds 2 ; message address
 150 if modem
 151 timeout$retries equ 0 ; timeout a max of 256 times
 152 else
 153 0064 = timeout$retries equ 100 ; timeout a max of 100 times
 154 endif
 155 000A = max$retries equ 10 ; send message max of 10 times
 156 retry$count:
 157 00AF ds 1
 158
 159 FirstPass:
 160 00B0 FF db 0ffh
 161
 162 ; Network Status Byte Equates

CP/M RMAC ASSEM 1.1 #004 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

 163 ;
 164 0010 = active equ 0001$0000b ; slave logged in on network
 165 0002 = rcverr equ 0000$0010b ; error in received message
 166 0001 = senderr equ 0000$0001b ; unable to send message
 167
 168 ; General Equates
 169 ;
 170 0001 = SOH equ 01h ; Start of Header
 171 0002 = STX equ 02h ; Start of Data
 172 0003 = ETX equ 03h ; End of Data
 173 0004 = EOT equ 04h ; End of Transmission
 174 0005 = ENQ equ 05h ; Enquire
 175 0006 = ACK equ 06h ; Acknowledge
 176 000A = LF equ 0ah ; Line Feed
 177 000D = CR equ 0dh ; Carriage Return
 178 0015 = NAK equ 15h ; Negative Acknowledge
 179
 180 0002 = conout equ 2 ; console output function
 181 0009 = print equ 9 ; print string function
 182 0043 = rcvmsg equ 67 ; receive message NDOS function
 183 0040 = login equ 64 ; Login NDOS function
 184
 185 ; I/O Equates
 186 ;
 187 if DB82
 188 stati equ 83h
 189 mski equ 08h
 190 dprti equ 80h
 191
 192 stato equ 83h
 193 msko equ 10h
 194 statc equ 81h
 195 mskc equ 20h
 196 dprto equ 86h
 197 endif
 198
 199 if DSC2
 200 if modem
 201 stati equ 59h
 202 mski equ 02h
 203 dprti equ 58h
 204
 205 stato equ 59h
 206 msko equ 01h
 207 dprto equ 58h
 208 else
 209 stati equ 51h
 210 mski equ 02h
 211 dprti equ 50h
 212
 213 stato equ 51h
 214 msko equ 01h
 215 dprto equ 50h
 216 endif

CP/M RMAC ASSEM 1.1 #005 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

 217 endif
 218
 219 if Altos
 220 001F = stati equ 1fh
 221 0001 = mski equ 01h
 222 001E = dprti equ 1eh
 223
 224 001F = stato equ 1fh
 225 0004 = msko equ 04h
 226 001E = dprto equ 1eh
 227 endif
 228
 229
 230
 231 page

CP/M RMAC ASSEM 1.1 #006 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

 232
 233 CSEG
 234 ; Utility Procedures
 235 ;
 236 delay: ; delay for c[a] * 0.5 milliseconds
 237 002F 3E06 mvi a,6
 238 delay1:
 239 0031 0E86 mvi c,86h
 240 delay2:
 241 0033 0D dcr c
 242 0034 C23300 jnz delay2
 243 0037 3D dcr a
 244 0038 C23100 jnz delay1
 245 003B C9 ret
 246
 247 if ASCII
 248 Nib$out: ; A = nibble to be transmitted in ASCII
 249 cpi 10
 250 jnc nibAtoF ; jump if A-F
 251 adi '0'
 252 mov c,a
 253 jmp Char$out
 254 nibAtoF:
 255 adi 'A'-10
 256 mov c,a
 257 jmp Char$out
 258 endif
 259
 260 Pre$Char$out:
 261 003C 7A mov a,d
 262 003D 81 add c
 263 003E 57 mov d,a ; update the checksum in D
 264
 265 nChar$out: ; C = byte to be transmitted
 266 if Altos
 267 003F 3E10 mvi a,10h
 268 0041 D31F out stato
 269 endif
 270 0043 DB1F in stato
 271 0045 E604 ani msko
 272 0047 CA3F00 jz nChar$out
 273
 274 if DB82
 275 in statc
 276 ani mskc
 277 jz nChar$out
 278 endif
 279
 280 if DSC2
 281 nop ; these NOP's make DB8/2 & DSC2
 282 nop ; versions the same length - saves
 283 nop ; a second listing
 284 nop
 285 nop

CP/M RMAC ASSEM 1.1 #007 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

 286 nop
 287 nop
 288 endif
 289
 290 004A 79 mov a,c
 291 004B D31E out dprto
 292 004D C9 ret
 293 ;
 294 Char$out:
 295 004E CD3F00 call nChar$out
 296 if Altos
 297 0051 E3E3E3E3 xthl! xthl! xthl! xthl
 298 0055 E3E3E3E3 xthl! xthl! xthl! xthl
 299 0059 E3E3E3E3 xthl! xthl! xthl! xthl ;delay 54 usec
 300 005D C9 ret
 301 else
 302 jmp delay ; delay after each Char sent to Mstr
 303 ; ret
 304 endif
 305
 306 if ASCII
 307 Nib$in: ; return nibble in A register
 308 call Char$in
 309 rc
 310 ani 7fh
 311 sui '0'
 312 cpi 10
 313 jc Nibinrtn ; must be 0-9
 314 adi ('0'-'A'+10) and 0ffh
 315 cpi 16
 316 jc Nibinrtn ; must be 10-15
 317 lda network$status
 318 ori rcverr
 319 sta network$status
 320 mvi a,0
 321 stc ; carry set indicating err cond
 322 ret
 323
 324 Nibinrtn:
 325 ora a ; clear carry & return
 326 ret
 327 endif
 328
 329 xChar$in:
 330 005E 0664 mvi b,100 ; 100 ms corresponds to longest possible
 331 0060 C36500 jmp char$in0 ;wait between master operations
 332
 333 Char$in: ; return byte in A register
 334 ; carry set on rtn if timeout
 335 if modem
 336 mvi b,0 ; 256 ms = 7.76 chars @ 300 baud
 337 else
 338 if Altos
 339 0063 0603 mvi b,3 ; 3 ms = 50 chars @ 125k baud

CP/M RMAC ASSEM 1.1 #008 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

 340 else
 341 mvi b,50 ; 50 ms = 50 chars @ 9600 baud
 342 endif
 343 endif
 344 Char$in0:
 345 0065 0E5A mvi c,5ah
 346 Char$in1:
 347 if Altos
 348 0067 3E00 mvi a,0
 349 0069 D31F out stati
 350 endif
 351 006B DB1F in stati
 352 006D E601 ani mski
 353 006F C27C00 jnz Char$in2
 354 0072 0D dcr c
 355 0073 C26700 jnz Char$in1
 356 0076 05 dcr b
 357 0077 C26500 jnz Char$in0
 358 007A 37 stc ; carry set for err cond = timeout
 359 007B C9 ret
 360 Char$in2:
 361 007C DB1E in dprti
 362 007E C9 ret ; rtn with raw char and carry cleared
 363
 364 Net$out: ; C = byte to be transmitted
 365 ; D = checksum
 366 007F 7A mov a,d
 367 0080 81 add c
 368 0081 57 mov d,a
 369
 370 if ASCII
 371 mov a,c
 372 mov b,a
 373 rar
 374 rar
 375 rar
 376 rar
 377 ani 0FH ; mask HI-LO nibble to LO nibble
 378 call Nib$out
 379 mov a,b
 380 ani 0FH
 381 jmp Nib$out
 382
 383 else
 384 0082 C34E00 jmp Char$out
 385 endif
 386
 387 Msg$in: ; HL = destination address
 388 ; E = # bytes to input
 389 0085 CD9000 call Net$in
 390 0088 D8 rc
 391 0089 77 mov m,a
 392 008A 23 inx h
 393 008B 1D dcr e

CP/M RMAC ASSEM 1.1 #009 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

 394 008C C28500 jnz Msg$in
 395 008F C9 ret
 396
 397 Net$in: ; byte returned in A register
 398 ; D = checksum accumulator
 399
 400 if ASCII
 401 call Nib$in
 402 rc
 403 add a
 404 add a
 405 add a
 406 add a
 407 push psw
 408 call Nib$in
 409 pop b
 410 rc
 411 ora b
 412
 413 else
 414 0090 CD6300 call Char$in ;receive byte in Binary mode
 415 0093 D8 rc
 416 endif
 417
 418 chks$in:
 419 0094 47 mov b,a
 420 0095 82 add d ; add & update checksum accum.
 421 0096 57 mov d,a
 422 0097 B7 ora a ; set cond code from checksum
 423 0098 78 mov a,b
 424 0099 C9 ret
 425
 426 Msg$out: ; HL = source address
 427 ; E = # bytes to output
 428 ; D = checksum
 429 ; C = preamble byte
 430 009A 1600 mvi d,0 ; initialize the checksum
 431 009C CD3C00 call Pre$Char$out ; send the preamble character
 432 Msgoutloop:
 433 009F 4E mov c,m
 434 00A0 23 inx h
 435 00A1 CD7F00 call Net$out
 436 00A4 1D dcr e
 437 00A5 C29F00 jnz Msgoutloop
 438 00A8 C9 ret
 439
 440 page

CP/M RMAC ASSEM 1.1 #010 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

 441
 442 ; Network Initialization
 443 ntwrkinit:
 444
 445 if cpnos ; copy down network assignments
 446 lxi h,Initconfigtbl
 447 lxi d,configtbl
 448 mvi c,initcfglen
 449 initloop:
 450 mov a,m
 451 stax d
 452 inx h
 453 inx d
 454 dcr c
 455 jnz initloop ; initialize config tbl from ROM
 456
 457 else
 458 00A9 3E56 mvi a,slave$ID ;initialize slave ID byte
 459 00AB 320100 sta configtbl+1 ; in the configuration tablee
 460 endif
 461
 462 ; device initialization, as required
 463
 464 if Altos
 465 00AE 3E47 mvi a,047h
 466 00B0 D30E out 0eh
 467 00B2 3E01 mvi a,1
 468 00B4 D30E out 0eh
 469 endif
 470
 471 if DSC2 and modem
 472 mvi a,0ceh
 473 out stato
 474 mvi a,027h
 475 out stato
 476 endif
 477
 478 if cpnos
 479 call loginpr ; login to a master
 480 endif
 481
 482 initok:
 483 00B6 AF xra a ; return code is 0=success
 484 00B7 C9 ret
 485
 486
 487 page

CP/M RMAC ASSEM 1.1 #011 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

 488
 489 ; Network Status
 490 ntwrksts:
 491 00B8 3A0000 lda network$status
 492 00BB 47 mov b,a
 493 00BC E6FC ani not (rcverr+senderr)
 494 00BE 320000 sta network$status
 495 00C1 78 mov a,b
 496 00C2 C9 ret
 497
 498
 499
 500 ; Return Configuration Table Address
 501 cnfgtbladr:
 502 00C3 210000 lxi h,configtbl
 503 00C6 C9 ret
 504
 505
 506 page

CP/M RMAC ASSEM 1.1 #012 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

 507
 508 ; Send Message on Network
 509 sendmsg: ; BC = message addr
 510 00C7 60 mov h,b
 511 00C8 69 mov l,c ; HL = message address
 512 00C9 22AD00 shld msg$adr
 513 re$sendmsg:
 514 00CC 3E0A mvi a,max$retries
 515 00CE 32AF00 sta retry$count ; initialize retry count
 516 send:
 517 00D1 2AAD00 lhld msg$adr
 518 00D4 0E05 mvi c,ENQ
 519 00D6 CD4E00 call Char$out ; send ENQ to master
 520 00D9 1664 mvi d,timeout$retries
 521 ENQ$response:
 522 00DB CD6300 call Char$in
 523 00DE D2E800 jnc gotENQresponse
 524 00E1 15 dcr d
 525 00E2 C2DB00 jnz ENQ$response
 526 00E5 C32B01 jmp Charintimeout
 527 gotENQresponse:
 528 00E8 CD1E01 call get$ACK0
 529 00EB 0E01 mvi c,SOH
 530 00ED 1E05 mvi e,5
 531 00EF CD9A00 call Msg$out ; send SOH FMT DID SID FNC SIZ
 532 00F2 AF xra a
 533 00F3 92 sub d
 534 00F4 4F mov c,a
 535 00F5 CD7F00 call net$out ; send HCS (header checksum)
 536 00F8 CD1801 call get$ACK
 537 00FB 2B dcx h
 538 00FC 5E mov e,m
 539 00FD 23 inx h
 540 00FE 1C inr e
 541 00FF 0E02 mvi c,STX
 542 0101 CD9A00 call Msg$out ; send STX DB0 DB1 ...
 543 0104 0E03 mvi c,ETX
 544 0106 CD3C00 call Pre$Char$out ; send ETX
 545 0109 AF xra a
 546 010A 92 sub d
 547 010B 4F mov c,a
 548 010C CD7F00 call Net$out ; send the checksum
 549 010F 0E04 mvi c,EOT
 550 0111 CD3F00 call nChar$out ; send EOT
 551 0114 CD1801 call get$ACK ; (leave these
 552 0117 C9 ret ; two instructions)
 553
 554 get$ACK:
 555 0118 CD6300 call Char$in
 556 011B DA2301 jc send$retry ; jump if timeout
 557 get$ACK0:
 558 011E E67F ani 7fh
 559 0120 D606 sui ACK
 560 0122 C8 rz

CP/M RMAC ASSEM 1.1 #013 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

 561 send$retry:
 562 0123 E1 pop h ; discard return address
 563 0124 21AF00 lxi h,retry$count
 564 0127 35 dcr m
 565 0128 C2D100 jnz send ; send again unles max retries
 566 Charintimeout:
 567 012B 3E01 mvi a,senderr
 568
 569 if always$retry
 570 012D CDD201 call error$return
 571 0130 C3CC00 jmp re$sendmsg
 572 else
 573 jmp error$return
 574 endif
 575
 576 page

CP/M RMAC ASSEM 1.1 #014 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

 577
 578 ; Receive Message from Network
 579 receivemsg: ; BC = message addr
 580 0133 60 mov h,b
 581 0134 69 mov l,c ; HL = message address
 582 0135 22AD00 shld msg$adr
 583 re$receivemsg:
 584 0138 3E0A mvi a,max$retries
 585 013A 32AF00 sta retry$count ; initialize retry count
 586 re$call:
 587 013D CD4F01 call receive ; rtn from receive is receive error
 588
 589 receive$retry:
 590 0140 21AF00 lxi h,retry$count
 591 0143 35 dcr m
 592 0144 C23D01 jnz re$call
 593 receive$timeout:
 594 0147 3E02 mvi a,rcverr
 595
 596 if always$retry
 597 0149 CDD201 call error$return
 598 014C C33801 jmp re$receivemsg
 599 else
 600 jmp error$return
 601 endif
 602
 603 receive:
 604 014F 2AAD00 lhld msg$adr
 605 0152 1664 mvi d,timeout$retries
 606 receive$firstchar:
 607 0154 CD5E00 call xcharin
 608 0157 D26201 jnc got$firstchar
 609 015A 15 dcr d
 610 015B C25401 jnz receive$firstchar
 611 015E E1 pop h ; discard receive$retry rtn adr
 612 015F C34701 jmp receive$timeout
 613 got$firstchar:
 614 0162 E67F ani 7fh
 615 0164 FE05 cpi ENQ ; Enquire?
 616 0166 C24F01 jnz receive
 617
 618 0169 0E06 mvi c,ACK
 619 016B CD3F00 call nChar$out ; acknowledge ENQ with an ACK
 620
 621 016E CD6300 call Char$in
 622 0171 D8 rc ; return to receive$retry
 623 0172 E67F ani 7fh
 624 0174 FE01 cpi SOH ; Start of Header ?
 625 0176 C0 rnz ; return to receive$retry
 626 0177 57 mov d,a ; initialize the HCS
 627 0178 1E05 mvi e,5
 628 017A CD8500 call Msg$in
 629 017D D8 rc ; return to receive$retry
 630 017E CD9000 call Net$in

CP/M RMAC ASSEM 1.1 #015 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

 631 0181 D8 rc ; return to receive$retry
 632 0182 C2CD01 jnz bad$checksum
 633 0185 CDC501 call send$ACK
 634 0188 CD6300 call Char$in
 635 018B D8 rc ; return to receive$retry
 636 018C E67F ani 7fh
 637 018E FE02 cpi STX ; Start of Data ?
 638 0190 C0 rnz ; return to receive$retry
 639 0191 57 mov d,a ; initialize the CKS
 640 0192 2B dcx h
 641 0193 5E mov e,m
 642 0194 23 inx h
 643 0195 1C inr e
 644 0196 CD8500 call msg$in ; get DB0 DB1 ...
 645 0199 D8 rc ; return to receive$retry
 646 019A CD6300 call Char$in ; get the ETX
 647 019D D8 rc ; return to receive$retry
 648 019E E67F ani 7fh
 649 01A0 FE03 cpi ETX
 650 01A2 C0 rnz ; return to receive$retry
 651 01A3 82 add d
 652 01A4 57 mov d,a ; update CKS with ETX
 653 01A5 CD9000 call Net$in ; get CKS
 654 01A8 D8 rc ; return to receive$retry
 655 01A9 CD6300 call Char$in ; get EOT
 656 01AC D8 rc ; return to receive$retry
 657 01AD E67F ani 7fh
 658 01AF FE04 cpi EOT
 659 01B1 C0 rnz ; return to receive$retry
 660 01B2 7A mov a,d
 661 01B3 B7 ora a ; test CKS
 662 01B4 C2CD01 jnz bad$checksum
 663 01B7 E1 pop h ; discard receive$retry rtn adr
 664 01B8 2AAD00 lhld msg$adr
 665 01BB 23 inx h
 666 01BC 3A0100 lda configtbl+1
 667 01BF 96 sub m
 668 01C0 CAC501 jz send$ACK ; jump with A=0 if DID ok
 669 01C3 3EFF mvi a,0ffh ; return code shows bad DID
 670 send$ACK:
 671 01C5 F5 push psw ; save return code
 672 01C6 0E06 mvi c,ACK
 673 01C8 CD3F00 call nChar$out ; send ACK if checksum ok
 674 01CB F1 pop psw ; restore return code
 675 01CC C9 ret
 676
 677 bad$DID:
 678 bad$checksum:
 679 01CD 0E15 mvi c,NAK
 680 01CF C34E00 jmp Char$out ; send NAK on bad chksm & not max retries
 681 ; ret
 682
 683 error$return:
 684 01D2 210000 lxi h,network$status

CP/M RMAC ASSEM 1.1 #016 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

 685 01D5 B6 ora m
 686 01D6 77 mov m,a
 687 01D7 CDDD01 call ntwrkerror ; perform any required device re-init.
 688 01DA 3EFF mvi a,0ffh
 689 01DC C9 ret
 690
 691 ntwrkerror:
 692 ; perform any required device
 693 01DD C9 ret ; re-initialization
 694
 695 page

CP/M RMAC ASSEM 1.1 #017 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

 696
 697 ;
 698 ntwrkwboot:
 699
 700 ; This procedure is called each time the CCP is
 701 ; reloaded from disk. This version prints ""
 702 ; on the console and then returns, but anything necessary
 703 ; for restart can be put here.
 704
 705 01DE 0E09 mvi c,9
 706 01E0 111500 lxi d,wboot$msg
 707 01E3 C30500 jmp BDOS
 708
 709 page

CP/M RMAC ASSEM 1.1 #018 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

 710
 711 if cpnos
 712 ;
 713 ; LOGIN to a Master
 714 ;
 715 ; Equates
 716 ;
 717 buff equ 0080h
 718
 719 readbf equ 10
 720
 721 active equ 0001$0000b
 722
 723 loginpr:
 724 mvi c,initpasswordmsglen
 725 lxi h,initpasswordmsg
 726 lxi d,passwordmsg
 727 copypassword:
 728 mov a,m
 729 stax d
 730 inx h
 731 inx d
 732 dcr c
 733 jnz copypassword
 734 mvi c,print
 735 lxi d,loginmsg
 736 call BDOS
 737 mvi c,readbf
 738 lxi d,buff-1
 739 mvi a,50h
 740 stax d
 741 call BDOS
 742 lxi h,buff
 743 mov a,m ; get # chars in the command tail
 744 ora a
 745 jz dologin ; default login if empty command tail
 746 mov c,a ; A = # chars in command tail
 747 xra a
 748 mov b,a ; B will accumulate master ID
 749 scanblnks:
 750 inx h
 751 mov a,m
 752 cpi ' '
 753 jnz pastblnks ; skip past leading blanks
 754 dcr c
 755 jnz scanblnks
 756 jmp prelogin ; jump if command tail exhausted
 757 pastblnks:
 758 cpi '['
 759 jz scanMstrID
 760 mvi a,8
 761 lxi d,passwordmsg+5+8-1
 762 xchg
 763 spacefill:

CP/M RMAC ASSEM 1.1 #019 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

 764 mvi m,' '
 765 dcx h
 766 dcr a
 767 jnz spacefill
 768 xchg
 769 scanLftBrkt:
 770 mov a,m
 771 cpi '['
 772 jz scanMstrID
 773 inx d
 774 stax d ;update the password
 775 inx h
 776 dcr c
 777 jnz scanLftBrkt
 778 jmp prelogin
 779 scanMstrID:
 780 inx h
 781 dcr c
 782 jz loginerr
 783 mov a,m
 784 cpi ']'
 785 jz prelogin
 786 sui '0'
 787 cpi 10
 788 jc updateID
 789 adi ('0'-'A'+10) and 0ffh
 790 cpi 16
 791 jnc loginerr
 792 updateID:
 793 push psw
 794 mov a,b
 795 add a
 796 add a
 797 add a
 798 add a
 799 mov b,a ; accum * 16
 800 pop psw
 801 add b
 802 mov b,a
 803 jmp scanMstrID
 804
 805 prelogin:
 806 mov a,b
 807
 808 dologin:
 809 lxi b,passwordmsg+1
 810 stax b
 811 dcx b
 812 call sendmsg
 813 inr a
 814 lxi d,loginfailedmsg
 815 jz printmsg
 816 lxi b,passwordmsg
 817 call receivemsg

CP/M RMAC ASSEM 1.1 #020 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

 818 inr a
 819 lxi d,loginfailedmsg
 820 jz printmsg
 821 lda passwordmsg+5
 822 inr a
 823 jnz loginOK
 824 jmp printmsg
 825
 826 loginerr:
 827 lxi d,loginerrmsg
 828 printmsg:
 829 mvi c,print
 830 call BDOS
 831 jmp loginpr ; try login again
 832
 833 loginOK:
 834 lxi h,network$status ; HL = status byte addr
 835 mov a,m
 836 ori active ; set active bit true
 837 mov m,a
 838 ret
 839
 840 ;
 841 ; Local Data Segment
 842 ;
 843 loginmsg:
 844 db cr,lf
 845 db 'LOGIN='
 846 db '$'
 847
 848 initpasswordmsg:
 849 db 00h ; FMT
 850 db 00h ; DID Master ID #
 851 db slave$ID ;SID
 852 db 40h ; FNC
 853 db 7 ; SIZ
 854 db 'PASSWORD' ; password
 855 initpasswordmsglen equ $-initpasswordmsg
 856
 857
 858 loginerrmsg:
 859 db lf
 860 db 'Invalid LOGIN'
 861 db '$'
 862
 863 loginfailedmsg:
 864 db lf
 865 db 'LOGIN Failed'
 866 db '$'
 867
 868 DSEG
 869 passwordmsg:
 870 ds 1 ; FMT
 871 ds 1 ; DID

CP/M RMAC ASSEM 1.1 #021 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

 872 ds 1 ; SID
 873 ds 1 ; FNC
 874 ds 1 ; SIZ
 875 ds 8 ; DAT = password
 876 endif
 877
 878 01E6 end

CP/M RMAC ASSEM 1.1 #022 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

ACK 0006 175# 559 618 672
ACTIVE 0010 164# 721# 836
ALTOS FFFF 28# 62 219 266 296 338 347 464
ALWAYSRETRY FFFF 30# 569 596
ASCII 0000 34# 247 306 370 400
BADCHECKSUM 01CD 632 662 678#
BADDID 01CD 677#
BDOS 0005 40 42# 707 736 741 830
CHARIN 0063 308 333# 414 522 555 621 634 646 655
CHARIN0 0065 331 344# 357
CHARIN1 0067 346# 355
CHARIN2 007C 353 360#
CHARINTIMEOUT 012B 526 566#
CHAROUT 004E 253 257 294# 384 519 680
CHKSIN 0094 418#
CNFGTBLADR 00C3 50 501#
CONFIGTBL 0000 114# 447 459 502 666
CONOUT 0002 180#
CPNOS 0000 24# 39 66 445 478 711
CR 000D 177# 844
DB82 0000 27# 56 187 274
DEBUG 0000 36#
DEFAULTMASTER 0000 97#
DELAY 002F 236# 302
DELAY1 0031 238# 244
DELAY2 0033 240# 242
DPRTI 001E 190# 203# 211# 222# 361
DPRTO 001E 196# 207# 215# 226# 291
DSC2 0000 26# 59 199 280 471
ENQ 0005 174# 518 615
ENQRESPONSE 00DB 521# 525
EOT 0004 173# 549 658
ERRORRETURN 01D2 570 573 597 600 683#
ETX 0003 172# 543 649
FALSE 0000 21# 22 24 26 27 32 34 36
FIRSTPASS 00B0 159#
GETACK 0118 536 551 554#
GETACK0 011E 528 557#
GOTENQRESPONSE 00E8 523 527#
GOTFIRSTCHAR 0162 608 613#
INITOK 00B6 482#
LF 000A 176# 844 859 864
LOGIN 0040 183#
MAXRETRIES 000A 155# 514 584
MODEM 0000 32# 150 200 335 471
MSGADR 00AD 148# 512 517 582 604 664
MSGIN 0085 387# 394 628 644
MSGOUT 009A 426# 531 542
MSGOUTLOOP 009F 432# 437
MSKI 0001 189# 202# 210# 221# 352
MSKO 0004 193# 206# 214# 225# 271
NAK 0015 178# 679
NCHAROUT 003F 265# 272 277 295 550 619 673
NETIN 0090 389 397# 630 653

CP/M RMAC ASSEM 1.1 #023 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

NETOUT 007F 364# 435 535 548
NETWORKERRMSG 0021 103#
NETWORKSTATUS 0000 116# 317 319 491 494 684 834
NIOS 0000 45# 46
NTWRKERROR 01DD 53 687 691#
NTWRKINIT 00A9 48 443#
NTWRKSTS 00B8 49 490#
NTWRKWBOOT 01DE 54 698#
PRECHAROUT 003C 260# 431 544
PRINT 0009 181# 734 829
RCVERR 0002 165# 318 493 594
RCVMSG 0043 182#
RECALL 013D 586# 592
RECEIVE 014F 587 603# 616
RECEIVEFIRSTCHAR 0154 606# 610
RECEIVEMSG 0133 52 579# 817
RECEIVERETRY 0140 589#
RECEIVETIMEOUT 0147 593# 612
RERECEIVEMSG 0138 583# 598
RESENDMSG 00CC 513# 571
RETRYCOUNT 00AF 156# 515 563 585 590
SEND 00D1 516# 565
SENDACK 01C5 633 668 670#
SENDERR 0001 166# 493 567
SENDMSG 00C7 51 509# 812
SENDRETRY 0123 556 561#
SLAVEID 0056 57# 60# 63# 70 92 142 458 851
SOH 0001 170# 529 624
STATI 001F 188# 201# 209# 220# 349 351
STATO 001F 192# 205# 213# 224# 268 270 473 475
STX 0002 171# 541 637
TIMEOUTRETRIES 0064 151# 153# 520 605
TRUE FFFF 22# 28 30
WBOOTMSG 0015 99# 706
XCHARIN 005E 329# 607

Listing E-1: Request Network I/O System

E.5 Modifying the NETWRKIF

The NETWRKIF, designed for an Altos ACS 8000-10, is also easy to modify. The NETWRKIF implements
the protocol by checking for the first character of an incoming message through one of the XIOS CONIN
routines. After receiving the first character and validating it, the NETWRKIF disables interrupts and reads
the rest of the message in under direct process control. If an XIOS CONIN routine does not exist for the port
to be used for the network, you must write one.

To modify this NETWRKIF, follow these steps:

1. Set the NMB$SLVS equate to the number of requesters to be supported. If more than four must be
supported, you must add more Process Descriptors and queues.

2. If the server can only transmit or receive one message at a time, then the NETWRKIF supports a
mutual exclusion queue to prevent collisions. To use this queue, set MUTEXIN or MUTEXOUT to
true.

3. If the server is running on a Z80 processor, set Z80 to true for more efficient implementation of
character I/O.

4. If all or some of the network RS-232 ports support only 7 bit ASCII, modify the BINARYASCII table
by setting the appropriate entries to 0.

5. Modify the network port definitions. CONSOLE4$STATUS through PRINTER2$STATUS must be
modified. Also, CHARIOTBL must be modified, so that the console numbers associated with the
ports listed in STATUS$PORTS match.

6. I/O port numbers in the routines CHAR$OUT and CHAR$IN might have to be modified. You might

have to implement a I/O port table similar to STATUS$PORTS. This implementation relies on the
fact that the Altos ACS 8000-10 always positions its I/O ports at a fixed offset from its status ports.

The sample NETWRKIF contains a debug conditional assembly flag that permits generation of a
NETWRKIF.COM file. The NETWRKIF.COM version can debug a single requester, as follows:

1. Perform a GENSYS in which the SERVER.RSP is included; do not include a NETWRKIF.RSP.
During the GENSYS, do not specify bank-switched memory.

2. Execute the MPM.SYS produced from GENSYS, and load the NETWRKIF.COM file with DDT,
SID, or ZSID.

3. Use DDT, SID, or ZSID to debug the NETWRKIF process. This works only for a single requester.

CP/M RMAC ASSEM 1.1 #001 MASTER NETWORK I/F MODULE

 1 title 'Master Network I/F Module'
 2 page 54
 3
 4 ;***
 5 ;***
 6 ;** **
 7 ;** S e r v e r N e t w o r k I / F M o d u l e **
 8 ;** **
 9 ;***
 10 ;***
 11
 12 ;/*
 13 ; Copyright (C) 1980
 14 ; Digital Research
 15 ; P.O. Box 579
 16 ; Pacific Grove, CA 93950
 17 ;
 18 ; Modified October 5, 1982
 19 ;
 20 ;*/
 21
 22
 23 0000 = false equ 0
 24 FFFF = true equ not false
 25
 26 FFFF = z80 equ true
 27
 28 0000 = debug equ false
 29 0000 = modem equ false
 30
 31 0000 = WtchDg equ false ; include watch dog timer
 32
 33 0000 = mutexin equ false ; provide mutual exclusion on input
 34 0000 = mutexout equ false ; provide mutual exclusion on output
 35
 36
 37 if debug
 38
 39 NmbSlvs equ 1 ;debug only one requester
 40
 41 lxi sp,NtwrkIS0+2eh
 42 mvi c,145
 43 mvi e,64
 44 call bdos ; set priority to 64
 45 lxi h,UQCBNtwrkQI0 ; initialize reentrant variables
 46 lxi d,UQCBNtwrkQO0
 47 lxi b,BufferQ0
 48 mvi a,00h
 49 ret
 50
 51 bdosadr:
 52 dw 0005h
 53
 54 else

CP/M RMAC ASSEM 1.1 #002 MASTER NETWORK I/F MODULE

 55
 56 0002 = NmbSlvs equ 2 ;RSP is configured for two requesters
 57
 58 bdosadr:
 59 0000 0000 dw $-$;XDOS entry point for RSP version
 60
 61 endif
 62
 63 ; Network Interface Process #0
 64
 65 NtwrkIP0:
 66 0002 0000 dw 0 ; link
 67 0004 00 db 0 ; status
 68 0005 40 db 64 ; priority
 69 0006 6400 dw NtwrkIS0+46 ; stack pointer
 70 0008 4E7477726B db 'NtwrkIP0' ; name
 71 0010 00 db 0 ; console
 72 0011 FF db 0ffh ; memseg
 73 0012 ds 2 ; b
 74 0014 ds 2 ; thread
 75 0016 ds 2 ; buff
 76 0018 ds 1 ; user code & disk slct
 77 0019 ds 2 ; dcnt
 78 001B ds 1 ; searchl
 79 001C ds 2 ; searcha
 80 001E ds 2 ; active drives
 81 0020 0000 dw 0 ; HL'
 82 0022 0000 dw 0 ; DE'
 83 0024 0000 dw 0 ; BC'
 84 0026 0000 dw 0 ; AF'
 85 0028 0000 dw 0 ; IY
 86 002A 0000 dw 0 ; IX
 87 002C 8000 dw UQCBNtwrkQI0 ; HL
 88 002E A000 dw UQCBNtwrkQO0 ; DE
 89 0030 A600 dw BufferQ0 ; BC
 90 0032 0000 dw 0 ; AF, A = ntwkif console dev #
 91 0034 ds 2 ; scratch
 92
 93 NtwrkIS0:
 94 0036 C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 95 003E C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 96 0046 C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 97 004E C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 98 0056 C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 99 005E C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h
 100 0064 4206 dw setup
 101
 102 QCBNtwrkQI0:
 103 0066 ds 2 ; link
 104 0068 4E7477726B db 'NtwrkQI0' ; name
 105 0070 0200 dw 2 ; msglen
 106 0072 0100 dw 1 ; nmbmsgs
 107 0074 ds 2 ; dqph
 108 0076 ds 2 ; nqph

CP/M RMAC ASSEM 1.1 #003 MASTER NETWORK I/F MODULE

 109 0078 ds 2 ; msgin
 110 007A ds 2 ; msgout
 111 007C ds 2 ; msgcnt
 112 007E ds 2 ; buffer
 113
 114 UQCBNtwrkQI0:
 115 0080 6600 dw QCBNtwrkQI0 ; pointer
 116 0082 8400 dw BufferQI0Addr ; msgadr
 117 BufferQI0Addr:
 118 0084 A600 dw BufferQ0
 119
 120 QCBNtwrkQO0:
 121 0086 ds 2 ; link
 122 0088 4E7477726B db 'NtwrkQO0' ; name
 123 0090 0200 dw 2 ; msglen
 124 0092 0100 dw 1 ; nmbmsgs
 125 0094 ds 2 ; dqph
 126 0096 ds 2 ; nqph
 127 0098 ds 2 ; msgin

 128 009A ds 2 ; msgout
 129 009C ds 2 ; msgcnt
 130 009E ds 2 ; buffer
 131
 132 UQCBNtwrkQO0:
 133 00A0 8600 dw QCBNtwrkQO0 ; pointer
 134 00A2 A400 dw BufferQO0Addr ; msgadr
 135 BufferQO0Addr:
 136 00A4 ds 2
 137
 138 BufferQ0:
 139 00A6 ds 1 ; FMT
 140 00A7 ds 1 ; DID
 141 00A8 ds 1 ; SID
 142 00A9 ds 1 ; FNC
 143 00AA ds 1 ; SIZ
 144 00AB ds 257 ; MSG
 145
 146 ; Network Interface Process #1
 147
 148 if NmbSlvs GE 2
 149 NtwrkIP1:
 150
 151 if NmbSlvs GE 3
 152 dw NtwrkIP2 ; link
 153 else
 154 01AC 0000 dw 0 ; link
 155 endif
 156
 157 01AE 00 db 0 ; status
 158 01AF 40 db 64 ; priority
 159 01B0 0E02 dw NtwrkIS1+46 ; stack pointer
 160 01B2 4E7477726B db 'NtwrkIP1' ; name
 161 01BA 00 db 0 ; console
 162 01BB FF db 0ffh ; memseg

CP/M RMAC ASSEM 1.1 #004 MASTER NETWORK I/F MODULE

 163 01BC ds 2 ; b
 164 01BE ds 2 ; thread
 165 01C0 ds 2 ; buff
 166 01C2 ds 1 ; user code & disk slct
 167 01C3 ds 2 ; dcnt
 168 01C5 ds 1 ; searchl
 169 01C6 ds 2 ; searcha
 170 01C8 ds 2 ; active drives
 171 01CA 0000 dw 0 ; HL'
 172 01CC 0000 dw 0 ; DE'
 173 01CE 0000 dw 0 ; BC'
 174 01D0 0000 dw 0 ; AF'
 175 01D2 0000 dw 0 ; IY
 176 01D4 0000 dw 0 ; IX
 177 01D6 2A02 dw UQCBNtwrkQI1 ; HL
 178 01D8 4A02 dw UQCBNtwrkQO1 ; DE
 179 01DA 5002 dw BufferQ1 ; BC
 180 01DC 0001 dw 0100h ; AF, A = ntwkif console dev #
 181 01DE ds 2 ; scratch
 182
 183 NtwrkIS1:
 184 01E0 C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 185 01E8 C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 186 01F0 C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 187 01F8 C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 188 0200 C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 189 0208 C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h
 190 020E 6906 dw init
 191
 192 QCBNtwrkQI1:
 193 0210 ds 2 ; link
 194 0212 4E7477726B db 'NtwrkQI1' ; name
 195 021A 0200 dw 2 ; msglen
 196 021C 0100 dw 1 ; nmbmsgs
 197 021E ds 2 ; dqph
 198 0220 ds 2 ; nqph
 199 0222 ds 2 ; msgin
 200 0224 ds 2 ; msgout
 201 0226 ds 2 ; msgcnt

 202 0228 ds 2 ; buffer
 203
 204 UQCBNtwrkQI1:
 205 022A 1002 dw QCBNtwrkQI1 ; pointer
 206 022C 2E02 dw BufferQI1Addr ; msgadr
 207 BufferQI1Addr:
 208 022E 5002 dw BufferQ1
 209
 210 QCBNtwrkQO1:
 211 0230 ds 2 ; link
 212 0232 4E7477726B db 'NtwrkQO1' ; name
 213 023A 0200 dw 2 ; msglen
 214 023C 0100 dw 1 ; nmbmsgs
 215 023E ds 2 ; dqph
 216 0240 ds 2 ; nqph

CP/M RMAC ASSEM 1.1 #005 MASTER NETWORK I/F MODULE

 217 0242 ds 2 ; msgin
 218 0244 ds 2 ; msgout
 219 0246 ds 2 ; msgcnt
 220 0248 ds 2 ; buffer
 221
 222 UQCBNtwrkQO1:
 223 024A 3002 dw QCBNtwrkQO1 ; pointer
 224 024C 4E02 dw BufferQO1Addr ; msgadr
 225 BufferQO1Addr:
 226 024E ds 2
 227
 228 BufferQ1:
 229 0250 ds 1 ; FMT
 230 0251 ds 1 ; DID
 231 0252 ds 1 ; SID
 232 0253 ds 1 ; FNC
 233 0254 ds 1 ; SIZ
 234 0255 ds 257 ; MSG
 235 endif
 236
 237 ; Network Interface Process #2
 238
 239 if NmbSlvs GE 3
 240 NtwrkIP2:
 241
 242 if NmbSlvs GE 4
 243 dw NtwrkIP3 ; link
 244 else
 245 dw 0 ; link
 246 endif
 247
 248 db 0 ; status
 249 db 64 ; priority
 250 dw NtwrkIS2+46 ; stack pointer
 251 db 'NtwrkIP2' ; name
 252 db 0 ; console
 253 db 0ffh ; memseg
 254 ds 2 ; b
 255 ds 2 ; thread
 256 ds 2 ; buff
 257 ds 1 ; user code & disk slct
 258 ds 2 ; dcnt
 259 ds 1 ; searchl
 260 ds 2 ; searcha
 261 ds 2 ; active drives
 262 dw 0 ; HL'
 263 dw 0 ; DE'
 264 dw 0 ; BC'
 265 dw 0 ; AF'
 266 dw 0 ; IY
 267 dw 0 ; IX
 268 dw UQCBNtwrkQI2 ; HL
 269 dw UQCBNtwrkQO2 ; DE
 270 dw BufferQ2 ; BC

CP/M RMAC ASSEM 1.1 #006 MASTER NETWORK I/F MODULE

 271 dw 0200h ; AF, A = ntwkif console dev #

 272 ds 2 ; scratch
 273
 274 NtwrkIS2:
 275 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 276 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 277 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 278 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 279 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 280 dw 0c7c7h,0c7c7h,0c7c7h
 281 dw init
 282
 283 QCBNtwrkQI2:
 284 ds 2 ; link
 285 db 'NtwrkQI2' ; name
 286 dw 2 ; msglen
 287 dw 1 ; nmbmsgs
 288 ds 2 ; dqph
 289 ds 2 ; nqph
 290 ds 2 ; msgin
 291 ds 2 ; msgout
 292 ds 2 ; msgcnt
 293 ds 2 ; buffer
 294
 295 UQCBNtwrkQI2:
 296 dw QCBNtwrkQI2 ; pointer
 297 dw BufferQI2Addr ; msgadr
 298 BufferQI2Addr:
 299 dw BufferQ2
 300
 301 QCBNtwrkQO2:
 302 ds 2 ; link
 303 db 'NtwrkQO2' ; name
 304 dw 2 ; msglen
 305 dw 1 ; nmbmsgs
 306 ds 2 ; dqph
 307 ds 2 ; nqph
 308 ds 2 ; msgin
 309 ds 2 ; msgout
 310 ds 2 ; msgcnt
 311 ds 2 ; buffer
 312
 313 UQCBNtwrkQO2:
 314 dw QCBNtwrkQO2 ; pointer
 315 dw BufferQO2Addr ; msgadr
 316 BufferQO2Addr:
 317 ds 2
 318
 319 BufferQ2:
 320 ds 1 ; FMT
 321 ds 1 ; DID
 322 ds 1 ; SID
 323 ds 1 ; FNC
 324 ds 1 ; SIZ

CP/M RMAC ASSEM 1.1 #007 MASTER NETWORK I/F MODULE

 325 ds 257 ; MSG
 326 endif
 327
 328 ; Network Interface Process #3
 329
 330 if NmbSlvs GE 4
 331 NtwrkIP3:
 332 dw 0 ; link
 333 db 0 ; status
 334 db 64 ; priority
 335 dw NtwrkIS3+46 ; stack pointer
 336 db 'NtwrkIP3' ; name
 337 db 0 ; console
 338 db 0ffh ; memseg
 339 ds 2 ; b
 340 ds 2 ; thread
 341 ds 2 ; buff
 342 ds 1 ; user code & disk slct
 343 ds 2 ; dcnt
 344 ds 1 ; searchl
 345 ds 2 ; searcha

 346 ds 2 ; active drives
 347 dw 0 ; HL'
 348 dw 0 ; DE'
 349 dw 0 ; BC'
 350 dw 0 ; AF'
 351 dw 0 ; IY
 352 dw 0 ; IX
 353 dw UQCBNtwrkQI3 ; HL
 354 dw UQCBNtwrkQO3 ; DE
 355 dw BufferQ3 ; BC
 356 dw 0300h ; AF, A = ntwkif console dev #
 357 ds 2 ; scratch
 358
 359 NtwrkIS3:
 360 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 361 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 362 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 363 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 364 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 365 dw 0c7c7h,0c7c7h,0c7c7h
 366 dw init
 367
 368 QCBNtwrkQI3:
 369 ds 2 ; link
 370 db 'NtwrkQI3' ; name
 371 dw 2 ; msglen
 372 dw 1 ; nmbmsgs
 373 ds 2 ; dqph
 374 ds 2 ; nqph
 375 ds 2 ; msgin
 376 ds 2 ; msgout
 377 ds 2 ; msgcnt
 378 ds 2 ; buffer

CP/M RMAC ASSEM 1.1 #008 MASTER NETWORK I/F MODULE

 379
 380 UQCBNtwrkQI3:
 381 dw QCBNtwrkQI3 ; pointer
 382 dw BufferQI3Addr ; msgadr
 383 BufferQI3Addr:
 384 dw BufferQ3
 385
 386 QCBNtwrkQO3:
 387 ds 2 ; link
 388 db 'NtwrkQO3' ; name
 389 dw 2 ; msglen
 390 dw 1 ; nmbmsgs
 391 ds 2 ; dqph
 392 ds 2 ; nqph
 393 ds 2 ; msgin
 394 ds 2 ; msgout
 395 ds 2 ; msgcnt
 396 ds 2 ; buffer
 397
 398 UQCBNtwrkQO3:
 399 dw QCBNtwrkQO3 ; pointer
 400 dw BufferQO3Addr ; msgadr
 401 BufferQO3Addr:
 402 ds 2
 403
 404 BufferQ3:
 405 ds 1 ; FMT
 406 ds 1 ; DID
 407 ds 1 ; SID
 408 ds 1 ; FNC
 409 ds 1 ; SIZ
 410 ds 257 ; MSG
 411 endif
 412
 413
 414 if WtchDg
 415 ; Watchdog Timer Process
 416 ;
 417 WatchDogPD:
 418
 419 if NmbSlvs GT 1

 420 dw NtwrkIP1 ; link to the remaining NETWRKIF PD's
 421 else
 422 dw 0 ; link
 423 endif
 424
 425 db 0 ; status
 426 db 64 ; priority
 427 dw WatchDogSTK+46 ; stack pointer
 428 db 'WatchDog' ; name
 429 db 0 ; console
 430 db 0ffh ; memseg
 431 ds 2 ; b
 432 ds 2 ; thread

CP/M RMAC ASSEM 1.1 #009 MASTER NETWORK I/F MODULE

 433 ds 2 ; buff
 434 ds 1 ; user code & disk slct
 435 ds 2 ; dcnt
 436 ds 1 ; searchl
 437 ds 2 ; searcha
 438 ds 2 ; active drives
 439 dw 0 ; HL'
 440 dw 0 ; DE'
 441 dw 0 ; BC'
 442 dw 0 ; AF'
 443 dw 0 ; IY
 444 dw 0 ; IX
 445 dw 0 ; HL
 446 dw 0 ; DE
 447 dw 0 ; BC
 448 dw 0 ; AF
 449 ds 2 ; scratch
 450
 451 WatchDogSTK:
 452 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 453 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 454 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 455 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 456 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 457 dw 0c7c7h,0c7c7h,0c7c7h
 458 dw WatchDog
 459
 460 WatchDogTime:
 461 dw $-$; one-second counter
 462
 463 WatchDogTable:
 464 ; Waiting Timeout Start Flag Requester
 465 db 0, 0, 0,0, 0ah ; #0
 466 db 0, 0, 0,0, 0bh ; #1
 467 db 0, 0, 0,0, 0fh ; #2
 468 db 0, 0, 0,0, 0dh ; #3
 469 endif
 470
 471 if mutexin or mutexout
 472 QCBMXSXmitq: ; MX queue for requester transmitting
 473
 474 ds 2 ; link
 475 db 'MXSXmitq' ; name
 476 dw 0 ; msglen
 477 dw 1 ; nmbmsgs
 478 ds 2 ; dqph
 479 ds 2 ; nqph
 480 ds 2 ; msgin
 481 ds 2 ; msgout
 482 ds 2 ; msgcnt
 483 ds 2 ; buffer (owner PD)
 484
 485 UQCBMXSXmitq:
 486 dw QCBMXSXmitq

CP/M RMAC ASSEM 1.1 #010 MASTER NETWORK I/F MODULE

 487 ; dw 0 ; no message, since it's an MX queue
 488 ; db 'MXSXmitq' ; no name, since the QCB pointer is resolved
 489 endif

 490
 491 ; Server Configuration Table
 492
 493 configtbl:
 494 0356 00 db 0 ; Server status byte
 495 0357 00 db 0 ; Server ID
 496 0358 02 db NmbSlvs ; Maximum number of requesters supported
 497 0359 00 db 0 ; Number of requesters currently logged-in
 498 035A 0000 dw 0000h ; 16 bit vector of logged in requesters
 499 035C ds 16 ; Requester ID's currently logged-in
 500 036C 5041535357 db 'PASSWORD' ; login password
 501
 502 0001 = nmsg equ 1 ; number of messages buffered
 503 0096 = slavestklen equ 96h ; server process stack size
 504
 505 if NmbSlvs GE 2
 506 slave1$stk:
 507 0374 ds slavestklen-2
 508 0408 0A04 dw Slave1
 509
 510 endif
 511
 512 if NmbSlvs GE 3
 513 slave2$stk:
 514 ds slavestklen-2
 515 dw Slave2
 516 endif
 517
 518 if NmbSlvs GE 4
 519 slave3$stk:
 520 ds slavestklen-2
 521 dw Slave3
 522 endif
 523
 524 if NmbSlvs GE 2
 525 Slave1:
 526 040A ds 52 ; SERVR1PR processor descriptor
 527 endif
 528
 529 if NmbSlvs GE 3
 530 Slave2:
 531 ds 52 ; SERVR2PR processor descriptor
 532 endif
 533
 534 if NmbSlvs GE 4
 535 Slave3:
 536 ds 52 ; SERVR3PR processor descriptor
 537 endif
 538
 539 ; Local Data Segment
 540

CP/M RMAC ASSEM 1.1 #011 MASTER NETWORK I/F MODULE

 541 BinaryASCII:
 542 043E FF db 0ffh ; Requester #0: 0=7 bit ASCII, FF=8 bit binary
 543 043F FF db 0ffh ; #1
 544 0440 FF db 0ffh ; #2
 545 0441 FF db 0ffh ; #3
 546
 547 Networkstatus:
 548 0442 00 db 0 ; Slave #0 network status byte
 549 0443 00 db 0 ; #1
 550 0444 00 db 0 ; #2
 551 0445 00 db 0 ; #3
 552
 553 0446 0000 conin: dw $-$; save area for XIOS routine address
 554
 555 000A = max$retries equ 10 ; maximum send message retries
 556 ;
 557 ; The following tables are for use in the ALTOS i/o routines.
 558 ; Note that this program MUST be used with an XIOS which allows
 559 ; using the second printer port as a console port - Accessed as console
 560 ; #4
 561
 562 002B = Console4$status equ 02bh
 563 002F = Console3$status equ 02fh

 564 002D = Console2$status equ 02dh
 565 0029 = Printer2$status equ 029h ; ALSO CONSOLE #4
 566
 567 if z80
 568 ;
 569 ; ENTRIES IN THE FOLLOWING TWO TABLES MUST MATCH !!!!
 570
 571 status$ports:
 572 0448 2B db Console4$status ; Console 4 (Requester 0) status port
 573 0449 2F db Console3$status ; Console 3 (Requester 1) status port
 574 044A 2D db Console2$status ; Console 2 (Requester 2) status port
 575 044B 29 db Printer2$status ; Printer 2 (Requester 3) status port
 576 endif
 577
 578 chariotbl: ; Relationship between requesters and consoles
 579 044C 03 db 3
 580 044D 02 db 2
 581 044E 01 db 1
 582 044F 04 db 4
 583
 584 ; Network Status Byte Equates
 585
 586 0080 = ntwrktxrdy equ 10000000b ; NETWRKIF ready to send msg
 587 0010 = active equ 00010000b ; requester logged into network
 588 0008 = msgerr equ 00001000b ; error in received message
 589 0004 = ntwrk equ 00000100b ; network alive
 590 0002 = msgovr equ 00000010b ; message overrun
 591 0001 = ntwrkrxrdy equ 00000001b ; NETWRKIF has rcvd msg
 592
 593 ; BDOS and XDOS Equates
 594

CP/M RMAC ASSEM 1.1 #012 MASTER NETWORK I/F MODULE

 595 0085 = flagset equ 133 ; flag set
 596 0086 = makeq equ 134 ; make queue
 597 0089 = readq equ 137 ; read queue
 598 008B = writeq equ 139 ; write queue
 599 008D = delay equ 141 ; delay
 600 008E = dsptch equ 142 ; dispatch
 601 0090 = createp equ 144 ; create process
 602 009A = sydatad equ 154 ; system data page address
 603 0083 = poll equ 083h ; Poll device
 604
 605 ; General Equates
 606
 607 0001 = SOH equ 01h ; Start of Header
 608 0002 = STX equ 02h ; Start of Data
 609 0003 = ETX equ 03h ; End of Data
 610 0004 = EOT equ 04h ; End of Transmission
 611 0005 = ENQ equ 05h ; Enquire
 612 0006 = ACK equ 06h ; Acknowledge
 613 000A = LF equ 0ah ; Line Feed
 614 000D = CR equ 0dh ; Carriage Return
 615 0015 = NAK equ 15h ; Negative Acknowledge
 616
 617 0010 = printer2 equ 10h ; special poll device number for second
 618 ; printer port
 619
 620 ; Utility Procedures
 621
 622 bdos:
 623 0450 2A0000 lhld bdosadr ; get XDOS entry point from RSP start
 624 0453 E9 pchl
 625
 626 Nibout: ; A = nibble to be transmitted in ASCII
 627 0454 FE0A cpi 10
 628 0456 D25F04 jnc nibatof ; jump if A-F
 629 0459 C630 adi '0'
 630 045B 4F mov c,a
 631 045C C36804 jmp Charout
 632 nibatof:
 633 045F C637 adi 'A'-10
 634 0461 4F mov c,a
 635 0462 C36804 jmp Charout
 636
 637 PreCharout:

 638 0465 7A mov a,d
 639 0466 81 add c
 640 0467 57 mov d,a ; update the checksum
 641
 642 if z80 ; Z80 version, using OUT A,(C) instruction
 643 char$out:
 644
 645 ; Character output routine for network i/o
 646 ; using the ALTOS SIO ports
 647 ;
 648 ; Z80 version: this can use indirect port numbers in a clean,

CP/M RMAC ASSEM 1.1 #013 MASTER NETWORK I/F MODULE

 649 ; reentrant fashion
 650 ;
 651 ; Entry: C register contains 8 bit value to transmit
 652 ; Entry : Slave number in register b
 653
 654 0468 E5 push h
 655 0469 D5 push d
 656 046A C5 push b
 657 046B 51 mov d, c ; save the character
 658 046C 214804 lxi h, status$ports
 659 046F 48 mov c, b
 660 0470 0600 mvi b, 0 ; set (BC) = (b)
 661 0472 09 dad b
 662 0473 4E mov c,m
 663
 664 ; Now C contains the address of the correct status port
 665
 666 outputloop:
 667 0474 3E10 mvi a,10h
 668
 669 ; out (c),a
 670 0476 ED79 db 0edh,79h
 671
 672 ; in a,(c)
 673 0478 ED78 db 0edh,78h
 674
 675 047A E604 ani 04h ; wait for TXready
 676 047C CA7404 jz outputloop
 677
 678 ; In the Altos system, data registers are one below status registers...
 679
 680 047F 0D dcr c
 681
 682 ; out (c),d
 683 0480 ED51 db 0edh,51h
 684
 685 0482 C1 pop b
 686 0483 D1 pop d
 687 0484 E1 pop h
 688 0485 C9 ret
 689
 690 else
 691
 692 char$out:
 693
 694 ; Character output routine for network I/O
 695 ; using ALTOS SIO ports
 696 ;
 697 ; 8080 version: This has to dispatch and then use direct port I/O
 698 ; --extremely messy to do reentrantly
 699 ;
 700 ; Entry: C = character to transmit
 701 ; B = slave id byte
 702

CP/M RMAC ASSEM 1.1 #014 MASTER NETWORK I/F MODULE

 703 push h
 704 push d
 705 push b
 706
 707 lxi d,out0 ; dispatch address =

 708 mov l,b ; out0 + slaveid*16
 709 mvi h,0
 710 dad h
 711 dad h
 712 dad h
 713 dad h
 714 dad d
 715 mvi a,10h ;load "get transmit status" value
 716 pchl ;dispatch
 717
 718 out0:
 719 out Console4$status ;wait for TXready status
 720 in Console4$status
 721 ani 4
 722 jz out0
 723
 724 mov a,c
 725 out Console4$status-1 ;write the character
 726 pop b
 727 pop d
 728 pop h
 729 ret
 730
 731 out1: out Console3$status
 732 in Console3$status
 733 ani 4
 734 jz out1
 735
 736 mov a,c
 737 out Console3$status-1
 738 pop b
 739 pop d
 740 pop h
 741 ret
 742
 743 out2: out Console2$status
 744 in Console2$status
 745 ani 4
 746 jz out2
 747
 748 mov a,c
 749 out Console2$status-1
 750 pop b
 751 pop d
 752 pop h
 753 ret
 754
 755 out3: out Printer2$status
 756 in Printer2$status

CP/M RMAC ASSEM 1.1 #015 MASTER NETWORK I/F MODULE

 757 ani 4
 758 jz out3
 759
 760 mov a,c
 761 out Printer2$status-1
 762 pop b
 763 pop d
 764 pop h
 765 ret
 766
 767 endif
 768
 769
 770 Nibin: ; return nibble in A register
 771 0486 CDBD04 call Charin
 772 0489 D8 rc
 773 048A E67F ani 07fh
 774 048C D630 sui '0'
 775 048E FE0A cpi 10
 776 0490 DAA604 jc Nibin$return ; must be 0-9
 777 0493 C6F9 adi ('0'-'A'+10) and 0ffh
 778 0495 FE10 cpi 16
 779 0497 DAA604 jc Nibin$return ; must be 10-15
 780 049A 3A4204 lda networkstatus
 781 049D F608 ori msgerr

 782 049F 324204 sta networkstatus
 783 04A2 3E00 mvi a,0
 784 04A4 37 stc
 785 04A5 C9 ret
 786
 787 Nibin$return:
 788 04A6 B7 ora a
 789 04A7 C9 ret
 790
 791 xChar$in: ; Get the first character using polled
 792 ; console I/O. Note that the rest of the
 793 ; message will be received using direct
 794 ; port I/O with interrupts disabled.
 795 ; OVERRUNS ARE NOT POSSIBLE USING THIS SCHEME
 796
 797 04A8 E5 push h
 798 04A9 C5 push b
 799 04AA 21BA04 lxi h, Charin$return
 800 04AD E5 push h
 801 04AE 48 mov c,b
 802 04AF 0600 mvi b,0
 803 04B1 214C04 lxi h, chariotbl
 804 04B4 09 dad b
 805 04B5 56 mov d, m ; Get the console number
 806 04B6 2A4604 lhld conin
 807 04B9 E9 pchl ; vector off
 808
 809 Charin$return:
 810 04BA C1 pop b

CP/M RMAC ASSEM 1.1 #016 MASTER NETWORK I/F MODULE

 811 04BB E1 pop h
 812 04BC C9 ret
 813
 814
 815 if z80
 816 char$in:
 817
 818 ; Character input routine for network i/o
 819 ; using the ALTOS SIO ports at 125k baud
 820 ;
 821 ; Z80 Version uses indirect port addresses loaded into register C
 822 ;
 823 ; Entry : Slave number in register b
 824 ; Exit : Character in register a
 825 ;
 826 04BD E5 push h
 827 04BE C5 push b
 828 04BF 214804 lxi h, status$ports
 829 04C2 48 mov c, b
 830 04C3 0600 mvi b, 0 ; set (BC) = (b)
 831 04C5 09 dad b
 832 04C6 4E mov c,m
 833
 834 ; Now C contains the address of the correct status port
 835
 836 04C7 2E50 mvi l, 80
 837
 838 inputloop1:
 839 04C9 2D dcr l
 840 04CA CADA04 jz retout
 841
 842 ; in a,(c)
 843 04CD ED78 db 0edh,78h
 844
 845 04CF E601 ani 01h ; wait for RXready
 846 04D1 CAC904 jz inputloop1
 847
 848 ; In the Altos system, data registers are one below status registers...
 849
 850 04D4 0D dcr c
 851
 852 ; in a,(c)
 853 04D5 ED78 db 0edh,78h ;get the character
 854
 855 04D7 C1 pop b

 856 04D8 E1 pop h
 857 04D9 C9 ret
 858
 859 retout:
 860 04DA 37 stc ;set carry => error flag
 861 04DB C1 pop b
 862 04DC E1 pop h
 863 04DD C9 ret
 864

CP/M RMAC ASSEM 1.1 #017 MASTER NETWORK I/F MODULE

 865 else
 866
 867 char$in:
 868
 869 ; Character input routine for network I/O
 870 ; using ALTOS SIO ports
 871 ;
 872 ; 8080 Version uses same nasty dispatch mechanism that the output
 873 ; routine used
 874 ;
 875 ; Entry: B = Slave ID
 876 ; Exit: A = character input
 877
 878 push h
 879 push d
 880 push b
 881 lxi d,in0 ; HL = in0 + 17*slaveid
 882 mov l,b
 883 mvi h,0
 884 xchg
 885 dad d
 886 xchg
 887 dad h
 888 dad h
 889 dad h
 890 dad h
 891 dad d
 892
 893 mvi c,80 ; load status retry count
 894 pchl ; dispatch
 895
 896 in0:
 897 dcr c
 898 jz retout ; error return if retry timeout
 899
 900 in Console4$status ; wait for RXready
 901 ani 1
 902 jz in0
 903
 904 in Console4$status-1 ; get the character
 905 pop b
 906 pop d
 907 pop h
 908 ret
 909
 910 in1:
 911 dcr c
 912 jz retout
 913
 914 in Console3$status
 915 ani 1
 916 jz in1
 917
 918 in Console3$status-1

CP/M RMAC ASSEM 1.1 #018 MASTER NETWORK I/F MODULE

 919 pop b
 920 pop d
 921 pop h
 922 ret
 923
 924 in2:
 925 dcr c

 926 jz retout
 927
 928 in Console2$status
 929 ani 1
 930 jz in2
 931
 932 in Console2$status-1
 933 pop b
 934 pop d
 935 pop h
 936 ret
 937 in3:
 938 dcr c
 939 jz retout
 940
 941 in Printer2$status
 942 ani 1
 943 jz in3
 944
 945 in Printer2$status-1
 946 pop b
 947 pop d
 948 pop h
 949 ret
 950
 951 retout: ; error return (carry=1)
 952 stc
 953 pop b
 954 pop d
 955 pop h
 956 ret
 957
 958 endif
 959
 960
 961 Netout: ; C = byte to be transmitted
 962 04DE 7A mov a,d
 963 04DF 81 add c
 964 04E0 57 mov d,a
 965 04E1 3A3E04 lda BinaryASCII
 966 04E4 B7 ora a
 967 04E5 C26804 jnz Charout ; transmit byte in Binary mode
 968 04E8 79 mov a,c
 969 04E9 F5 push psw
 970 04EA 1F rar
 971 04EB 1F rar
 972 04EC 1F rar

CP/M RMAC ASSEM 1.1 #019 MASTER NETWORK I/F MODULE

 973 04ED 1F rar
 974 04EE E60F ani 0FH ; Shift HI nibble to LO nibble
 975 04F0 CD5404 call Nibout
 976 04F3 F1 pop psw
 977 04F4 E60F ani 0FH
 978 04F6 C35404 jmp Nibout
 979
 980 Netin: ; byte returned in A register
 981 ; D = checksum accumulator
 982 04F9 3A3E04 lda BinaryASCII
 983 04FC B7 ora a
 984 04FD CA0705 jz ASCIIin
 985 0500 CDBD04 call charin ;receive byte in Binary mode
 986 0503 D8 rc
 987 0504 C31705 jmp chksin
 988
 989 ASCIIin:
 990 0507 CD8604 call Nibin
 991 050A D8 rc
 992 050B 87 add a
 993 050C 87 add a
 994 050D 87 add a
 995 050E 87 add a
 996 050F F5 push psw
 997 0510 CD8604 call Nibin
 998 0513 D8 rc
 999 0514 E3 xthl

 1000 0515 B4 ora h
 1001 0516 E1 pop h
 1002 chksin:
 1003 0517 B7 ora a
 1004 0518 F5 push psw
 1005 0519 82 add d ; add & update checksum accum.
 1006 051A 57 mov d,a
 1007 051B F1 pop psw
 1008 051C C9 ret
 1009
 1010 Msgin: ; HL = destination address
 1011 ; E = # bytes to input
 1012 051D CDF904 call Netin
 1013 0520 D8 rc
 1014 0521 77 mov m,a
 1015 0522 23 inx h
 1016 0523 1D dcr e
 1017 0524 C21D05 jnz Msgin
 1018 0527 C9 ret
 1019
 1020 Msgout: ; HL = source address
 1021 ; E = # bytes to output
 1022 ; D = checksum
 1023 ; C = preamble character
 1024 0528 1600 mvi d,0
 1025 052A CD6504 call PreCharout
 1026

CP/M RMAC ASSEM 1.1 #020 MASTER NETWORK I/F MODULE

 1027 Msgoutloop:
 1028 052D 4E mov c,m
 1029 052E 23 inx h
 1030 052F CDDE04 call Netout
 1031 0532 1D dcr e
 1032 0533 C22D05 jnz Msgoutloop
 1033 0536 C9 ret
 1034
 1035 ; Network Initialization
 1036
 1037 nwinit:
 1038
 1039 ; device initialization, as required
 1040
 1041
 1042 0537 3E47 mvi a,047h ;sets up CTC for baud rate of 125k
 1043 0539 D331 out 031h
 1044
 1045 if nmbslvs ge 3 ;initialize only the ports that are needed
 1046 out 030h
 1047 endif
 1048
 1049 if nmbslvs ge 4
 1050 out 032h
 1051 endif
 1052
 1053 053B 3E01 mvi a,1 ;count of one => max speed
 1054 053D D331 out 031h
 1055
 1056 if nmbslvs ge 3
 1057 out 030h
 1058 endif
 1059
 1060 if nmbslvs ge 4
 1061 out 032h
 1062 endif
 1063
 1064
 1065 ; Find address of XIOS console output routine
 1066
 1067 053F 2A0100 lhld 0001h ; get warmstart entry in the XIOS jump table
 1068 0542 23 inx h
 1069 0543 5E mov e, m
 1070 0544 23 inx h
 1071 0545 56 mov d, m
 1072 0546 210600 lxi h, 0006h ; Offset for conin routine
 1073 0549 19 dad d

 1074 054A 224604 shld conin ; save the address
 1075 054D AF xra a ; return code is 0=success
 1076 054E C9 ret
 1077
 1078
 1079 ; Network Status
 1080

CP/M RMAC ASSEM 1.1 #021 MASTER NETWORK I/F MODULE

 1081 nwstat: ; C = Slave #
 1082 054F 0600 mvi b,0
 1083 0551 214204 lxi h,networkstatus
 1084 0554 09 dad b
 1085 0555 7E mov a,m
 1086 0556 47 mov b,a
 1087 0557 E6F5 ani not (msgerr+msgovr)
 1088 0559 77 mov m,a
 1089 055A 78 mov a,b
 1090 055B C9 ret
 1091
 1092
 1093 ; Return Configuration Table Address
 1094
 1095 cfgadr:
 1096 055C 215603 lxi h,configtbl
 1097 055F C9 ret
 1098
 1099
 1100 ; Send Message on Network
 1101
 1102 sndmsg: ; DE = message addr
 1103 ; C = Slave #
 1104 0560 41 mov b,c
 1105 0561 3E0A mvi a,max$retries ; A = max$retries
 1106
 1107 send:
 1108 0563 F5 push psw
 1109
 1110 if mutexout
 1111
 1112 ; Use mutual exclusion if it is possible for some unsolicited input
 1113 ; to stomp on your output (This is nice is you;re running some sort
 1114 ; of multi-drop protocol)
 1115
 1116 push b
 1117 push d
 1118 mvi c,readq
 1119 lxi d,UQCBMXSXmitq
 1120 call bdos ; obtain mutual exclusion token
 1121 pop d
 1122 pop b
 1123 endif
 1124
 1125 0564 EB xchg
 1126 0565 E5 push h
 1127 0566 F3 di ; disable interrupts to avoid underrun
 1128 0567 0E05 mvi c,ENQ
 1129 0569 CD6804 call Charout ; send ENQ
 1130 056C CDA005 call getACK ; won't return on an error
 1131 056F 1E05 mvi e,5
 1132 0571 0E01 mvi c,SOH
 1133 0573 CD2805 call Msgout ; send SOH FMT DID SID FNC SIZ
 1134 0576 AF xra a

CP/M RMAC ASSEM 1.1 #022 MASTER NETWORK I/F MODULE

 1135 0577 92 sub d
 1136 0578 4F mov c,a
 1137 0579 CDDE04 call Netout ; send HCS (header checksum)
 1138 057C CDA005 call getACK ; won't return on an error
 1139 057F 2B dcx h
 1140 0580 5E mov e,m
 1141 0581 23 inx h
 1142 0582 1C inr e
 1143 0583 0E02 mvi c,STX

 1144 0585 CD2805 call Msgout ; send STX DB0 DB1 ...
 1145 0588 0E03 mvi c,ETX
 1146 058A CD6504 call PreCharout ; send ETX
 1147 058D AF xra a
 1148 058E 92 sub d
 1149 058F 4F mov c,a
 1150 0590 CDDE04 call Netout ; send CKS
 1151 0593 0E04 mvi c,EOT
 1152 0595 CD6504 call PreCharout ; send EOT
 1153 0598 CDA005 call getACK ; won't return on an error
 1154 059B D1 pop d ; discard message address
 1155 059C F1 pop psw ; discard retry counter
 1156
 1157 if mutexout
 1158 call release$MX
 1159 endif
 1160
 1161 059D FB ei ; return from suspended animation
 1162 059E AF xra a
 1163 059F C9 ret ; A = 0, successful send message
 1164
 1165 getACK:
 1166 05A0 CDBD04 call Charin
 1167 05A3 DAAB05 jc getACK$timeout ; receive timeout-->start error recovery
 1168 05A6 E67F ani 7fh
 1169 05A8 D606 sui ACK
 1170 05AA C8 rz
 1171
 1172 getACK$timeout:
 1173 05AB D1 pop d ; discard return address
 1174
 1175 if mutexout
 1176 push b
 1177 call release$MX
 1178 pop b
 1179 endif
 1180
 1181 05AC D1 pop d ; DE = message address
 1182 05AD F1 pop psw ; A = retry count
 1183 05AE 3D dcr a
 1184 05AF C26305 jnz send ; continue if retry count non-zero
 1185 05B2 3D dcr a ; else-->we're dead-->A = 0ffh
 1186 05B3 C9 ret ; failed to send message
 1187
 1188 if mutexin or mutexout

CP/M RMAC ASSEM 1.1 #023 MASTER NETWORK I/F MODULE

 1189
 1190 release$MX: ; send back requester transmit MX message
 1191 mvi c,writeq
 1192 lxi d,UQCBMXSXmitq
 1193 jmp bdos
 1194 endif
 1195
 1196 ; Receive Message from Network
 1197
 1198 rcvmsg: ; DE = message addr
 1199 ; C = Slave #
 1200 05B4 41 mov b,c
 1201
 1202 receive:
 1203 05B5 EB xchg
 1204 05B6 E5 push h
 1205 05B7 CDBF05 call get$ENQ
 1206
 1207 ; a return to this point indicates an error
 1208
 1209 receive$retry:
 1210 05BA FB ei ; re-enable other processes
 1211
 1212 if mutexin
 1213 push b
 1214 call release$MX
 1215 pop b
 1216 endif
 1217

 1218 05BB D1 pop d
 1219 05BC C3B505 jmp receive
 1220
 1221 get$ENQ: ; get first character of message using
 1222 ; polled console I/O
 1223 05BF CDA804 call xCharin
 1224 05C2 DABF05 jc get$ENQ
 1225 05C5 E67F ani 7fh
 1226 05C7 FE05 cpi ENQ ; Start of Message ?
 1227 05C9 C2BF05 jnz get$ENQ
 1228
 1229 if mutexin
 1230
 1231 ; Don't get too involved with receiving a message if some other
 1232 ; NETWRKIF process is going to stomp you by sending a message along
 1233 ; the same line
 1234
 1235 push b
 1236 push h
 1237 mvi c,readq
 1238 lxi d,UQCBMXSXmitq
 1239 call bdos
 1240 pop h
 1241 pop b
 1242 endif

CP/M RMAC ASSEM 1.1 #024 MASTER NETWORK I/F MODULE

 1243
 1244 05CC 0E06 mvi c,ACK
 1245 05CE F3 di ; requester in gear now serve only him
 1246
 1247 05CF CD6804 call charout ; send ACK to requester, allowing transmit
 1248 05D2 CDBD04 call Charin
 1249 05D5 D8 rc
 1250 05D6 E67F ani 7fh
 1251 05D8 FE01 cpi SOH
 1252 05DA C0 rnz
 1253 05DB 57 mov d,a ; initialize the HCS
 1254 05DC 1E05 mvi e,5
 1255 05DE CD1D05 call Msgin
 1256 05E1 D4F904 cnc Netin
 1257 05E4 D8 rc
 1258 05E5 7A mov a,d
 1259 05E6 B7 ora a
 1260 05E7 C21406 jnz sendNAK ; jmp & send NAK if HCS <> 0
 1261 05EA 0E06 mvi c,ACK
 1262 05EC CD6804 call Charout
 1263 05EF CDBD04 call Charin
 1264 05F2 D8 rc
 1265 05F3 E67F ani 7fh
 1266 05F5 FE02 cpi STX
 1267 05F7 C0 rnz
 1268 05F8 57 mov d,a ; initialize the CKS
 1269 05F9 2B dcx h
 1270 05FA 5E mov e,m
 1271 05FB 23 inx h
 1272 05FC 1C inr e
 1273 05FD CD1D05 call msgin
 1274 0600 D4BD04 cnc Charin
 1275 0603 D8 rc
 1276 0604 E67F ani 7fh
 1277 0606 FE03 cpi ETX
 1278 0608 C0 rnz
 1279 0609 82 add d
 1280 060A 57 mov d,a
 1281 060B CDF904 call Netin ; get Checksum byte
 1282 060E D8 rc
 1283 060F 7A mov a,d
 1284 0610 B7 ora a ; should be zero
 1285 0611 CA1906 jz sendACK ; jump if checksum OK
 1286
 1287 sendNAK: ; else-->refuse the message
 1288 0614 0E15 mvi c,NAK
 1289 0616 C36804 jmp Charout ; send NAK and return to receive$retry
 1290
 1291 sendACK: ; come here if message was received properly

 1292 0619 CDBD04 call Charin ; get EOT
 1293 061C D8 rc
 1294 061D E67F ani 7fh
 1295 061F FE04 cpi EOT
 1296 0621 C0 rnz

CP/M RMAC ASSEM 1.1 #025 MASTER NETWORK I/F MODULE

 1297 0622 0E06 mvi c,ACK
 1298 0624 CD6804 call Charout ; send ACK if checksum ok
 1299 0627 D1 pop d ; discard return address
 1300 0628 D1 pop d ; discard message address
 1301 0629 FB ei ; Dispense with the Rip Van Winkle act
 1302
 1303 if mutexin
 1304 call release$MX
 1305 endif
 1306
 1307 062A AF xra a
 1308 062B C9 ret
 1309
 1310
 1311 restore:
 1312
 1313 ; This routine allows N copies of NtwrkIPx to run reentrantly.
 1314 ; It takes the values that were pre-initialized in the process
 1315 ; descriptor and later saved on the stack and loads them into
 1316 ; the registers, leaving the stack image untouched. All variables
 1317 ; intrinsic to the process therefore always reside on the
 1318 ; process-dependent stack
 1319
 1320 062C F3 di ; this is a real critical region
 1321 062D E1 pop h
 1322 062E 224006 shld rtnadr
 1323 0631 E1 pop h
 1324 0632 D1 pop d
 1325 0633 C1 pop b
 1326 0634 F1 pop psw
 1327 0635 F5 push psw
 1328 0636 C5 push b
 1329 0637 D5 push d
 1330 0638 E5 push h
 1331 0639 E5 push h
 1332 063A 2A4006 lhld rtnadr
 1333 063D E3 xthl
 1334 063E FB ei
 1335 063F C9 ret
 1336
 1337 0640 rtnadr: ds 2
 1338
 1339 if WtchDg
 1340
 1341 ; WatchDog Timer Process
 1342 ; This process needs adjunct processes to handle the timeout flags
 1343 ; that it sets. They might possibly abort the offending NtwrkIPx
 1344 ; process, recreate it, and allow it to re-initialize its queues
 1345
 1346 WatchDog:
 1347 mvi c,Delay
 1348 lxi d,60 ; delay for 1 second
 1349 call bdos
 1350 lhld WatchDogTime

CP/M RMAC ASSEM 1.1 #026 MASTER NETWORK I/F MODULE

 1351 inx h
 1352 shld WatchDogTime
 1353 lxi h,WatchDogTable-5
 1354 mvi c,NmbSlvs
 1355
 1356 WatchDogLoop:
 1357 lxi d,0005h
 1358 dad d
 1359 mov a,m
 1360 ora a
 1361 jz WatchDogDec

 1362 inx h
 1363 ana m
 1364 dcx h
 1365 jnz WatchDogDec ; waiting & timeout set
 1366 push h ; save HL -> WDT.waiting
 1367 inx h
 1368 inx h
 1369 di
 1370 mov e,m
 1371 inx h
 1372 mov d,m
 1373 ei
 1374 lhld WatchDogTime
 1375 mov a,l
 1376 sub e
 1377 mov l,a
 1378 mov a,h
 1379 sbb d
 1380 mov h,a
 1381 mvi a,10 ; # seconds since started Charin
 1382 sub l
 1383 mvi a,0
 1384 sbb h
 1385 pop h
 1386 jnc WatchDogDec
 1387 push h
 1388 inx h
 1389 mvi m,0ffh ; WDT.timeout = 0ffh
 1390 inx h
 1391 inx h
 1392 inx h
 1393 push b
 1394 mov e,m ; E = Flag #
 1395 mvi c,Flagset
 1396 call bdos
 1397 pop b
 1398 pop h
 1399
 1400 WatchDogDec:
 1401 dcr c
 1402 jnz WatchDogLoop
 1403
 1404 jmp WatchDog

CP/M RMAC ASSEM 1.1 #027 MASTER NETWORK I/F MODULE

 1405 endif
 1406
 1407
 1408 ; Setup code for Network Interface Procedures
 1409
 1410 Setup:
 1411 0642 F5 push psw ;create stack image of all reentrant variables
 1412 0643 C5 push b
 1413 0644 D5 push d
 1414 0645 E5 push h
 1415 0646 CD3705 call nwinit
 1416
 1417 if mutexin or mutexout
 1418 mvi c,makeq ; make the mutual exclusion queue
 1419 lxi d,QCBMXSXmitq
 1420 call bdos
 1421
 1422 mvi c,writeq ; leave a token in the queue
 1423 lxi d,UQCBMXSXmitq
 1424 call bdos
 1425 endif
 1426
 1427 if WtchDg
 1428 lxi d,WatchDogPD ;since this process is linked to all other
 1429 ;NtwrkIPx processes, creating it creates all
 1430 ;of the others
 1431 mvi c,createp
 1432 call bdos
 1433
 1434 else
 1435

 1436 if NmbSlvs GE 2
 1437 0649 11AC01 lxi d,NtwrkIP1 ;this will create all the other NtwrkIPx
 1438 ;processes if there's no watchdog
 1439 064C 0E90 mvi c,createp
 1440 064E CD5004 call bdos
 1441 endif
 1442 endif
 1443
 1444 0651 0E8E mvi c,dsptch ;give everything a chance to create its queues
 1445 0653 CD5004 call bdos
 1446
 1447 0656 0E9A mvi c,sydatad
 1448 0658 CD5004 call bdos
 1449 065B 110900 lxi d,9
 1450 065E 19 dad d
 1451 065F 115603 lxi d,configtbl
 1452 0662 73 mov m,e
 1453 0663 23 inx h
 1454 0664 72 mov m,d ; sysdatpage(9&10) = co.configtbl
 1455 ; filling in the config tbl address is the
 1456 ; the server processes' cue to start
 1457
 1458 if modem

CP/M RMAC ASSEM 1.1 #028 MASTER NETWORK I/F MODULE

 1459 ; Initialize the modem
 1460
 1461 mvi c,CR
 1462 mvi b,slvmodem
 1463 call Charout
 1464 mvi c,'Z'
 1465 call Charout
 1466 mvi c,CR
 1467 call Charout
 1468
 1469 WtSpace:
 1470 call Charin
 1471 jc SetupDone
 1472 ani 07fh
 1473 cpi ' '
 1474 jnz WtSpace
 1475 mvi c,'A'
 1476 call Charout
 1477
 1478 SetupDone:
 1479 endif
 1480
 1481 0665 E1 pop h
 1482 0666 D1 pop d
 1483 0667 C1 pop b
 1484 0668 F1 pop psw
 1485
 1486 ; Network Interface Reentrant Procedure
 1487
 1488 Init:
 1489 0669 F5 push psw ; A = network i/f console dev #
 1490 066A C5 push B ; BC= buffer address
 1491 066B D5 push D ; DE= UQCB ntwrk queue out
 1492 066C E5 push H ; HL= UQCB ntwrk queue in
 1493 066D 5E mov e,m
 1494 066E 23 inx h
 1495 066F 56 mov d,m
 1496 0670 0E86 mvi c,makeq
 1497 0672 CD5004 call bdos ; make the ntwrk queue in
 1498 0675 CD2C06 call restore
 1499 0678 EB xchg
 1500 0679 5E mov e,m
 1501 067A 23 inx h
 1502 067B 56 mov d,m
 1503 067C 0E86 mvi c,makeq
 1504 067E CD5004 call bdos ; make the ntwrk queue out
 1505
 1506 Loop:
 1507 0681 CD2C06 call restore
 1508 0684 50 mov d,b
 1509 0685 59 mov e,c

 1510
 1511 0686 4F mov c,a
 1512 0687 CDB405 call rcvmsg

CP/M RMAC ASSEM 1.1 #029 MASTER NETWORK I/F MODULE

 1513
 1514 068A CD2C06 call restore
 1515 068D EB xchg
 1516 068E 0E8B mvi c,writeq
 1517 0690 CD5004 call bdos
 1518
 1519 0693 CD2C06 call restore
 1520 0696 0E89 mvi c,readq
 1521 0698 CD5004 call bdos
 1522
 1523 069B CD2C06 call restore
 1524 069E 50 mov d,b
 1525 069F 59 mov e,c
 1526
 1527 06A0 4F mov c,a
 1528 06A1 CD6005 call sndmsg
 1529
 1530 06A4 C38106 jmp Loop
 1531
 1532 06A7 end

CP/M RMAC ASSEM 1.1 #030 MASTER NETWORK I/F MODULE

ACK 0006 612# 1169 1244 1261 1297
ACTIVE 0010 587#
ASCIIIN 0507 984 989#
BDOS 0450 44 622# 1120 1193 1239 1349 1396 1420 1424 1432
 1440 1445 1448 1497 1504 1517 1521
BDOSADR 0000 51# 58# 623
BINARYASCII 043E 541# 965 982
BUFFERQ0 00A6 47 89 118 138#
BUFFERQ1 0250 179 208 228#
BUFFERQI0ADDR 0084 116 117#
BUFFERQI1ADDR 022E 206 207#
BUFFERQO0ADDR 00A4 134 135#
BUFFERQO1ADDR 024E 224 225#
CFGADR 055C 1095#
CHARIN 04BD 771 816# 867# 985 1166 1248 1263 1274 1292 1470
CHARINRETURN 04BA 799 809#
CHARIOTBL 044C 578# 803
CHAROUT 0468 631 635 643# 692# 967 1129 1247 1262 1289 1298
 1463 1465 1467 1476
CHKSIN 0517 987 1002#
CONFIGTBL 0356 493# 1096 1451
CONIN 0446 553# 806 1074
CONSOLE2STATUS 002D 564# 574 743 744 749 928 932
CONSOLE3STATUS 002F 563# 573 731 732 737 914 918
CONSOLE4STATUS 002B 562# 572 719 720 725 900 904
CR 000D 614# 1461 1466
CREATEP 0090 601# 1431 1439
DEBUG 0000 28# 37
DELAY 008D 599# 1347
DSPTCH 008E 600# 1444
ENQ 0005 611# 1128 1226
EOT 0004 610# 1151 1295
ETX 0003 609# 1145 1277
FALSE 0000 23# 24 28 29 31 33 34
FLAGSET 0085 595# 1395
GETACK 05A0 1130 1138 1153 1165#
GETACKTIMEOUT 05AB 1167 1172#
GETENQ 05BF 1205 1221# 1224 1227
INIT 0669 190 281 366 1488#
INPUTLOOP1 04C9 838# 846
LF 000A 613#
LOOP 0681 1506# 1530
MAKEQ 0086 596# 1418 1496 1503
MAXRETRIES 000A 555# 1105
MODEM 0000 29# 1458
MSGERR 0008 588# 781 1087
MSGIN 051D 1010# 1017 1255 1273

MSGOUT 0528 1020# 1133 1144
MSGOUTLOOP 052D 1027# 1032
MSGOVR 0002 590# 1087
MUTEXIN 0000 33# 471 1188 1212 1229 1303 1417
MUTEXOUT 0000 34# 471 1110 1157 1175 1188 1417
NAK 0015 615# 1288
NETIN 04F9 980# 1012 1256 1281

CP/M RMAC ASSEM 1.1 #031 MASTER NETWORK I/F MODULE

NETOUT 04DE 961# 1030 1137 1150
NETWORKSTATUS 0442 547# 780 782 1083
NIBATOF 045F 628 632#
NIBIN 0486 770# 990 997
NIBINRETURN 04A6 776 779 787#
NIBOUT 0454 626# 975 978
NMBSLVS 0002 39# 56# 148 151 239 242 330 419 496 505
 512 518 524 529 534 1045 1049 1056 1060 1354
 1436
NMSG 0001 502#
NTWRK 0004 589#
NTWRKIP0 0002 65#
NTWRKIP1 01AC 149# 420 1437
NTWRKIS0 0036 41 69 93#
NTWRKIS1 01E0 159 183#
NTWRKRXRDY 0001 591#
NTWRKTXRDY 0080 586#
NWINIT 0537 1037# 1415
NWSTAT 054F 1081#
OUTPUTLOOP 0474 666# 676
POLL 0083 603#
PRECHAROUT 0465 637# 1025 1146 1152
PRINTER2 0010 617#
PRINTER2STATUS 0029 565# 575 755 756 761 941 945
QCBNTWRKQI0 0066 102# 115
QCBNTWRKQI1 0210 192# 205
QCBNTWRKQO0 0086 120# 133
QCBNTWRKQO1 0230 210# 223
RCVMSG 05B4 1198# 1512
READQ 0089 597# 1118 1237 1520
RECEIVE 05B5 1202# 1219
RECEIVERETRY 05BA 1209#
RESTORE 062C 1311# 1498 1507 1514 1519 1523
RETOUT 04DA 840 859# 898 912 926 939 951#
RTNADR 0640 1322 1332 1337#
SEND 0563 1107# 1184
SENDACK 0619 1285 1291#
SENDNAK 0614 1260 1287#
SETUP 0642 100 1410#
SLAVE1 040A 508 525#
SLAVE1STK 0374 506#
SLAVESTKLEN 0096 503# 507 514 520
SNDMSG 0560 1102# 1528
SOH 0001 607# 1132 1251
STATUSPORTS 0448 571# 658 828
STX 0002 608# 1143 1266
SYDATAD 009A 602# 1447
TRUE FFFF 24# 26
UQCBNTWRKQI0 0080 45 87 114#
UQCBNTWRKQI1 022A 177 204#
UQCBNTWRKQO0 00A0 46 88 132#
UQCBNTWRKQO1 024A 178 222#
WRITEQ 008B 598# 1191 1422 1516
WTCHDG 0000 31# 414 1339 1427

CP/M RMAC ASSEM 1.1 #032 MASTER NETWORK I/F MODULE

XCHARIN 04A8 791# 1223
Z80 FFFF 26# 567 642 815

Listing E-2: Server Network I/F Module

Appendix F
A CP/NET System for use with ULCnet

F.1 Overview of ULCnet

ULCnet® (Universal Low Cost Network) is a local area network system designed specifically for
microcomputers in the CP/M and MP/M II operating system environments. ULCnet was introduced by
Orange Compuco, Inc. in June 1982 as a low cost method of sharing resources and data among
microcomputers of varying manufacture and architecture. ULCnet, in combination with CP/NET, creates a
cost effective method for the development of shared data base applications among single user
microcomputers. ULCnet architecture readily supports CP/NET implementation.

The ULCnet connector adaptor box can be connected to any computer that has a spare RS-232 port. ULCnet
employs a multidrop topology with carrier sense, multiple-access design. Contention between network nodes
is arbitrated using a full-duplex collision detection mechanism.

ULCnet is available to OEMs on a private label basis and through licensing. Keybrook Business Systems,
Inc., Hayward, California, a licensee of ULCnet, produces the FileServer™ system. This system uses
CP/NET to drive ULCnet. For more information on ULCnet, contact

Orange Compuco, Inc.
17801-G South East Main Street
Irvine, California 92714
(714) 957-8075

Orange Compuco distributes ULCnet connector adaptor hardware with a variety of release software,
including the example programs in this appendix. In addition, Orange Compuco provides documentation
detailing the installation and operation of ULCnet and logical structure of the data-link layer software. This
documentation includes

• details on the installation and configuration of ULCnet
• a detailed description of the linkage between the proprietary data-link software and the user-definable

Network I/O Drivers (NIOD)
• a detailed description of the interface between higher-level software and data-link software
• a description of the data-link interface (DLIF) between the data-link software and higher-level layers

F.2 Customizing a ULCnet SNIOS for the Requester

The CP/NET requester listing, SNIOS for ULCnet, that appears at the end of this section, is contained in a
file called ULCNIOS.ASM on the CP/NET release disk and is designed to run ULCnet in a polled
environment on a Xerox® 820 computer, now called the Xerox R820-IIS. The listing uses the ULCnet short
format. This means that virtual circuit numbers must be agreed upon before the requester and the server can
communicate. This version assumes that the server ID is always 0, and that up to four requesters, ID 1
through 4, are on the network. The virtual circuit number and the requester ID are always the same.

This SNIOS combines the two sections of the ULCnet protocol that are user configurable, the data-link
interface (DLIF) and the network I/O drivers (NIOD). The DLIF acts as a transport layer between the NDOS
and the data-link routines. The NIOD contains the physical device drivers use to communicate with the
ULCnet network adaptor box. The bulk of the data-link protocol is contained in a module called
PBMAIN.REL. This module is proprietary to Orange Compuco, and is therefore distributed only in REL file
format by Orange Compuco.

When the NDOS instructs the SNIOS to send a message, the SNIOS first converts the CP/NET message
format into ULCnet short format. The SNIOS then calls the TRANSMIT routine in PBMAIN to send the
message, followed by the GETTCODE routine to discover the status of the message. If the send was
successful, the SNIOS returns to the NDOS. If it was not successful, the SNIOS continues to try to send the
message. No timeout is included in this routine to halt transmission.

To receive a message, the SNIOS calls RECEIVE, followed by GETRCODE to check the status of the
message. If the status shows success, the message is converted from ULCnet format back into CP/NET
format and returns to the NDOS. If the status shows an error, the SNIOS attempts to receive the message
again.

To modify the SNIOS for a requester other than a Xerox 820, follow these steps:

1. Decide whether to make the requester operate in a polled or interrupt-driven environment. If you want
interrupts, set the INTERRUPTS assembly switch to TRUE, and link the module using IPBMAIN
instead of PBMAIN.

2. If your ULCnet connector adaptor has been modified for self clocked operation, set the assembly
switch SLFCLKD to TRUE. Application notes detailing how to modify the connector adaptor for
self-clocked operation are available from Orange Compuco.

3. Determine your requester's transmission speed capabilities. Set the baud rate masks BAUDSL and
BAUDSH to reflect these values. Enter values for the requester's baud rate generator into the table
BAUDTBL.

4. Modify the port numbers for the baud rate generator and the UART to reflect those used by your
requester.

5. Modify the NIOD to run on your requester. The NIOD is currently set up to drive a Z80 SIO chip. If
your requester has an SIO, it needs little modification. The routine PGMUART, which sets up the
network port for ULCnet operation, might have to be modified. In an interrupt driven system,
interrupt vectors must be set up here.

6. Assemble and link the SNIOS by performing

 A>RMAC ULCNIOS
 A>LINK SNIOS=ULCN1OS,PBMAIN[OS]

If the requester is interrupt-driven, perform

 A>LINK SNIOS=ULCNIOS,IPBKAIN[OS]

to link the module. The module is then ready for installation on the CP/NET requester system disk.

CP/M RMAC ASSEM 1.1 #001 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

 1 title 'Requester Network I/O System for ULCnet'
 2 page 54
 3
 4 ;***
 5 ;***
 6 ;** **
 7 ;** SNIOS FOR ULCNET **
 8 ;** **
 9 ;***
 10 ;***
 11
 12 ; Developed jointly by:
 13 ;
 14 ; Digital Research, Inc.
 15 ; P.O. Box 579

 16 ; Pacific Grove, CA 93950
 17 ; and
 18 ; Keybrook Business Systems, Inc.
 19 ; 2035 National Avenue
 20 ; Hayward, CA 94545
 21
 22 ; This SNIOS was written for a Xerox 820 attached to Orange
 23 ; Compuco's ULCnet network adaptor. This module transports
 24 ; messages between the NDOS and the low-level data-link software
 25 ; provided by Orange Compuco. It also contains the physical drivers
 26 ; usually contained in the NIOD module. This version is not
 27 ; interrupt-driven and must be linked with PBMAIN.REL.
 28
 29
 30
 31 0000 = false equ 0
 32 FFFF = true equ not false
 33
 34 0000 = interrupts equ false ; false=polled, true=interrupt-driven
 35 FFFF = netstats equ true ; switch to gather network statistics
 36 FFFF = slfclkd equ true ; supports self-clocked operation
 37
 38 ; Linkage information
 39
 40 public setbaud,xmit,recv,initu ; NIOD routines called by IPBMAIN
 41 public inituart,pgmuart
 42 public chkstat,netidle,initrecv
 43 public wait,restuart,csniod
 44 public dsblxmit
 45 public dllbau,netadr
 46
 47 if interrupts
 48 public enblrecv,dsblrecv
 49 endif
 50
 51 extrn transmit,receive ; IPBMAIN routines and objects
 52 extrn gettcode,getrcode
 53 extrn csdll,dllon,regshrt
 54 extrn terrcnt,parcntr,ovrcntr

CP/M RMAC ASSEM 1.1 #002 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

 55 extrn frmcntr,inccntr
 56
 57 if interrupts
 58 extrn rtmochk ; IPBMAIN interrupt routines
 59 extrn dlisr,reisr,niisr
 60 endif
 61
 62
 63 ; Hardware definitions for the Z80-SIO channel A - For the Xerox 820.
 64
 65 0003 = baudsl equ 03h ; Usable baud rates: 9600, 19.2K asynch.,
 66 002A = baudsh equ 2ah ; 76.8K, 153.6K, 307.2K self-clocked
 67
 68 ; baud rate capability mask
 69 2A03 = bauds equ (baudsh*100h)+baudsl
 70
 71 0000 = baudgen equ 0 ; External baud rate generator register
 72 0006 = siocmd equ 6 ; Command/Mode register
 73 0006 = siostat equ 6 ; Status register
 74 0004 = sioxmit equ 4 ; Transmit register
 75 0004 = siorecv equ 4 ; Receive register
 76
 77 0002 = xrdybit equ 2 ; Transmit buffer empty status bit
 78 0004 = xrdymsk equ 4 ; transmit buffer empty status mask
 79 0000 = rrdybit equ 0 ; Receive buffer full status bit
 80 0001 = rrdymsk equ 1 ; receive buffer full status mask
 81 0003 = carbit equ 3 ; Net Idle detect bit position
 82 0008 = carmsk equ 8 ; Net Idle detect mask
 83 0030 = errst equ 030h ; Error flag reset
 84 0070 = errbits equ 070h ; Error bit position mask
 85 0004 = pbit equ 4 ; Parity error bit position
 86 0010 = pmsk equ 10h ; parity error mask
 87 0005 = obit equ 5 ; Overrun error bit position
 88 0020 = omsk equ 20h ; overrun error mask
 89 0006 = fbit equ 6 ; Framing error bit position

 90 0040 = fmsk equ 40h ; framing error mask
 91 0003 = selfbit equ 3 ; Self clock bit position
 92 0008 = selfmsk equ 8 ; slef clock bit mask
 93 00EA = dtron equ 0eah ; Turn on DTR
 94 006A = dtroff equ 06ah ; Turn off DTR
 95 00C1 = enarcv equ 0c1h ; Enable receive-clock
 96 00C0 = disrcv equ 0c0h ; Disable receive clock
 97 000F = enaslf equ 00fh ; Enable Self-clock mode
 98 004F = disslf equ 04fh ; Disable Self-clock mode
 99
 100 ; SIO Mode 2 interrupts vector table
 101
 102 FF08 = siov4 equ 0ff08h ; SIO port A xmit buffer empty
 103 FF0A = siov5 equ 0ff0ah ; SIO port A external status change
 104 FF0C = siov6 equ 0ff0ch ; SIO port A receive
 105 FF0E = siov7 equ 0ff0eh ; SIO port A special receive condition
 106
 107
 108 ; Message Buffer Offsets

CP/M RMAC ASSEM 1.1 #003 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

 109
 110 0000 = fmt equ 0 ; format
 111 0001 = did equ fmt+1 ; destination ID
 112 0002 = sid equ did+1 ; source ID
 113 0003 = fnc equ sid+1 ; server function number
 114 0004 = siz equ fnc+1 ; size of message (normalized to 0)
 115 0005 = msg equ siz+1 ; message
 116 0106 = buf$len equ msg+257 ; length of total message buffer
 117
 118 ; ULCnet Packet Offsets
 119
 120 0000 = ulc$fmt equ 0 ; packet format
 121 0001 = ulcvcirc equ ulc$fmt+1 ; virtual circuit number
 122 0002 = ulclenlo equ ulcvcirc+1 ; low order of length
 123 0003 = ulclenhi equ ulclenlo+1 ; high order of length
 124 0004 = ulc$fnc equ ulc$len$hi+1 ; start of message: function code
 125 0005 = ulc$msg equ ulc$fnc+1 ; CP/NET message
 126
 127 ; Network Status Byte Equates
 128
 129 0010 = active equ 0001$0000b ; slave logged in on network
 130 0002 = rcverr equ 0000$0010b ; error in received message
 131 0001 = senderr equ 0000$0001b ; unable to send message
 132
 133
 134
 135 CSEG
 136 0005 = BDOS equ 0005h
 137
 138 NIOS:
 139 public NIOS
 140
 141 ; Jump vector for SNIOS entry points
 142
 143 0000 C3E100 jmp ntwrkinit ; network initialization
 144 0003 C3EE00 jmp ntwrksts ; network status
 145 0006 C3F600 jmp cnfgtbladr ; return config table addr
 146 0009 C30401 jmp sendmsg ; send message on network
 147 000C C32001 jmp receivemsg ; receive message from network
 148 000F C3FA00 jmp ntwrkerror ; network error
 149 0012 C30301 jmp ntwrkwboot ; network warm boot
 150
 151
 152 0001 = rqstr$id equ 1 ; requester ID: must be between 1 and 4
 153 004B = fmt$byte equ 4bh ; format byte: short format with data-link
 154 ; acknowledge, 153.6K baud self-clocked
 155
 156 DSEG
 157
 158 ; Transport Layer Data
 159
 160 network$error$msg:
 161

 162 0000 0D0A db 0dh,0ah

CP/M RMAC ASSEM 1.1 #004 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

 163 0002 4E6574776F db 'Network Error'
 164 000F 0D0A db 0dh,0ah
 165 0011 24 db '$'
 166
 167
 168 ; Requester Configuration Table
 169
 170 configtbl:
 171 Network$status:
 172
 173 0012 ds 1 ; network status byte
 174 0013 01 db rqstr$id ; slave processor ID number
 175 0014 ds 2 ; A: Disk device
 176 0016 ds 2 ; B: "
 177 0018 ds 2 ; C: "
 178 001A ds 2 ; D: "
 179 001C ds 2 ; E: "
 180 001E ds 2 ; F: "
 181 0020 ds 2 ; G: "
 182 0022 ds 2 ; H: "
 183 0024 ds 2 ; I: "
 184 0026 ds 2 ; J: "
 185 0028 ds 2 ; K: "
 186 002A ds 2 ; L: "
 187 002C ds 2 ; M: "
 188 002E ds 2 ; N: "
 189 0030 ds 2 ; O: "
 190 0032 ds 2 ; P: "
 191 0034 ds 2 ; console device
 192 0036 ds 2 ; list device:
 193
 194 ; List Buffer Data
 195
 196 0038 ds 1 ; buffer index
 197
 198 0039 00 db 0 ; FMT
 199 003A 00 db 0 ; DID
 200 003B 01 db rqstr$id ; SID
 201 003C 05 db 5 ; FNC
 202 003D ds 1 ; SIZ
 203 003E ds 1 ; MSG(0) List number
 204 003F ds 128 ; MSG(1) ... MSG(128)
 205
 206
 207 ; ULCnet Data Definitions
 208
 209 00BF netadr: ds 3 ;ULCnet network address
 210 00C2 dllbau: ds 2 ;baud rate mask
 211
 212 0016 = timeval equ 22 ; WAIT routine time constant
 213 ; 12 for 2.5 megahertz Z80
 214 ; 22 for 4.0 megahertz Z80
 215
 216 00C4 FF curbaud db 0ffh ; Current baud rate

CP/M RMAC ASSEM 1.1 #005 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

 217
 218
 219 ; table to convert baud number codes
 220 ; into a bit mask
 221
 222 00C5 0102040810btbl: db 1,2,4,8,16,32,64,128
 223
 224
 225 baudtbl: ; async baud rate table
 226
 227 00CD 0E db 0eh ; 9600 Baud
 228 00CE 0F db 0fh ; 19200
 229
 230 scbaudt: ; self-clock baud rate table
 231

 232 00CF 00 db 0 ; 62500 Baud - Not implemented
 233 00D0 0D db 0dh ; 76800 Baud
 234 00D1 00 db 0 ; 125000 Baud - Not implemented
 235 00D2 0E db 0eh ; 153600 Baud
 236 00D3 00 db 0 ; 250000 Baud - Not implemented
 237 00D4 0F db 0fh ; 307200 Baud
 238
 239 if interrupts
 240 sioiblk db 030h,14h,4fh,15h,06ah,13h,0c1h,11h,01h,10h,10h,30h
 241 else
 242 00D5 30144F156Asioiblk db 030h,14h,4fh,15h,06ah,13h,0c1h,11h,00h,10h,10h,30h
 243 endif
 244
 245 000C = sioilen equ $-sioiblk
 246
 247
 248 page

CP/M RMAC ASSEM 1.1 #006 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

 249
 250 ; Network Initialization Routine
 251
 252 ntwrkinit:
 253
 254 00E1 CD0000 call csdll ; cold start the data link
 255 00E4 CD0000 call dllon ; initialize the SIO drivers
 256 00E7 3E01 mvi a,rqstr$id ; register the id with the data link
 257 00E9 CD0000 call regshrt
 258 00EC AF xra a ; return with no error
 259 00ED C9 ret
 260
 261
 262 ; Return network status byte
 263
 264 ntwrksts:
 265
 266 00EE 3A1200 lda network$status
 267 00F1 47 mov b,a
 268 00F2 E6FC ani not (rcverr or senderr)
 269 00F4 78 mov a,b
 270 00F5 C9 ret
 271
 272
 273 ; Return configuration table address
 274
 275 cnfgtbladr:
 276
 277 00F6 211200 lxi h,configtbl
 278 00F9 C9 ret
 279
 280 ; Network error routine
 281
 282
 283 ntwrkerror:
 284
 285 00FA 0E09 mvi c,9
 286 00FC 110000 lxi d,network$error$msg
 287 00FF CD0500 call bdos
 288
 289 0102 C9 ret
 290
 291 ; Network Warm Boot Routine
 292
 293 ntwrkwboot: ; this entry is unused in this version
 294
 295 0103 C9 ret
 296
 297
 298 ; Send a Message on the Network
 299 ; Input:
 300 ; BC=pointer to message buffer
 301 ; Output:
 302 ; A = 0 if successful

CP/M RMAC ASSEM 1.1 #007 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

 303 ; 1 if failure
 304
 305 sendmsg:
 306
 307 0104 C5 push b
 308 0105 60 mov h,b
 309 0106 69 mov l,c
 310
 311 0107 364B mvi m,fmt$byte ;set ulc$net format byte
 312
 313 0109 23 inx h ;reformat source to virtual circuit
 314 010A 23 inx h
 315 010B 56 mov d,m
 316 010C 2B dcx h
 317 010D 72 mov m,d
 318
 319
 320 010E 23 inx h
 321 010F 23 inx h
 322 0110 46 mov b,m ;save function
 323
 324 0111 23 inx h
 325 0112 5E mov e,m ;get size
 326 0113 70 mov m,b ;function=msg(0) in ULC format
 327
 328 0114 1600 mvi d,0
 329 0116 13 inx d
 330 0117 13 inx d ;normalize CP/NET to ULC sizes
 331
 332 0118 2B dcx h
 333 0119 72 mov m,d
 334 011A 2B dcx h
 335 011B 73 mov m,e
 336
 337 011C C1 pop b ;restore buffer pointer
 338
 339 011D C34A01 jmp dl$send ;blast away
 340
 341
 342 ; Receive a Message on the Network
 343 ;
 344 ; This routine calls the data-link routine to receive the message,
 345 ; then converts it into ULCnet format.
 346 ;
 347 ; Input:
 348 ; BC = pointer to buffer to receive the message
 349 ; Output:
 350 ; A = 0 if successful
 351 ; 1 if failure
 352
 353 receivemsg:
 354
 355 0120 C5 push b ;save buffer pointer
 356

CP/M RMAC ASSEM 1.1 #008 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

 357 0121 CD3701 call dl$receive ;slurp the message
 358
 359 0124 E1 pop h
 360 0125 3601 mvi m,1 ;FMT = 0 (requester to server)
 361
 362 0127 23 inx h ;DID already = virtual circuit #
 363
 364 0128 23 inx h ;get length
 365 0129 5E mov e,m
 366 012A 23 inx h
 367 012B 56 mov d,m
 368
 369 012C 1B dcx d
 370 012D 1B dcx d ;normalize ULC to CP/NET format
 371
 372 012E 23 inx h
 373 012F 7E mov a,m ;save FNC
 374
 375 0130 73 mov m,e ;format SIZ (<256)

 376
 377 0131 2B dcx h
 378 0132 77 mov m,a ;format FNC
 379
 380 0133 2B dcx h
 381 0134 AF xra a ;set success
 382 0135 77 mov m,a ;assume server always 0
 383
 384 0136 C9 ret ;CP/NET message formatted form ULCnet
 385
 386
 387
 388 ; Data Link Interface Routines
 389
 390
 391 ; DL$RECEIVE: Network Receive Function.
 392 ; Input:
 393 ; BC = Buffer address
 394
 395
 396 dl$receive:
 397
 398 0137 50 mov d,b ; Buffer address in DE for data link
 399 0138 59 mov e,c
 400
 401 rretry:
 402
 403 0139 AF xra a ; Packet mode
 404 013A 010101 lxi b,257 ; Buffer size
 405 013D 210000 lxi h,0 ; Infinite wait
 406 0140 D5 push d ; Save buffer address for retry
 407
 408 0141 CD7801 call psrecv ; Initiate Receive and wait for completion
 409
 410 0144 D1 pop d ; Restore buffer address

CP/M RMAC ASSEM 1.1 #009 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

 411 0145 B7 ora a
 412 0146 C8 rz ; Return if no error
 413
 414 0147 C33901 jmp rretry ; Jump to try again if error
 415
 416
 417 ; DL$SEND: Network Transmit Function
 418 ; Input:
 419 ; BC = Buffer address
 420
 421 dl$send:
 422
 423 014A 50 mov d,b ; Buffer address in DE for data link
 424 014B 59 mov e,c
 425
 426 tretry:
 427
 428 014C AF xra a ; Packet mode, wait for Net Idle
 429 014D D5 push d ; Save buffer address for retry
 430
 431 014E CD5701 call psxmit ; Initiate Transmit, wait for completion
 432
 433 0151 D1 pop d ; Restore buffer address
 434 0152 B7 ora a
 435 0153 C8 rz ; Return if no error
 436
 437 0154 C34C01 jmp tretry ; Jump to retry if error
 438
 439 ; PSXMIT: Transmit the packet pointed at by DE. If carry flag is set
 440 ; then don't wait for the Net to become idle.
 441 ;
 442 ; Returns the completion code in A
 443 ; 0 - Transmission ok and Data Link Ack Received
 444 ; (In the case of multicast, no Ack required)
 445 ; 2 - Transmission OK but no Data Link Ack received.
 446 ;
 447 ; 4 - Other error.
 448
 449 psxmit:

 450
 451 0157 CD0000 call transmit ; This will transmit, set return code
 452
 453 twait:
 454
 455 015A CD0000 call gettcode ; A := GETTCODE - Xmit return code
 456 015D 5F mov e,a
 457 015E 1600 mvi d,0
 458 0160 216901 lxi h,trtbl ; dispatch on the return code
 459 0163 19 dad d
 460 0164 5E mov e,m
 461 0165 23 inx h
 462 0166 66 mov h,m
 463 0167 6B mov l,e
 464 0168 E9 pchl

CP/M RMAC ASSEM 1.1 #010 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

 465
 466 trtbl:
 467
 468 0169 7701 dw psxret ; Good transmission
 469 016B 7701 dw psxret ; No Data Link Ack
 470 016D 7701 dw psxret ; Too many collisions
 471 016F 7701 dw psxret ; Transmitter is disabled
 472 0171 5A01 dw twait ; Transmitter is idle
 473 0173 5A01 dw twait ; Transmitter is in progress
 474 0175 5A01 dw twait ; Transmitter is waiting for ack
 475
 476 psxret:
 477
 478 0177 C9 ret
 479
 480 ; PSRECV: Receive a packet into buffer pointed at by DE. Length of
 481 ; packet must be less than length of buffer in BC. HL is the receive
 482 ; timeout count.
 483 ;
 484 ; Upon return clear the carry bit if a packet received and ACKed.
 485 ; Set the carry flag if any error occured.
 486
 487 psrecv:
 488
 489 0178 CD0000 call receive ; Receive. Return code will be set
 490
 491 rwait:
 492
 493 017B CD0000 call getrcode ; A := GETRCODE
 494
 495 017E 5F mov e,a
 496 017F 1600 mvi d,0
 497 0181 218A01 lxi h,rrtbl ; dispatch on the return code
 498 0184 19 dad d
 499 0185 5E mov e,m
 500 0186 23 inx h
 501 0187 66 mov h,m
 502 0188 6B mov l,e
 503 0189 E9 pchl
 504
 505 rrtbl:
 506
 507 018A 9601 dw rgood ; Good receive
 508 018C 9801 dw rbad ; Bad receive
 509 018E 9801 dw rbad ; Disabled
 510
 511 if not interrupts
 512 0190 9801 dw rbad ; Still idle after timeout
 513 else
 514 dw ridle ; Idle
 515 endif
 516
 517 0192 7B01 dw rwait ; Inprogress
 518 0194 7B01 dw rwait ; In progress and for us.

CP/M RMAC ASSEM 1.1 #011 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

 519

 520 if interrupts
 521 ridle:
 522
 523 call rtmochk ; Check for timeout
 524 jc ridle1 ; Jump if timeout
 525 call wait1 ; Wait 1 ms
 526 jmp rwait ; Continue to wait if no timeout
 527
 528 ridle1:
 529
 530 call dsblrecv ; Disable the receiver
 531 stc
 532 ret ; Return with error
 533 endif
 534
 535 rgood:
 536
 537 0196 A7 ana a
 538 0197 C9 ret
 539
 540 rbad:
 541
 542 0198 37 stc ; Indicate error
 543 0199 C9 ret
 544 page

CP/M RMAC ASSEM 1.1 #012 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

 545
 546
 547 ; NIOD routines
 548
 549
 550
 551 ; SETBAUD: Set the baud rate based on the baud rate code in A. Do special
 552 ; logic for self-clocked mode.
 553 ;
 554 ; 0 = 9600 baud
 555 ; 1 = 19200 baud
 556 ; 9 = 76800 baud self-clock
 557 ; 11= 153600 baud self-clock
 558 ; 13= 307200 baud self-clock
 559 ;
 560 ; If this station cannot handle the requested baud rate, then set
 561 ; the carry flag.
 562
 563 setbaud:
 564
 565 019A E60F ani 0fh ; mask all but the baud bits
 566 019C 21C400 lxi h,curbaud ; are we at the current baud rate?
 567 019F BE cmp m
 568 01A0 C8 rz ; yes-->all done
 569
 570 01A1 47 mov b,a ; else-->get baud rate generator value
 571 01A2 E607 ani 7
 572 01A4 5F mov e,a
 573 01A5 1600 mvi d,0
 574
 575 01A7 21C500 lxi h,btbl ; point to vertical-to-horizontal decode
 576 01AA 19 dad d ; table
 577
 578 if slfclkd
 579 01AB 78 mov a,b
 580 01AC E608 ani selfmsk ; is this a self-clocked value?
 581 01AE C2D601 jnz selfclkd
 582 endif
 583
 584 01B1 3E03 mvi a,baudsl ; get legal baud rate mask
 585 01B3 A6 ana m
 586 01B4 37 stc
 587 01B5 C8 rz ; return with error if its an illegal rate
 588
 589 if slfclkd
 590 01B6 3E05 mvi a,5 ; else-->switch off possible self-clock mode
 591 01B8 D306 out siocmd
 592 01BA 3E6A mvi a,dtroff ; disable DTR in SIO register 5
 593 01BC D306 out siocmd

 594
 595 01BE 3E04 mvi a,4 ; disable sync mode in register 4
 596 01C0 D306 out siocmd
 597 01C2 3E4F mvi a,disslf
 598 01C4 D306 out siocmd

CP/M RMAC ASSEM 1.1 #013 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

 599 endif
 600
 601 01C6 21CD00 lxi h,baudtbl ; point to async baud rate table
 602
 603 outbau:
 604
 605 01C9 19 dad d ; get async baud rate value
 606 01CA 7E mov a,m
 607 01CB D300 out baudgen ; load it into the baud rate generator
 608 ; NOTE: This is not a CTC
 609
 610 01CD 21C400 lxi h,curbaud
 611 01D0 70 mov m,b ; set current baud byte
 612
 613 01D1 CDA702 call wait ; allow the system to reach equilibrium
 614
 615 01D4 A7 ana a ; return success
 616 01D5 C9 ret
 617
 618 if slfclkd
 619 ; Throw SIO into self-clocked mode
 620
 621 selfclkd:
 622
 623 01D6 3E2A mvi a,baudsh ; Is this a legal rate?
 624 01D8 A6 ana m
 625 01D9 37 stc
 626 01DA C8 rz ; return an error if not
 627
 628 01DB 3E04 mvi a,4 ; enable sync mode in register 4
 629 01DD D306 out siocmd
 630 01DF 3E0F mvi a,enaslf
 631 01E1 D306 out siocmd
 632
 633 01E3 3E05 mvi a,5 ; enable DTR in register 5
 634 01E5 D306 out siocmd
 635 01E7 3EEA mvi a,dtron
 636 01E9 D306 out siocmd
 637
 638 01EB 21CF00 lxi h,scbaudt ; point to baud rate table for self-clock mode
 639 01EE C3C901 jmp outbau ; program the baud rate generator
 640 endif
 641
 642
 643 ; DSBLXMIT: Disable the transmitter if in self clocked mode
 644
 645 dsblxmit:
 646
 647 if slfclkd
 648 01F1 3AC400 lda curbaud ; are we in self-clocked mode?
 649 01F4 E608 ani selfmsk
 650 01F6 C8 rz ; no-->don't bother
 651
 652 01F7 3E05 mvi a,5 ; disable SIO from transmitting by disabling

CP/M RMAC ASSEM 1.1 #014 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

 653 01F9 D306 out siocmd ; DTR in register 5
 654 01FB 3E6A mvi a,dtroff
 655 01FD D306 out siocmd
 656
 657 01FF 3E05 mvi a,5 ; Enable receive by re-enabling DTR
 658 0201 D306 out siocmd
 659 0203 3EEA mvi a,dtron
 660 0205 D306 out siocmd
 661 endif
 662
 663 0207 C9 ret

 664
 665
 666 ; XMIT: Transmit the byte in A on network A.
 667
 668
 669 xmit:
 670
 671 if not interrupts
 672 0208 F5 push psw
 673
 674 xmit1:
 675
 676 0209 DB06 in siostat ; don't overrun the transmitter if we're
 677 020B E604 ani xrdymsk ; interrupt-driven; wait for TxReady
 678 020D CA0902 jz xmit1
 679
 680 0210 F1 pop psw
 681 endif
 682
 683 0211 D304 out sioxmit ; blast that byte
 684 0213 C9 ret
 685
 686
 687 ; RECV: Receive a byte from Network A. Set the carry flag if there was
 688 ; a receive error.
 689 ;
 690 ; For Z80-SIO receive errors are handled by the special receive
 691 ; condition interrupts.
 692
 693 recv:
 694
 695 if not interrupts
 696 0214 CD5D02 call netidle
 697 0217 DA2702 jc rto ; set error condition if the net went idle
 698
 699 021A DB06 in siostat ; else-->wait until a character is in the
 700 021C E601 ani rrdymsk ; buffer
 701 021E CA1402 jz recv
 702
 703 0221 CD2A02 call chkstat ; check for receive errors
 704
 705 else
 706 ana a ; clear carry flag

CP/M RMAC ASSEM 1.1 #015 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

 707 endif
 708
 709 0224 DB04 in siorecv ; input the character
 710 0226 C9 ret
 711
 712 rto: ; set an error
 713
 714 0227 AF xra a
 715 0228 37 stc
 716 0229 C9 ret
 717
 718
 719 ; CHKSTAT: Check error status bits of a receive error. If not error then
 720 ; clear the carry flag and return. Otherwise figure out which
 721 ; error occured and increment its counter and set the carry flag.
 722 ; Issue an error reset command to the UART.
 723
 724
 725 chkstat:
 726
 727 022A 3E01 mvi a,1 ; get error status from SIO read register 1
 728 022C D306 out siocmd
 729 022E DB06 in siostat
 730
 731 0230 E670 ani errbits
 732 0232 C8 rz ; no error occurred-->all done
 733
 734 if netstats ; gather statistics on the type of error
 735 0233 47 mov b,a
 736 0234 E610 ani pmsk
 737 0236 CA3F02 jz np ; not a parity error

 738
 739 0239 210000 lxi h,parcntr ; else-->
 740 023C CD0000 call inccntr ; increment parity error counter
 741
 742 np:
 743
 744 023F 78 mov a,b
 745 0240 E605 ani obit
 746 0242 CA4B02 jz no ; not an overrun
 747
 748 0245 210000 lxi h,ovrcntr ; else-->
 749 0248 CD0000 call inccntr ; increment overrun counter
 750
 751 no:
 752
 753 024B 78 mov a,b
 754 024C E606 ani fbit
 755 024E CA5702 jz nf ; not a framing error
 756
 757 0251 210000 lxi h,frmcntr ; else-->
 758 0254 CD0000 call inccntr ; increment framing error counter
 759
 760 nf:

CP/M RMAC ASSEM 1.1 #016 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

 761 endif
 762
 763 0257 3E30 mvi a,errst ; reset error condition
 764 0259 D306 out siocmd
 765 025B 37 stc ; signal an error
 766 025C C9 ret
 767
 768
 769
 770 ; NETIDLE: See if network A is idle. If idle then set the carry flag.
 771
 772 netidle:
 773
 774 025D 3E10 mvi a,10h ; reset interrupts
 775 025F D306 out siocmd
 776 0261 D306 out siocmd ; do it twice to reject glitches on DCD
 777
 778 0263 DB06 in siostat ; is there a data-carrier detect?
 779 0265 E608 ani carmsk
 780 0267 C8 rz ; yes-->net is in use-->carry flag cleared
 781
 782 0268 AF xra a
 783 0269 CD9A01 call setbaud ; net is idle-->reset to hailing rate (9600)
 784 026C 37 stc ; set net idle to true
 785 026D C9 ret
 786
 787
 788 if interrupts
 789
 790 ; ENBLRECV: Enable the channel A receiver interrupts.
 791
 792 enblrecv:
 793
 794 mvi a,1 ; enable interrupts on all characters
 795 out siocmd
 796 mvi a,011h ; NOTE: This mask would have to be 015h on
 797 out siocmd ; channel B
 798 ret
 799
 800 ; DSBLRECV: Disable the channel A receiver interrupts.
 801
 802 dsblrecv:
 803
 804 mvi a,1 ; Disable interrupts on received characters
 805 out siocmd ; (Keep status interrupts enabled)
 806 out siocmd ; NOTE: Channel B mask is 05h
 807 ret
 808
 809 endif
 810
 811

 812 ; PGMUART: Program the Network UART channel
 813
 814 pgmuart:

CP/M RMAC ASSEM 1.1 #017 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

 815
 816 if interrupts
 817 ; The 820 already has the SIO vector address
 818 ; programmed from channel B. Other
 819 ; implementations will have to provide linkage
 820 ; to the vector area in the main XIOS, and
 821 ; load the vector offset into SIO write
 822 ; register 2
 823
 824 lxi h,niisr ; load status interrupt service routine vector
 825 shld siov5
 826 lxi h,dlisr ; load transmit ISR vector
 827 shld siov6
 828 lxi h,reisr ; load receiv ISR vector
 829 shld siov7
 830 endif
 831
 832 026E 21D500 lxi h,sioiblk ; point to SIO initialization block
 833 0271 060C mvi b,sioilen ; length of block
 834 0273 F3 di
 835
 836 pgm1:
 837
 838 0274 7E mov a,m ; output the block to the SIO
 839 0275 D306 out siocmd
 840 0277 23 inx h
 841 0278 05 dcr b
 842 0279 C27402 jnz pgm1
 843
 844 027C FB ei
 845 027D AF xra a ; set up hailing baud rate = 9600
 846 027E CD9A01 call setbaud
 847 0281 C9 ret
 848
 849
 850 ; INITUART: Initialize the uart for network A by issuing a reset command
 851 ; and clearing out the receive buffer.
 852
 853 inituart:
 854
 855 0282 3E03 mvi a,3 ; disable the receiver through register 3
 856 0284 D306 out siocmd
 857 0286 3EC0 mvi a,disrcv
 858 0288 D306 out siocmd
 859
 860 028A DB06 in siostat ; is there a garbage byte?
 861 028C E601 ani rrdymsk
 862 028E CA9602 jz initu ; no-->continue initialization
 863
 864 0291 DB04 in siorecv ; else-->eat the character
 865 0293 C38202 jmp inituart ; try again
 866
 867 initu:
 868

CP/M RMAC ASSEM 1.1 #018 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

 869 0296 3E30 mvi a,errst ; reset error conditions
 870 0298 D306 out siocmd
 871
 872 029A 3E03 mvi a,3 ; re-enable the receiver
 873 029C D306 out siocmd
 874 029E 3EC1 mvi a,enarcv
 875 02A0 D306 out siocmd
 876
 877 02A2 C9 ret
 878
 879 ; INITRECV: Initialize a receive operation
 880
 881 initrecv:

 882
 883 02A3 CD8202 call inituart
 884
 885 if interrupts
 886 call enblrecv ; enable receiver interrupts
 887 endif
 888
 889 02A6 C9 ret
 890
 891
 892 ; WAIT - Wait 100 micro seconds
 893
 894 wait:
 895
 896 02A7 3E16 mvi a,timeval
 897
 898 w:
 899
 900 02A9 3D dcr a ; 04
 901 02AA A7 ana a ; 04
 902 02AB C2A902 jnz w ; 12
 903 ; ---
 904 02AE C9 ret ; 30 T-States total
 905
 906
 907 ; RESTUART: Reinitialize the UART to the way it was in the
 908 ; original BIOS after completing the network operations
 909
 910
 911 restuart:
 912 02AF C9 ret ; UART not used except by network
 913
 914
 915 ; CSNIOD: Do any cold start initialization which is necessary.
 916 ; Must at least return the value of BAUDS
 917 ; If the network uses the printer port then set theh carry flag
 918 ; otherwise clear it.
 919
 920 csniod:
 921
 922 02B0 01032A lxi b,bauds ; return the legal baud rates

CP/M RMAC ASSEM 1.1 #019 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

 923 02B3 B7 ora a ; not using a printer port
 924 02B4 C9 ret
 925
 926
 927 02B5 end

CP/M RMAC ASSEM 1.1 #020 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

ACTIVE 0010 129#
BAUDGEN 0000 71# 607
BAUDS 2A03 69# 922
BAUDSH 002A 66# 69 623
BAUDSL 0003 65# 69 584
BAUDTBL 00CD 225# 601
BDOS 0005 136# 287
BTBL 00C5 222# 575
BUFLEN 0106 116#
CARBIT 0003 81#
CARMSK 0008 82# 779
CHKSTAT 022A 42 703 725#
CNFGTBLADR 00F6 145 275#
CONFIGTBL 0012 170# 277
CSDLL 0000 53 254
CSNIOD 02B0 43 920#
CURBAUD 00C4 216# 566 610 648
DID 0001 111# 112
DISRCV 00C0 96# 857
DISSLF 004F 98# 597
DLLBAU 00C2 45 210#
DLLON 0000 53 255
DLRECEIVE 0137 357 396#
DLSEND 014A 339 421#

DSBLXMIT 01F1 44 645#
DTROFF 006A 94# 592 654
DTRON 00EA 93# 635 659
ENARCV 00C1 95# 874
ENASLF 000F 97# 630
ERRBITS 0070 84# 731
ERRST 0030 83# 763 869
FALSE 0000 31# 32 34
FBIT 0006 89# 754
FMSK 0040 90#
FMT 0000 110# 111
FMTBYTE 004B 153# 311
FNC 0003 113# 114
FRMCNTR 0000 55 757
GETRCODE 0000 52 493
GETTCODE 0000 52 455
INCCNTR 0000 55 740 749 758
INITRECV 02A3 42 881#
INITU 0296 40 862 867#
INITUART 0282 41 853# 865 883
INTERRUPTS 0000 34# 47 57 239 511 520 671 695 788 816
 885
MSG 0005 115# 116
NETADR 00BF 45 209#
NETIDLE 025D 42 696 772#
NETSTATS FFFF 35# 734
NETWORKERRORMSG 0000 160# 286
NETWORKSTATUS 0012 171# 266
NF 0257 755 760#
NIOS 0000 138# 139

CP/M RMAC ASSEM 1.1 #021 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

NO 024B 746 751#
NP 023F 737 742#
NTWRKERROR 00FA 148 283#
NTWRKINIT 00E1 143 252#
NTWRKSTS 00EE 144 264#
NTWRKWBOOT 0103 149 293#
OBIT 0005 87# 745
OMSK 0020 88#
OUTBAU 01C9 603# 639
OVRCNTR 0000 54 748
PARCNTR 0000 54 739
PBIT 0004 85#
PGM1 0274 836# 842
PGMUART 026E 41 814#
PMSK 0010 86# 736
PSRECV 0178 408 487#
PSXMIT 0157 431 449#
PSXRET 0177 468 469 470 471 476#
RBAD 0198 508 509 512 540#
RCVERR 0002 130# 268
RECEIVE 0000 51 489
RECEIVEMSG 0120 147 353#
RECV 0214 40 693# 701
REGSHRT 0000 53 257
RESTUART 02AF 43 911#
RGOOD 0196 507 535#
RQSTRID 0001 152# 174 200 256
RRDYBIT 0000 79#
RRDYMSK 0001 80# 700 861
RRETRY 0139 401# 414
RRTBL 018A 497 505#
RTO 0227 697 712#
RWAIT 017B 491# 517 518 526
SCBAUDT 00CF 230# 638
SELFBIT 0003 91#
SELFCLKD 01D6 581 621#
SELFMSK 0008 92# 580 649
SENDERR 0001 131# 268
SENDMSG 0104 146 305#
SETBAUD 019A 40 563# 783 846
SID 0002 112# 113
SIOCMD 0006 72# 591 593 596 598 629 631 634 636 653
 655 658 660 728 764 775 776 795 797 805
 806 839 856 858 870 873 875

SIOIBLK 00D5 240# 242# 245 832
SIOILEN 000C 245# 833
SIORECV 0004 75# 709 864
SIOSTAT 0006 73# 676 699 729 778 860
SIOV4 FF08 102#
SIOV5 FF0A 103# 825
SIOV6 FF0C 104# 827
SIOV7 FF0E 105# 829
SIOXMIT 0004 74# 683
SIZ 0004 114# 115

CP/M RMAC ASSEM 1.1 #022 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

SLFCLKD FFFF 36# 578 589 618 647
TERRCNT 0000 54
TIMEVAL 0016 212# 896
TRANSMIT 0000 51 451
TRETRY 014C 426# 437
TRTBL 0169 458 466#
TRUE FFFF 32# 35 36
TWAIT 015A 453# 472 473 474
ULCFMT 0000 120# 121
ULCFNC 0004 124# 125
ULCLENHI 0003 123# 124
ULCLENLO 0002 122# 123
ULCMSG 0005 125#
ULCVCIRC 0001 121# 122
W 02A9 898# 902
WAIT 02A7 43 613 894#
XMIT 0208 40 669#
XMIT1 0209 674# 678
XRDYBIT 0002 77#
XRDYMSK 0004 78# 677

Listing F-1: Requester Network I/O System for ULCnet

F.3 Creating the ULCnet Server

The server communications software is contained in the modules XIOSNET.ASM and ULCIF.ASM.
XIOSNET.ASM contains modifications to MP/M II' s XIOS. ULCIF.ASM is the equivalent of the
NETWRKIF transport processes.

ULCIF.ASM uses only two processes, one for input and one for output. To use ULCIF.ASM with the
module SERVER.RSP, you must patch SERVER.RSP to write all message responses to a single output
queue named NtwrkQO0. This patch is detailed in CP/NET V1.2 Application Note #2 dated 11-11-82.

The communications interface is interrupt driven, servicing each character as it is received by the network
port. ULCIF.ASM requests the network resource through a set of dummy console I/O calls to the XIOS. A
call to CONST initializes the network. Calls to CONIN and CONOUT receive and send messages on the
network. The communications interface checks network status through a set of poll calls.

The ULCIF input transport process is dispatched at MP/M II cold start. This process makes all necessary
queues, creates the ULCIF output process, initializes the network, and writes the configuration table address
into the system data page. ULCIF then goes into a loop where it perpetually performs the following actions:

1. Allocates a buffer for an incoming message. If no buffer is available, ULCIF repeats the allocation
process until a buffer becomes available.

2. Receives a message by placing the dummy console number in register D, a pointer to the message
buffer just allocated in register pair BC, and calling CONIN in the XIOS.

3. Converts the ULCnet format message into CP/NET format. To do this, ULCnet assumes that the
virtual circuit number and the requester source ID are identical.

4. Matches the requester ID with a requester control block. If no server is allocated to this requester and
the message is a login, ULCIF allocates a server if one is available. Otherwise, ULCIF writes an
extended error message to the output queue, NtwrkQO0.

5. Using the requester control block, ULCIF writes the address of the message buffer to the appropriate
input queue, NtwrkQI.

6. Repeats.

The output process performs the following actions:

1. Reads the output queue, NtwrkQI0.
2. If the message is a LOGOFF function, frees the appropriate requester control block entry.
3. Converts the message response from CP/NET format into ULCnet format. To do this, ULCnet uses

the requester destination ID as the virtual circuit number.
4. Places the dummy console number into register D, the message buffer address into register pair BC,

and calls CONOUT in the XIOS.
5. Repeats.

The ULCnet modules DLIF and NIOD are contained in the module XIOSNET.ASM. This module must be
incorporated into the server's XIOS. XIOSNET.ASM handles four XIOS jump vector entries, CONST,
CONIN, CONOUT, and POLLDEVICE. The jump vector in the XIOS must be modified to point to these
routines. XIOSNET contains a linkage to the real XIOS routines for these functions, in this case renamed
NCONST, NCONIN, NCONOUT, and POLDEV. The XIOS's interrupt vector might also have to be
modified to support the SIO interrupt service routines in IPBMAIN.

When the console I/O routines are entered, they immediately check to see if the dummy console number has
been supplied.

Note: you must define a console number that does not conflict with real consoles. Make the dummy console
number at least larger than the number of requesters to be supported, since each server process pretends to
attach to a unique console ID. If a dummy console number has not been supplied, these routines jump into
the real console routines. If the dummy number has been supplied, the routines take the following steps.

CONST:
1. performs network initialization.
2. registers the expected Requester ID's as virtual circuit numbers by repeatedly calling

REGSHRT.
3. returns to the ULCIF. This routine is called only once.

CONIN:
1. Calls RECEIVE, using the buffer pointer passed from ULCIF
2. Executes the MP/M II poll function, specifying a poll device routine that repeatedly performs

the GETRCODE function until its status shows that a message has been received properly.
3. Returns to the ULCIF.

CONOUT:
1. Calls TRANSMIT, using the buffer pointer passed from ULCIF.
2. Executes the poll function, specifying a poll device routine that repeatedly performs the

GETTCODE function until the message has been sent and received by the destination without
error.

3. Returns to the ULCIF.

The POLLDEVICE routine behaves almost like the console I/O routines. POLLDEVICE checks for specific
poll device numbers to perform network status functions. If these numbers are not detected, control passes to
the real POLDEV routine. If network status functions are detected, POLLDEVICE performs the appropriate
status check. If the check is successful, a hexadecimal 0FF is returned in register A. If not successful, a 0 is

returned.

The MP/M II dispatcher calls POLLDEVICE when it is entered. If the status returned is 0, MP/M II
maintains the poll device number on a list and continues to call POLLDEVICE every time it is entered.
When the returned status is FF, the dispatcher removes the device number from its list and returns control to
the code that originally performed the poll function call, in this case either CONIN or CONOUT. In this
manner, the communications interface operates completely transparently, requiring very little CPU resource.

The XIOSNET is designed to be interrupt driven. The IPBMAIN.REL module performs the actual data-link.
This module is identical to the IPBMAIN.REL used in the SNIOS. An interrupt-driven protocol is strongly
recommended. If you use the polled version, PBMAIN, calls to TRANSMIT and RECEIVE do not return
until the requested operation has been performed. This means communications software uses up enormous
amounts of CPU time, suspending only when a clock tick interrupts them and forces the dispatcher to be
entered. This results in poor server performance.

The interrupt-driven IPBMAIN module sets up the requested operation only when TRANSMIT and
RECEIVE are called. The actual protocol is driven by the arrival or departure of each character of the
message. This interrupt-driven protocol consumes considerably less CPU time.

To modify the modules ULCIF and XIOSNET for your own server:

1. Patch the module SERVER.RSP to write all of its outputs to a single queue, as described in an
application note.

2. Only three parameters must be modified in the ULCIF if four or fewer requesters are to be supported.

Set NMB$RQSTRS to the number of requesters supported.

Set NMB$BUFS to the number of requesters, plus one. This extra buffer permits the transmission of
LOGIN error messages to the output process, even when all SERVER processes are busy. Having
fewer buffers limits the burden on the server at any one time.

Set CONSOLE$NUM to the dummy console number. The sample listing uses the arbitrarily large
number hex 20. This number should be sufficient.

3. If more than four requesters are supported, you must provide extra QCBs, requester control blocks,
stack space, and Process Descriptor areas.

4. Modify the XIOS jump vector to jump into the XIOSNET routines CONST, CONIN, CONOUT, and
POLLDEVICE. You might have to make additional PUBLIC and EXTRN declarations.

5. Include linkage access to the XIOS interrupt vector. If the XIOS has no interrupt vector, create one.
6. Make sure the false console number specified by the ULCIF module agrees with the one used by

XIOSNET.
7. Make sure the device numbers CONIN and CONOUT use in their poll calls do not conflict with other

device numbers used by the XIOS.
8. Customize the NIOD section of XIOSNET the same way you customized this section in

ULCNIOS.ASM.
9. Create a resident or banked XIOS by linking the regular XIOS module with the network interface:

 A>LINK RESXI0S=<regu1ar XIOS modu1es>,XI0SNET,IPBMAIN[0S]

If you are creating a banked system, all of XIOSNET must reside in common memory.
10.Build the ULCIF.RSP module:

 A>RMAC ULCIF

 A>LINK ULCIF[OR]

11.Perform a GENSYS, using the new RESXIOS.SPR, or perform a BNKXIOS.SPR for a banked
system. Include the patched SERVER.RSP and ULCIF.RSP modules.

You must have access to the XIOS source modules to implement a ULCnet server in the manner described
here. There are two reasons for this:

• Access to the interrupt vector is required.
• Additional device polling routines must be placed into POLLDEVICE.

Both of these problems can be circumvented, but not without difficulty. If the code for XIOSNET is placed
in ULCIF, the input process must initialize the interrupt vectors by performing the instruction:

 LD A,I

But to do this, the input process must know where there is empty space in the interrupt page.

Worse is the prospect of not being able to poll for network completion. Instead, the ULCIF might have to
drastically reduce its own process priority, then busy wait, making repeated calls to GETTCODE and
GETRCODE until the data-link completes. Alternatively, the server can use the polled version of the data-
link, PBMAIN.REL. The problems associated with this version have already been described. Placing
XIOSNET in the XIOS greatly improves performance.

CP/M RMAC ASSEM 1.1 #001 NETWRKIF FOR SYSTEMS RUNNING ULCNET

 1 title 'NETWRKIF for Systems Running ULCnet'
 2 page 54
 3
 4 ;***
 5 ;***
 6 ;** **
 7 ;** S e r v e r N e t w o r k I n t e r f a c e M o d u l e **
 8 ;** **
 9 ;***
 10 ;***
 11
 12
 13 ;***
 14 ;***
 15 ;** **
 16 ;** This module performs communication operations on a server **
 17 ;** equipped with Orange Compuco's ULCnet network adaptor. **
 18 ;** The actual communications protocol is proprietary to Orange **
 19 ;** Compuco. It is included on the CP/NET release disk in REL **
 20 ;** file format on a module called PBMAIN.REL. PBMAIN and a data- **
 21 ;** link interface module, DLIF, must be linked into the XIOS **
 22 ;** as console I/O routines. A sample DLIF is included with this **
 23 ;** module. **
 24 ;** **
 25 ;** This module performs the high-level transport and network **
 26 ;** processing, then calls the DLIF via a direct XIOS console I/O **
 27 ;** function for data-link. The following features are supported: **
 28 ;** **
 29 ;** o Queue Minimization using only 2 interface processes **
 30 ;** o Dynamic LOGIN/LOGOFF support **
 31 ;** **
 32 ;** Very little of this routine needs to be modified to run an a **
 33 ;** particular computer system. The DLIF must be modified to **
 34 ;** support the system's particular RS-232 hardware, and the XIOS **
 35 ;** must be modified to support interrupt-driven operation, if so **
 36 ;** desired, and also support the pseudo-console drivers of the **
 37 ;** DLIF. **
 38 ;** **
 39 ;***

 40 ;***
 41
 42 ; This software was developed jointly by
 43 ;
 44 ; Digital Research, Inc.
 45 ; P.O. Box 579
 46 ; Pacific Grove, CA 93950
 47 ; and
 48 ; Keybrook Business Systems, Inc.
 49 ; 2035 National Avenue
 50 ; Hayward, CA 94545
 51
 52
 53 bdosadr:
 54 0000 0000 dw $-$; RSP XDOS entry point

CP/M RMAC ASSEM 1.1 #002 NETWRKIF FOR SYSTEMS RUNNING ULCNET

 55
 56 ; User-Configurable Parameters (These should be the only changes needed)
 57
 58 0002 = nmb$rqstrs equ 2 ; Number of requesters supported at one time
 59 0003 = nmb$bufs equ 3 ; Number of message buffers
 60 0020 = console$num equ 20h ; Pseudo-console number
 61 004B = fmt$byte equ 4bh ; Format byte: short format with acknowledge,
 62 ; 153.6K baud self-clocked
 63
 64 ; Message Buffer Offsets
 65
 66 0000 = fmt equ 0 ; format
 67 0001 = did equ fmt+1 ; destination ID
 68 0002 = sid equ did+1 ; source ID
 69 0003 = fnc equ sid+1 ; server function number
 70 0004 = siz equ fnc+1 ; size of message (normalized to 0)
 71 0005 = msg equ siz+1 ; message
 72 0106 = buf$len equ msg+257 ; length of total message buffer
 73
 74 ; ULCnet Packet Offsets
 75
 76 0000 = ulc$fmt equ 0 ; packet format
 77 0001 = ulcvcirc equ ulc$fmt+1 ; virtual circuit number
 78 0002 = ulclenlo equ ulcvcirc+1 ; low order of length
 79 0003 = ulclenhi equ ulclenlo+1 ; high order of length
 80 0004 = ulc$fnc equ ulc$len$hi+1 ; start of message: function code
 81 0005 = ulc$msg equ ulc$fnc+1 ; CP/NET message
 82
 83 ; Requester Control Block Offsets
 84
 85 0000 = rqstr$id equ 0 ; requester ID for this server
 86 0001 = uqcb equ rqstr$id+1 ; uqcb to queue to this server
 87 0005 = buf$ptr equ uqcb+4 ; queue message <--> msg buffer ptr
 88 0007 = rcb$len equ buf$ptr+2 ; length of requester control block
 89
 90
 91 ; NETWRKIF Process Descriptors and Stack Space
 92
 93 networkin: ; Receiver Process
 94
 95 0002 0000 dw 0 ; link
 96 0004 00 db 0 ; status
 97 0005 42 db 66 ; priority
 98 0006 6400 dw netstkin+46 ; stack pointer
 99 0008 4E45545752 db 'NETWRKIN' ; name
 100 0010 00 db 0 ; console
 101 0011 FF db 0ffh ; memseg
 102 0012 ds 2 ; b
 103 0014 ds 2 ; thread
 104 0016 ds 2 ; buff
 105 0018 ds 1 ; user code & disk slct
 106 0019 ds 2 ; dcnt
 107 001B ds 1 ; searchl
 108 001C ds 2 ; searcha

CP/M RMAC ASSEM 1.1 #003 NETWRKIF FOR SYSTEMS RUNNING ULCNET

 109 001E ds 2 ; active drives

 110 0020 0000 dw 0 ; HL'
 111 0022 0000 dw 0 ; DE'
 112 0024 0000 dw 0 ; BC'
 113 0026 0000 dw 0 ; AF'
 114 0028 0000 dw 0 ; IY
 115 002A 0000 dw 0 ; IX
 116 002C 0000 dw 0 ; HL
 117 002E 0000 dw 0 ; DE
 118 0030 0000 dw 0 ; BC
 119 0032 0000 dw 0 ; AF, A = ntwkif console dev #
 120 0034 ds 2 ; scratch
 121
 122 netstkin:
 123 0036 C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 124 003E C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 125 0046 C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 126 004E C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 127 0056 C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 128 005E C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h
 129 0064 B405 dw setup
 130
 131 networkout: ; Transmitter Process
 132
 133 0066 0000 dw 0 ; link
 134 0068 00 db 0 ; status
 135 0069 42 db 66 ; priority
 136 006A C800 dw netstkou+46 ; stack pointer
 137 006C 4E45545752 db 'NETWRKOU' ; name
 138 0074 00 db 0 ; console
 139 0075 FF db 0ffh ; memseg
 140 0076 ds 2 ; b
 141 0078 ds 2 ; thread
 142 007A ds 2 ; buff
 143 007C ds 1 ; user code & disk slct
 144 007D ds 2 ; dcnt
 145 007F ds 1 ; searchl
 146 0080 ds 2 ; searcha
 147 0082 ds 2 ; active drives
 148 0084 0000 dw 0 ; HL'
 149 0086 0000 dw 0 ; DE'
 150 0088 0000 dw 0 ; BC'
 151 008A 0000 dw 0 ; AF'
 152 008C 0000 dw 0 ; IY
 153 008E 0000 dw 0 ; IX
 154 0090 0000 dw 0 ; HL
 155 0092 0000 dw 0 ; DE
 156 0094 0000 dw 0 ; BC
 157 0096 0000 dw 0 ; AF, A = ntwkif console dev #
 158 0098 ds 2 ; scratch
 159
 160 netstkou:
 161 009A C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 162 00A2 C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h

CP/M RMAC ASSEM 1.1 #004 NETWRKIF FOR SYSTEMS RUNNING ULCNET

 163 00AA C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 164 00B2 C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 165 00BA C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
 166 00C2 C7C7C7C7C7 dw 0c7c7h,0c7c7h,0c7c7h
 167 00C8 8606 dw output
 168
 169
 170 ; Input queue control blocks
 171
 172 qcbin0:
 173 00CA ds 2 ; link
 174 00CC 4E7477726B db 'NtwrkQI0' ; name
 175 00D4 0200 dw 2 ; msglen
 176 00D6 0100 dw 1 ; nmbmsgs
 177 00D8 ds 2 ; dqph
 178 00DA ds 2 ; nqph
 179 00DC ds 2 ; msgin
 180 00DE ds 2 ; msgout
 181 00E0 ds 2 ; msgcnt
 182 00E2 ds 2 ; buffer
 183

 184 if nmb$rqstrs ge 2
 185 qcbin1:
 186 00E4 ds 2 ; link
 187 00E6 4E7477726B db 'NtwrkQI1' ; name
 188 00EE 0200 dw 2 ; msglen
 189 00F0 0100 dw 1 ; nmbmsgs
 190 00F2 ds 2 ; dqph
 191 00F4 ds 2 ; nqph
 192 00F6 ds 2 ; msgin
 193 00F8 ds 2 ; msgout
 194 00FA ds 2 ; msgcnt
 195 00FC ds 2 ; buffer
 196 endif
 197
 198 if nmb$rqstrs ge 3
 199 qcbin2:
 200 ds 2 ; link
 201 db 'NtwrkQI2' ; name
 202 dw 2 ; msglen
 203 dw 1 ; nmbmsgs
 204 ds 2 ; dqph
 205 ds 2 ; nqph
 206 ds 2 ; msgin
 207 ds 2 ; msgout
 208 ds 2 ; msgcnt
 209 ds 2 ; buffer
 210 endif
 211
 212 if nmb$rqstrs ge 4
 213 qcbin3:
 214 ds 2 ; link
 215 db 'NtwrkQI3' ; name
 216 dw 2 ; msglen

CP/M RMAC ASSEM 1.1 #005 NETWRKIF FOR SYSTEMS RUNNING ULCNET

 217 dw 1 ; nmbmsgs
 218 ds 2 ; dqph
 219 ds 2 ; nqph
 220 ds 2 ; msgin
 221 ds 2 ; msgout
 222 ds 2 ; msgcnt
 223 ds 2 ; buffer
 224 endif
 225
 226 ; Output queue control blocks
 227
 228 qcbout0:
 229 00FE ds 2 ; link
 230 0100 4E7477726B db 'NtwrkQO0' ; name
 231 0108 0200 dw 2 ; msglen
 232 010A 0300 dw nmb$bufs ; nmbmsgs
 233 010C ds 2 ; dqph
 234 010E ds 2 ; nqph
 235 0110 ds 2 ; msgin
 236 0112 ds 2 ; msgout
 237 0114 ds 2 ; msgcnt
 238 0116 ds 2*nmb$bufs+1 ; buffer
 239
 240 ; Requester Management Table
 241
 242 rqstr$table:
 243
 244 ;requester 0 control block
 245
 246 011D FF db 0ffh ; requester ID (marked not in use)
 247 011E CA00 dw qcbin0 ; UQCB: QCB pointer
 248 0120 2201 dw $+2 ; pointer to queue message
 249 0122 0000 dw $-$; pointer to msg buffer (loaded on receive)
 250
 251 if nmb$rqstrs ge 2
 252 ;requester 1 control block
 253
 254 0124 FF db 0ffh ; requester ID (marked not in use)
 255 0125 E400 dw qcbin1 ; UQCB: QCB pointer
 256 0127 2901 dw $+2 ; pointer to queue message
 257 0129 0000 dw $-$; pointer to msg buffer (loaded on receive)

 258 endif
 259
 260 if nmb$rqstrs ge 3
 261 ;requester 2 control block
 262
 263 db 0ffh ; requester ID (marked not in use)
 264 dw qcbin2 ; UQCB: QCB pointer
 265 dw $+2 ; pointer to queue message
 266 dw $-$; pointer to msg buffer (loaded on receive)
 267 endif
 268
 269 if nmb$rqstrs ge 4
 270 ;requester 3 control block

CP/M RMAC ASSEM 1.1 #006 NETWRKIF FOR SYSTEMS RUNNING ULCNET

 271
 272 db 0ffh ; requester ID (marked not in use)
 273 dw qcbin3 ; UQCB: QCB pointer
 274 dw $+2 ; pointer to queue message
 275 dw $-$; pointer to msg buffer (loaded on receive)
 276 endif
 277
 278 ; Output user queue control block
 279
 280 uqcbout0:
 281 012B FE00 dw qcbout0 ; pointer
 282 012D 2F01 dw out$buffer$ptr ; pointer to queue message
 283
 284 out$buffer$ptr:
 285 012F ds 2 ; a queue read will return the message
 286 ; buffer pointer in this location
 287
 288 ; UQCB for flagging errors from receive process to send process
 289
 290 uqcbinout$0:
 291 0131 FE00 dw qcbout0 ; pointer
 292 0133 3501 dw inoutbuffer$ptr
 293 ; pointer to queue message
 294
 295 inoutbuffer$ptr:
 296 0135 ds 2 ; this pointer used by input process to
 297 ; to output "server not logged in" errors
 298
 299 ; Server Configuration Table
 300
 301 configtbl:
 302 0137 00 db 0 ; Server status byte
 303 0138 00 db 0 ; Server processor ID
 304 0139 02 db nmb$rqstrs ; Max number of requesters supported at once
 305 013A 00 db 0 ; Number of currently logged in requesters
 306 013B 0000 dw 0000h ; 16 bit vector of logged in requesters
 307 013D ds 16 ; Logged In Requester processor ID's
 308 014D 5041535357 db 'PASSWORD' ; login password
 309
 310 ; Stacks for server processes. A pointer to the associated process
 311 ; descriptor area must reside on the top of each stack. The stack for
 312 ; SERVR0PR is internal to SERVER.RSP, and is consequently omitted from the
 313 ; NETWRKIF module.
 314
 315 0096 = srvrstklen equ 96h ; server process stack size
 316
 317 if nmb$rqstrs ge 2
 318 0155 srvrstk1: ds srvrstklen-2
 319 01E9 EB01 dw srvr1pd
 320 endif
 321
 322 if nmb$rqstrs ge 3
 323 srvrstk2: ds srvrstklen-2
 324 dw srvr2pd

CP/M RMAC ASSEM 1.1 #007 NETWRKIF FOR SYSTEMS RUNNING ULCNET

 325 endif
 326
 327 if nmb$rqstrs ge 4

 328 srvrstk3: ds srvrstklen-2
 329 dw srvr3pd
 330 endif
 331
 332 ; Memory allocation for server process descriptor copydown
 333 ; All server process descriptor allocation must be contiguous
 334
 335 if nmb$rqstrs ge 2
 336 01EB srvr1pd: ds 52
 337 endif
 338
 339 if nmb$rqstrs ge 3
 340 srvr2pd: ds 52
 341 endif
 342
 343 if nmb$rqstrs ge 4
 344 srvr3pd: ds 52
 345 endif
 346
 347
 348 ; Buffer Control Block: 0 indicates buffer is free for receiving a message
 349 ; 0ffh indicates that the buffer is in use
 350
 351 buf$cb: rept nmb$bufs
 352 db 0
 353 endm
 354 021F+00 DB 0
 355 0220+00 DB 0
 356 0221+00 DB 0
 357
 358 ; Message Buffer Storage Area
 359
 360 msg$buffers: rept nmb$bufs
 361 ds buf$len
 362 endm
 363 0222+ DS BUF$LEN
 364 0328+ DS BUF$LEN
 365 042E+ DS BUF$LEN
 366
 367 ; save area for XIOS routine addresses
 368
 369 conin$jmp:
 370 0534 C3 db jmp
 371 0535 0000 conin: dw $-$
 372
 373 conout$jmp:
 374 0537 C3 db jmp
 375 0538 0000 conout: dw $-$
 376
 377 constat$jmp:
 378 053A C3 db jmp

CP/M RMAC ASSEM 1.1 #008 NETWRKIF FOR SYSTEMS RUNNING ULCNET

 379 constat:
 380 053B 0000 dw $-$
 381
 382
 383
 384
 385 ; NETWRKIF Utility Routines
 386
 387 ; Operating system linkage routine
 388
 389 monx:
 390
 391 053D 2A0000 lhld bdos$adr
 392 0540 E9 pchl
 393
 394
 395 ; Double word subtract: DE = HL - DE
 396
 397 dw$sub:
 398 0541 7D mov a,l
 399 0542 93 sub e
 400 0543 5F mov e,a
 401 0544 7C mov a,h

 402 0545 9A sbb d
 403 0546 57 mov d,a
 404 0547 C9 ret
 405
 406 ; Routine to scan requester control blocks for a match with the received
 407 ; source ID.
 408 ;
 409 ; Input: A = Source ID to Match
 410 ;
 411 ; Output:
 412 ; success: HL = pointer to requester control block
 413 ; A <> 0FFh
 414 ; no match, but a free control block found:
 415 ; HL = pointer to RCB
 416 ; A = 0FFh
 417 ; CY = 0
 418 ; no match and no available RCB's:
 419 ; A = 0FFh
 420 ; CY = 1
 421
 422 scan$table:
 423
 424 0548 211D01 lxi h,rqstr$table ;point to the start of the RCB table
 425 054B 0602 mvi b,nmb$rqstrs
 426 054D 110700 lxi d,rcb$len ;size of RCB's for scanning the table
 427
 428 sc$t1:
 429
 430 0550 BE cmp m ;RCB ID = SID?
 431 0551 C8 rz ;yes--> a match--> return
 432

CP/M RMAC ASSEM 1.1 #009 NETWRKIF FOR SYSTEMS RUNNING ULCNET

 433 0552 19 dad d ;else-->check next entry
 434 0553 05 dcr b
 435 0554 C25005 jnz sc$t1
 436
 437 0557 211D01 lxi h,rqstr$table ;no match-->look for a free entry
 438 055A 0602 mvi b,nmb$rqstrs
 439
 440 sc$t2:
 441
 442 055C 7E mov a,m
 443 055D 3C inr a
 444 055E CA6A05 jz sc$t3 ;an unoccupied entry has been found
 445
 446 0561 19 dad d ;else-->keep looking
 447 0562 05 dcr b
 448 0563 C25C05 jnz sc$t2
 449
 450 0566 3EFF mvi a,0ffh ;outa luck-->set the big error
 451 0568 37 stc
 452 0569 C9 ret
 453
 454 sc$t3: ;no match, but found a free entry
 455
 456 056A 3D dcr a ;A=0FFh
 457 056B B7 ora a ;CY=0
 458 056C C9 ret
 459
 460
 461 ; This routine free up a requester control block for somebody else who
 462 ; might want to Log In.
 463 ;
 464 ; Input: A = source ID that just logged off
 465
 466 free$rqstr$tbl:
 467
 468 056D 211D01 lxi h,rqstr$table
 469 0570 110700 lxi d,rcb$len
 470
 471 fr$t1:
 472
 473 0573 BE cmp m
 474 0574 C27A05 jnz fr$t2 ;RCB ID <> SID-->keep scanning
 475

 476 0577 36FF mvi m,0ffh ;else-->mark it as unoccupied
 477 0579 C9 ret ; and bug out
 478
 479 fr$t2:
 480
 481 057A 19 dad d
 482 057B C37305 jmp fr$t1 ;keep going--it's in there somewhere
 483
 484
 485
 486 ; Routine to send a message on the network

CP/M RMAC ASSEM 1.1 #010 NETWRKIF FOR SYSTEMS RUNNING ULCNET

 487 ; Input: HL = pointer to message buffer
 488
 489 send$msg:
 490
 491 057E E5 push h
 492 057F 364B mvi m,fmt$byte ;set ulc$net format byte
 493
 494 0581 23 inx h ;virtual circuit = requester ID
 495
 496 0582 23 inx h
 497 0583 23 inx h
 498
 499 0584 46 mov b,m ;save function number
 500
 501 0585 23 inx h ;get SIZ
 502 0586 5E mov e,m
 503
 504 0587 1600 mvi d,0 ;normalize CP/NET to ULCnet length
 505 0589 13 inx d
 506 058A 13 inx d
 507
 508 058B 70 mov m,b ;put FNC in first message byte
 509
 510 058C 2B dcx h ;store length
 511 058D 72 mov m,d
 512 058E 2B dcx h
 513 058F 73 mov m,e
 514
 515 0590 C1 pop b ;restore buffer pointer
 516 0591 1620 mvi d,console$num ;set up fake console number for xios
 517 0593 C33705 jmp conout$jmp ;blast that packet
 518
 519
 520 ; Routine to receive a message on the network
 521 ; Input: DE = pointer to buffer
 522
 523 rcv$message:
 524
 525 0596 42 mov b,d
 526 0597 4B mov c,e
 527 0598 C5 push b ;save buffer pointer
 528 0599 1620 mvi d,console$num
 529 059B CD3405 call conin$jmp ;receive the message
 530
 531 059E E1 pop h
 532 059F 3600 mvi m,0 ;FMT = 0 (requester to server)
 533
 534 05A1 23 inx h
 535 05A2 46 mov b,m ;save rqstr ID = virtual circuit
 536
 537 05A3 3A3801 lda configtbl+1
 538 05A6 77 mov m,a ;DID = server ID
 539
 540 05A7 23 inx h

CP/M RMAC ASSEM 1.1 #011 NETWRKIF FOR SYSTEMS RUNNING ULCNET

 541 05A8 5E mov e,m ;get low order length
 542
 543 05A9 70 mov m,b ;SID = requester ID
 544
 545 05AA 23 inx h

 546 05AB 56 mov d,m ;get hi order length
 547
 548 05AC 1B dcx d
 549 05AD 1B dcx d ;normalize ULCnet to CP/NET SIZ
 550
 551 05AE 23 inx h
 552 05AF 46 mov b,m ;get FNC
 553
 554 05B0 73 mov m,e ;store SIZ
 555
 556 05B1 2B dcx h
 557 05B2 70 mov m,b ;store FNC
 558
 559 05B3 C9 ret ;ULCnet message formatted
 560
 561
 562
 563
 564
 565 ; Network I/F Receiver Process
 566
 567
 568 setup: ;initialize NETWRKIF
 569
 570 05B4 0603 mvi b,nmb$rqstrs+1 ;loop counter for making n+1 queues
 571 05B6 0E86 mvi c,134 ;make queue function code
 572 05B8 11CA00 lxi d,qcbin0
 573
 574 makeq: ;make all input and output queue(s)
 575
 576 05BB C5 push b
 577 05BC D5 push d
 578 05BD CD3D05 call monx
 579
 580 05C0 E1 pop h
 581 05C1 111A00 lxi d,26
 582 05C4 19 dad d
 583 05C5 EB xchg
 584
 585 05C6 C1 pop b
 586 05C7 05 dcr b
 587 05C8 C2BB05 jnz makeq
 588
 589 05CB 0E9A mvi c,154
 590 05CD CD3D05 call monx
 591
 592 05D0 110900 lxi d,9 ;write configuration table address
 593 05D3 19 dad d ; into system data page, allowing
 594 05D4 113701 lxi d,configtbl ; server initialization to proceed

CP/M RMAC ASSEM 1.1 #012 NETWRKIF FOR SYSTEMS RUNNING ULCNET

 595 05D7 F3 di
 596 05D8 73 mov m,e
 597 05D9 23 inx h
 598 05DA 72 mov m,d
 599 05DB FB ei
 600
 601 05DC 2B dcx h ;point to XIOS jump table page
 602 05DD 2B dcx h
 603 05DE 2B dcx h
 604 05DF 66 mov h,m
 605 05E0 2E00 mvi l,0
 606
 607 05E2 110600 lxi d,6
 608 05E5 19 dad d ;point to constat
 609 05E6 223B05 shld constat
 610
 611 05E9 23 inx h
 612 05EA 23 inx h
 613 05EB 23 inx h ;point to conin
 614 05EC 223505 shld conin
 615
 616 05EF 23 inx h
 617 05F0 23 inx h
 618 05F1 23 inx h
 619 05F2 223805 shld conout ;point to conout

 620
 621 05F5 1620 mvi d,console$num
 622 05F7 CD3A05 call constat$jmp ;use constat to initialize ulcnet
 623
 624 05FA 116600 lxi d,networkout ;create network I/F output process
 625 05FD 0E90 mvi c,144
 626 05FF CD3D05 call monx
 627
 628 input: ;input process loop
 629
 630 ; Find a free buffer
 631
 632 0602 211F02 lxi h,buf$cb ;point to buffer control block
 633 0605 112202 lxi d,msg$buffers ;point to base of buffer area
 634 0608 0603 mvi b,nmb$bufs ;get total number of buffers
 635
 636 input2:
 637
 638 060A 7E mov a,m
 639 060B 3C inr a
 640 060C C22306 jnz input3 ;we found a free buffer-->use it
 641
 642 060F E5 push h ;point to next buffer
 643 0610 210601 lxi h,buf$len
 644 0613 19 dad d
 645 0614 EB xchg
 646
 647 0615 E1 pop h ;point to next buffer control field
 648 0616 23 inx h

CP/M RMAC ASSEM 1.1 #013 NETWRKIF FOR SYSTEMS RUNNING ULCNET

 649
 650 0617 05 dcr b ;have we scanned all the buffers?
 651 0618 C20A06 jnz input2
 652
 653 061B 0E8E mvi c,142 ;uh oh, we're all clogged up
 654 061D CD3D05 call monx ;dispatch and go sleepy bye for a bit
 655 0620 C30206 jmp input ;try again
 656
 657 input3:
 658
 659 0623 36FF mvi m,0ffh ;found a buffer-->mark it used
 660
 661 0625 D5 push d
 662
 663 ; Receive the message
 664
 665 0626 CD9605 call rcv$message
 666
 667 0629 E1 pop h
 668 062A E5 push h
 669
 670 062B 23 inx h ;check requester table to see
 671 062C 23 inx h ; whether the source requester
 672 062D 7E mov a,m ; is logged-in
 673 062E CD4805 call scan$table
 674
 675 0631 3C inr a
 676 0632 CA4A06 jz input4 ;not logged-in-->go check for login
 677
 678 input6:
 679
 680 0635 110500 lxi d,buf$ptr ;else-->update message buffer pointer
 681 0638 19 dad d
 682
 683 0639 D1 pop d
 684 063A 73 mov m,e
 685 063B 23 inx h
 686 063C 72 mov m,d
 687
 688 063D 11FBFF lxi d,uqcb-buf$ptr-1 ;point to the uqcb for this requester
 689 0640 19 dad d
 690 0641 EB xchg
 691
 692 0642 0E8B mvi c,139 ;write the message to the queue
 693 0644 CD3D05 call monx

 694
 695 0647 C30206 jmp input ;round and round we go
 696
 697 input4: ;else-->requester not logged-in
 698
 699 064A D1 pop d
 700 064B 13 inx d
 701 064C 13 inx d
 702 064D 13 inx d

CP/M RMAC ASSEM 1.1 #014 NETWRKIF FOR SYSTEMS RUNNING ULCNET

 703 064E DA6006 jc input5 ;bomb the message if there's no
 704 ; table entries left
 705
 706 0651 1A ldax d
 707 0652 FE40 cpi 64 ;is it a login?
 708 0654 C26006 jnz input5
 709
 710 0657 1B dcx d ;yes-->mark the control block with
 711 0658 1A ldax d ; the source ID
 712 0659 77 mov m,a
 713
 714 065A 1B dcx d ;go do the queue write
 715 065B 1B dcx d
 716 065C D5 push d
 717 065D C33506 jmp input6
 718
 719 input5: ;flag a "not logged in" extended error
 720
 721 0660 EB xchg
 722 0661 23 inx h
 723 0662 3601 mvi m,1 ;set SIZ=1
 724 0664 23 inx h
 725 0665 36FF mvi m,0ffh ;set return code to error
 726 0667 23 inx h
 727 0668 360C mvi m,0ch ;flag extended error 12
 728
 729 066A 11FAFF lxi d,fmt-msg-1
 730 066D 19 dad d ;point back at message start
 731 066E 3601 mvi m,1 ;format = 1
 732
 733 0670 23 inx h ;swap DID and SID
 734 0671 7E mov a,m
 735 0672 23 inx h
 736 0673 46 mov b,m
 737 0674 77 mov m,a
 738 0675 2B dcx h
 739 0676 70 mov m,b
 740 0677 2B dcx h
 741
 742 0678 223501 shld inoutbuffer$ptr ;write buffer pointer to queue msg buf
 743
 744 067B 113101 lxi d,uqcbinout$0 ;write to the queue
 745 067E 0E8B mvi c,139
 746 0680 CD3D05 call monx
 747 0683 C30206 jmp input ;try again
 748
 749
 750
 751 ; Network I/F transmitter process
 752
 753 output:
 754
 755 0686 112B01 lxi d,uqcbout0 ;read the output queue-->go sleepy
 756 0689 0E89 mvi c,137 ; bye until some server process

CP/M RMAC ASSEM 1.1 #015 NETWRKIF FOR SYSTEMS RUNNING ULCNET

 757 068B CD3D05 call monx ; sends a response
 758
 759 068E 2A2F01 lhld out$buffer$ptr
 760 0691 EB xchg
 761 0692 D5 push d ;save message pointer
 762
 763 0693 210300 lxi h,fnc ;get message function code

 764 0696 19 dad d
 765 0697 7E mov a,m
 766 0698 2B dcx h
 767
 768 0699 FE41 cpi 65 ;is it a logoff?
 769 069B C2A206 jnz output2
 770
 771 069E 7E mov a,m ;load SID
 772 069F CC6D05 cz free$rqstr$tbl ;yes-->free up the server process
 773
 774 output2:
 775
 776 06A2 E1 pop h
 777 06A3 E5 push h
 778 06A4 CD7E05 call send$msg ;send the message
 779
 780 06A7 E1 pop h ;retrieve message pointer
 781
 782 06A8 112202 lxi d,msg$buffers ;DE = pointer - message buffer base
 783 06AB CD4105 call dw$sub
 784
 785 06AE 011F02 lxi b,buf$cb ;BC = DE/buf$len + buf$cb
 786
 787 output3:
 788
 789 06B1 7B mov a,e
 790 06B2 B2 ora d
 791 06B3 CAC106 jz output4
 792
 793 06B6 EB xchg
 794 06B7 110601 lxi d,buf$len
 795 06BA CD4105 call dw$sub
 796 06BD 0C inr c
 797 06BE C3B106 jmp output3
 798
 799 output4:
 800
 801 06C1 AF xra a
 802 06C2 02 stax b ;free the buffer for re-use
 803
 804 06C3 C38606 jmp output ;transmission without end, amen
 805
 806 06C6 end

CP/M RMAC ASSEM 1.1 #016 NETWRKIF FOR SYSTEMS RUNNING ULCNET

BDOSADR 0000 53# 391
BUFCB 021F 351# 632 785
BUFLEN 0106 72# 361 363 364 365 643 794
BUFPTR 0005 87# 88 680 688
CONFIGTBL 0137 301# 537 594
CONIN 0535 371# 614
CONINJMP 0534 369# 529
CONOUT 0538 375# 619
CONOUTJMP 0537 373# 517
CONSOLENUM 0020 60# 516 528 621
CONSTAT 053B 379# 609
CONSTATJMP 053A 377# 622
DID 0001 67# 68
DWSUB 0541 397# 783 795
FMT 0000 66# 67 729
FMTBYTE 004B 61# 492
FNC 0003 69# 70 763
FREERQSTRTBL 056D 466# 772
FRT1 0573 471# 482
FRT2 057A 474 479#
INOUTBUFFERPTR 0135 292 295# 742
INPUT 0602 628# 655 695 747
INPUT2 060A 636# 651
INPUT3 0623 640 657#
INPUT4 064A 676 697#
INPUT5 0660 703 708 719#
INPUT6 0635 678# 717
MAKEQ 05BB 574# 587
MONX 053D 389# 578 590 626 654 693 746 757
MSG 0005 71# 72 729
MSGBUFFERS 0222 360# 633 782

NETSTKIN 0036 98 122#
NETSTKOU 009A 136 160#
NETWORKIN 0002 93#
NETWORKOUT 0066 131# 624
NMBBUFS 0003 59# 232 238 351 360 634
NMBRQSTRS 0002 58# 184 198 212 251 260 269 304 317 322
 327 335 339 343 425 438 570
OUTBUFFERPTR 012F 282 284# 759
OUTPUT 0686 167 753# 804
OUTPUT2 06A2 769 774#
OUTPUT3 06B1 787# 797
OUTPUT4 06C1 791 799#
QCBIN0 00CA 172# 247 572
QCBIN1 00E4 185# 255
QCBOUT0 00FE 228# 281 291
RCBLEN 0007 88# 426 469
RCVMESSAGE 0596 523# 665
RQSTRID 0000 85# 86
RQSTRTABLE 011D 242# 424 437 468
SCANTABLE 0548 422# 673
SCT1 0550 428# 435
SCT2 055C 440# 448
SCT3 056A 444 454#

CP/M RMAC ASSEM 1.1 #017 NETWRKIF FOR SYSTEMS RUNNING ULCNET

SENDMSG 057E 489# 778
SETUP 05B4 129 568#
SID 0002 68# 69
SIZ 0004 70# 71
SRVR1PD 01EB 319 336#
SRVRSTK1 0155 318#
SRVRSTKLEN 0096 315# 318 323 328
ULCFMT 0000 76# 77
ULCFNC 0004 80# 81
ULCLENHI 0003 79# 80
ULCLENLO 0002 78# 79
ULCMSG 0005 81#
ULCVCIRC 0001 77# 78
UQCB 0001 86# 87 688
UQCBINOUT0 0131 290# 744
UQCBOUT0 012B 280# 755

Listing F-2: NETWRKIF for Systems Running ULCnet
CP/M RMAC ASSEM 1.1 #001 ULCNET DATA LINK LAYER MP/M XIOS MODULE

 1 title 'ULCNET Data Link Layer MP/M XIOS Module'
 2 page 54
 3
 4 ;***
 5 ;* This module must be linked into the server's XIOS. It is designed to *
 6 ;* run under MP/M for the Xerox 820, but should be easily customized. It *
 7 ;* contains the ULCnet interface modules DLIF and NIOD. The DLIF is an *
 8 ;* interface between the transport software contained in ULCIF.RSP and the *
 9 ;* data-link software contained in IPBMAIN.REL. The NIOD contains the actual*
 10 ;* hardware drivers required to run ULCnet. The module IPBMAIN.REL must also*
 11 ;* be linked into the XIOS. *
 12 ;***
 13
 14 ; This software is the result of a joint effort between
 15 ;
 16 ; Digital Research, Inc.
 17 ; P.O. Box 579
 18 ; Pacific Grove, CA 93950
 19 ; and
 20 ; Keybrook Business Systems, Inc.
 21 ; 2035 National Avenue
 22 ; Hayward, CA 94545
 23
 24 ; Conditional assembly control
 25
 26 FFFF = true equ 0ffffh
 27 0000 = false equ not true
 28

 29 FFFF = interrupts equ true ; false=polled, true=interrupt-driven
 30 FFFF = netstats equ true ; switch to gather network statistics
 31 FFFF = slfclkd equ true ; supports self-clocked operation
 32
 33 ; Linkage information
 34
 35 public nconst,nconin,nconout ; XIOS console jump table entries
 36 public polldevice ; XIOS polling routine
 37 public setbaud,xmit,recv,initu ; NIOD routines called by IPBMAIN
 38 public inituart,pgmuart
 39 public chkstat,netidle,initrecv
 40 public wait,restuart,csniod
 41 public dsblxmit
 42 public dllbau,netadr
 43
 44 if interrupts
 45 public enblrecv,dsblrecv
 46 endif
 47
 48 extrn transmit,receive ; IPBMAIN routines and objects
 49 extrn gettcode,getrcode
 50 extrn csdll,dllon,regshrt
 51 extrn terrcnt,parcntr,ovrcntr
 52 extrn frmcntr,inccntr
 53 extrn xdos,const,conin,conout ; linkage back to the rest of XIOS
 54 extrn poldev

CP/M RMAC ASSEM 1.1 #002 ULCNET DATA LINK LAYER MP/M XIOS MODULE

 55
 56 if interrupts
 57 extrn rtmochk ; IPBMAIN interrupt routines
 58 extrn dlisr,reisr,niisr
 59 endif
 60
 61
 62 ; Hardware definitions for the Z80-SIO channel A - For the Xerox 820.
 63
 64 0003 = baudsl equ 03h ; Usable baud rates: 9600, 19.2K asynch.,
 65 002A = baudsh equ 2ah ; 76.8K, 153.6K, 307.2K self-clocked
 66
 67 ; baud rate capability mask
 68 2A03 = bauds equ (baudsh*100h)+baudsl
 69
 70 0000 = baudgen equ 0 ; External baud rate generator register
 71 0006 = siocmd equ 6 ; Command/Mode register
 72 0006 = siostat equ 6 ; Status register
 73 0004 = sioxmit equ 4 ; Transmit register
 74 0004 = siorecv equ 4 ; Receive register
 75
 76 0002 = xrdybit equ 2 ; Transmit buffer empty status bit
 77 0004 = xrdymsk equ 4 ; transmit buffer empty status mask
 78 0000 = rrdybit equ 0 ; Receive buffer full status bit
 79 0001 = rrdymsk equ 1 ; receive buffer full status mask
 80 0003 = carbit equ 3 ; Net Idle detect bit position
 81 0008 = carmsk equ 8 ; Net Idle detect mask
 82 0030 = errst equ 030h ; Error flag reset
 83 0070 = errbits equ 070h ; Error bit position mask
 84 0004 = pbit equ 4 ; Parity error bit position
 85 0010 = pmsk equ 10h ; parity error mask
 86 0005 = obit equ 5 ; Overrun error bit position
 87 0020 = omsk equ 20h ; overrun error mask
 88 0006 = fbit equ 6 ; Framing error bit position
 89 0040 = fmsk equ 40h ; framing error mask
 90 0003 = selfbit equ 3 ; Self clock bit position
 91 0008 = selfmsk equ 8 ; slef clock bit mask
 92 00EA = dtron equ 0eah ; Turn on DTR
 93 006A = dtroff equ 06ah ; Turn off DTR
 94 00C1 = enarcv equ 0c1h ; Enable receive-clock
 95 00C0 = disrcv equ 0c0h ; Disable receive clock
 96 000F = enaslf equ 00fh ; Enable Self-clock mode
 97 004F = disslf equ 04fh ; Disable Self-clock mode
 98
 99 ; SIO Mode 2 interrupts vector table
 100
 101 FF08 = siov4 equ 0ff08h ; SIO port A xmit buffer empty
 102 FF0A = siov5 equ 0ff0ah ; SIO port A external status change

 103 FF0C = siov6 equ 0ff0ch ; SIO port A receive
 104 FF0E = siov7 equ 0ff0eh ; SIO port A special receive condition
 105
 106 0020 = netcon equ 20h ; fake console number called by ULCIF for
 107 ; network operations
 108

CP/M RMAC ASSEM 1.1 #003 ULCNET DATA LINK LAYER MP/M XIOS MODULE

 109 ; polling equates
 110
 111 0020 = ulctx equ 20h ; transmission poll number
 112 0021 = ulcrx equ 21h ; receive poll number
 113 page

CP/M RMAC ASSEM 1.1 #004 ULCNET DATA LINK LAYER MP/M XIOS MODULE

 114
 115
 116
 117 ; ULCnet Data Definitions
 118
 119 0000 netadr: ds 3 ;ULCnet network address
 120 0003 dllbau: ds 2 ;baud rate mask
 121
 122 0016 = timeval equ 22 ; WAIT routine time constant
 123 ; 12 for 2.5 megahertz Z80
 124 ; 22 for 4.0 megahertz Z80
 125
 126 dev$table: ;polling device table
 127
 128 0005 9800 dw twait ;receive poll wait
 129 0007 D300 dw rwait ;transmit poll wait
 130 0002 = num$devices equ ($-dev$table)/2
 131
 132 0009 tcode: ds 1 ; Transmit Return code
 133 000A rcode: ds 1 ; Receive Return code
 134
 135 000B FF curbaud db 0ffh ; Current baud rate
 136
 137
 138 000C 0102040810btbl: db 1,2,4,8,16,32,64,128 ; table to convert baud number codes
 139 ; into a bit mask
 140
 141 baudtbl: ; async baud rate table
 142
 143 0014 0E db 0eh ; 9600 Baud
 144 0015 0F db 0fh ; 19200
 145
 146 scbaudt: ; self-clock baud rate table
 147
 148 0016 00 db 0 ; 62500 Baud - Not implemented
 149 0017 0D db 0dh ; 76800 Baud
 150 0018 00 db 0 ; 125000 Baud - Not implemented
 151 0019 0E db 0eh ; 153600 Baud
 152 001A 00 db 0 ; 250000 Baud - Not implemented
 153 001B 0F db 0fh ; 307200 Baud
 154
 155 if interrupts
 156 001C 30144F156Asioiblk db 030h,14h,4fh,15h,06ah,13h,0c1h,11h,01h,10h,10h,30h
 157 else
 158 sioiblk db 030h,14h,4fh,15h,06ah,13h,0c1h,11h,00h,10h,10h,30h
 159 endif
 160
 161 000C = sioilen equ $-sioiblk
 162
 163 page

CP/M RMAC ASSEM 1.1 #005 ULCNET DATA LINK LAYER MP/M XIOS MODULE

 164
 165
 166
 167 ; ULCnet data-link interface code

 168
 169
 170 ; POLLDEVICE: Device polling routine.
 171 ; Input:
 172 ; C = device number to poll
 173 ; Output:
 174 ; A = 0 if not ready
 175 ; 0ffh if ready
 176
 177 polldevice:
 178
 179 0028 79 mov a,c ; if not a network poll, go to the real
 180 0029 D620 sui ulctx ; routine
 181 002B DA0000 jc poldev
 182
 183 002E FE02 cpi num$devices ; check for poll number in bounds
 184 0030 DA3600 jc devok
 185
 186 0033 3E00 mvi a,0 ; out-of-bounds-->don't do anything
 187 0035 C9 ret
 188
 189 devok:
 190
 191 0036 6F mov l,a
 192 0037 2600 mvi h,0
 193 0039 29 dad h ; multiply index by 2
 194
 195 003A 110500 lxi d,dev$table ; index into the poll routine table
 196 003D 19 dad d
 197
 198 003E 5E mov e,m
 199 003F 23 inx h
 200 0040 56 mov d,m ; get the routine address
 201
 202 0041 EB xchg
 203 0042 E9 pchl ; dispatch
 204
 205
 206
 207 ;
 208 ; NCONST: Console status entry point. If register D = fake network
 209 ; console ID, do network initialization. Otherwise, go back to
 210 ; the real console routines.
 211
 212 nconst:
 213
 214 0043 3E20 mvi a,netcon ; Check if network call
 215 0045 BA cmp d
 216 0046 C20000 jnz const ; Jump to normal CONST if not network
 217

CP/M RMAC ASSEM 1.1 #006 ULCNET DATA LINK LAYER MP/M XIOS MODULE

 218 0049 CD0000 call csdll ; Cold start the data link
 219 004C CD0000 call dllon ; Initialize the SIO Drivers
 220 004F AF xra a ; Initialize all the short addresses
 221
 222 nxtadd:
 223
 224 0050 3C inr a
 225 0051 FE05 cpi 5 ; Check for last address
 226 0053 C8 rz
 227 0054 F5 push psw
 228 0055 CD0000 call regshrt
 229 0058 F1 pop psw
 230 0059 C35000 jmp nxtadd ; Jump to process next address
 231
 232
 233 ; NCONIN: Console In entry point. If register D = the fake network ID
 234 ; then receive a network message, using polled status checks of
 235 ; an interrupt-driven data-link. Otherwise, go back to the real
 236 ; CONIN routine.
 237
 238 nconin:
 239
 240 005C 3E20 mvi a,netcon ; Check for network call
 241 005E BA cmp d

 242 005F C20000 jnz conin ; Jump to normal CONIN if not network
 243
 244 0062 50 mov d,b ; Setup for PSRECEIVE
 245 0063 59 mov e,c
 246
 247 rretry:
 248
 249 0064 AF xra a ; Packet mode
 250 0065 010101 lxi b,257 ; Buffer size
 251 0068 210000 lxi h,0 ; Infinite wait
 252 006B D5 push d ; Save buffer address for retry
 253 006C CDC100 call psrecv
 254 006F D1 pop d ; Restore buffer address
 255 0070 B7 ora a
 256 0071 C8 rz ; Return if no error
 257
 258 0072 C36400 jmp rretry ; Jump to try again if error
 259
 260
 261 ; NCONOUT: Console out entry point. If D = fake console ID, send a network
 262 ; message. Otherwise, just head for the real CONOUT routine.
 263
 264
 265 nconout:
 266
 267 0075 3E20 mvi a,netcon ; Check for network call
 268 0077 BA cmp d
 269 0078 C20000 jnz conout ; Jump to normal CONOUT if not network
 270
 271 007B 50 mov d,b ; Setup for PSXMIT

CP/M RMAC ASSEM 1.1 #007 ULCNET DATA LINK LAYER MP/M XIOS MODULE

 272 007C 59 mov e,c
 273
 274 tretry:
 275
 276 007D AF xra a ; Packet mode, wait for Net Idle
 277 007E D5 push d ; Save buffer address for retry
 278 007F CD8800 call psxmit
 279 0082 D1 pop d ; Restore buffer address
 280 0083 B7 ora a
 281 0084 C8 rz ; Return if no error
 282
 283 0085 C37D00 jmp tretry ; Jump to retry if error
 284
 285
 286 ; PSXMIT: Transmit the packet pointed at by DE. If carry flag is set
 287 ; then don't wait for the Net to become idle.
 288 ;
 289 ; Returns the completion code in A:
 290 ;
 291 ; 0 - Transmission ok and Data Link Ack Received
 292 ; (In the case of multicast, no Ack required)
 293 ; 2 - Transmission OK but no Data Link Ack received.
 294 ;
 295 ; 4 - Other error.
 296
 297 psxmit:
 298
 299 0088 CD0000 call transmit ; TRETCODE := TRANSMIT(TBUFPTR,)
 300
 301 008B 0E83 mvi c,83h ; Poll the transmitter for completion
 302 008D 1E20 mvi e,ulctx
 303 008F CD0000 call xdos
 304
 305 0092 3A0900 lda tcode ; Fetch return code
 306 0095 C3CE00 jmp exitdl
 307
 308 ; TWAIT: Transmission completion poll routine.
 309 ;
 310 ; Output:
 311 ; A = 0 if not complete
 312 ; 0ffh if complete
 313
 314 twait:
 315

 316 0098 CD0000 call gettcode ; A := GETTCODE - Xmit return code
 317
 318 009B 5F mov e,a ; get return code processing vectore
 319 009C 1600 mvi d,0
 320 009E 21A700 lxi h,trtbl
 321 00A1 19 dad d
 322
 323 00A2 5E mov e,m ; dispatch on return code
 324 00A3 23 inx h
 325 00A4 66 mov h,m

CP/M RMAC ASSEM 1.1 #008 ULCNET DATA LINK LAYER MP/M XIOS MODULE

 326 00A5 6B mov l,e
 327 00A6 E9 pchl
 328
 329 ; Return code dispatch table
 330
 331 00A7 B700 trtbl: dw psxret ; Good transmission
 332 00A9 B700 dw psxret ; No Data Link Ack
 333 00AB B700 dw psxret ; Too many collisions
 334 00AD B700 dw psxret ; Transmitter is disabled
 335 00AF B500 dw tsleep ; Transmitter is idle
 336 00B1 B500 dw tsleep ; Transmitter is in progress
 337 00B3 B500 dw tsleep ; Transmitter is waiting for ack
 338
 339 tsleep:
 340
 341 00B5 AF xra a ; Code for continue to sleep
 342 00B6 C9 ret
 343
 344 psxret: ; Enter here if something happened
 345
 346 00B7 D2BB00 jnc twakeup ; Jump if no transmit error
 347 00BA 2F cma ; Else-->Indicate error
 348
 349 twakeup:
 350
 351 00BB 320900 sta tcode ; Store return code
 352 00BE 3EFF mvi a,0ffh ; Signal poll successful
 353 00C0 C9 ret
 354
 355
 356
 357 ; PSRECV: Receive a packet into buffer pointed at by DE. Length of
 358 ; packet must be less than length of buffer in BC. HL is the receive
 359 ; timeout count.
 360 ;
 361 ; Upon return clear the carry bit if a packet received and ACKed.
 362 ; Set the carry flag if any error occured.
 363 ;
 364
 365
 366 psrecv:
 367
 368 00C1 CD0000 call receive ; := RECEIVE(HL,DE,BC)
 369
 370 00C4 0E83 mvi c,83h ; Poll until receive complete
 371 00C6 1E21 mvi e,ulcrx
 372 00C8 CD0000 call xdos
 373
 374 00CB 3A0A00 lda rcode ; Fetch return code
 375
 376 ; Common exit routine for returning to the pseudo-console handler
 377
 378 exitdl:
 379

CP/M RMAC ASSEM 1.1 #009 ULCNET DATA LINK LAYER MP/M XIOS MODULE

 380 00CE B7 ora a ; Assume no error
 381 00CF F0 rp ; Return if no error
 382
 383 00D0 2F cma
 384 00D1 37 stc ; Indicate error
 385 00D2 C9 ret

 386
 387 ; RWAIT: Poll routine to detect receive status.
 388 ;
 389 ; Output:
 390 ; A = 0 if receive not complete
 391 ; 0ffh if receive complete
 392
 393 rwait:
 394
 395 00D3 CD0000 call getrcode ; A := GETRCODE
 396
 397 00D6 5F mov e,a ; form dispatch vector
 398 00D7 1600 mvi d,0
 399 00D9 21E200 lxi h,rrtbl
 400 00DC 19 dad d
 401
 402 00DD 5E mov e,m ; dispatch on receive completion code
 403 00DE 23 inx h
 404 00DF 66 mov h,m
 405 00E0 6B mov l,e
 406 00E1 E9 pchl
 407
 408 ; Receive completion code dispatch table
 409
 410 00E2 F000 rrtbl: dw rgood ; Good receive
 411 00E4 F600 dw rbad ; Bad receive
 412 00E6 F600 dw rbad ; Disabled
 413
 414 if not interrupts
 415 dw rbad ; Still idle after timeout
 416 else
 417 00E8 FA00 dw ridle ; Idle
 418 endif
 419
 420 00EA EE00 dw rsleep ; Inprogress
 421 00EC EE00 dw rsleep ; In progress and for us.
 422
 423 rsleep:
 424
 425 00EE AF xra a ; Code for continue to sleep
 426 00EF C9 ret
 427
 428 rgood:
 429 rwakeup:
 430
 431 00F0 320A00 sta rcode ; Store return code
 432 00F3 3EFF mvi a,0ffh ; Wake up code
 433 00F5 C9 ret

CP/M RMAC ASSEM 1.1 #010 ULCNET DATA LINK LAYER MP/M XIOS MODULE

 434
 435 rbad:
 436
 437 00F6 2F cma ; Code for error
 438 00F7 C3F000 jmp rwakeup ; Jump to wake up receive process
 439
 440 if interrupts
 441
 442 ridle:
 443
 444 00FA CD0000 call rtmochk ; Check for timeout
 445 00FD DAF600 jc rbad ; if timeout, signal error
 446 0100 C3EE00 jmp rsleep ; Continue to wait if no timeout
 447
 448 0103 C9 ret
 449
 450 endif
 451 page

CP/M RMAC ASSEM 1.1 #011 ULCNET DATA LINK LAYER MP/M XIOS MODULE

 452
 453
 454 ; NIOD routines
 455

 456
 457
 458 ; SETBAUD: Set the baud rate based on the baud rate code in A. Do special
 459 ; logic for self-clocked mode.
 460 ;
 461 ; 0 = 9600 baud
 462 ; 1 = 19200 baud
 463 ; 9 = 76800 baud self-clock
 464 ; 11= 153600 baud self-clock
 465 ; 13= 307200 baud self-clock
 466 ;
 467 ; If this station cannot handle the requested baud rate, then set
 468 ; the carry flag.
 469
 470 setbaud:
 471
 472 0104 E60F ani 0fh ; mask all but the baud bits
 473 0106 210B00 lxi h,curbaud ; are we at the current baud rate?
 474 0109 BE cmp m
 475 010A C8 rz ; yes-->all done
 476
 477 010B 47 mov b,a ; else-->get baud rate generator value
 478 010C E607 ani 7
 479 010E 5F mov e,a
 480 010F 1600 mvi d,0
 481
 482 0111 210C00 lxi h,btbl ; point to vertical-to-horizontal decode
 483 0114 19 dad d ; table
 484
 485 if slfclkd
 486 0115 78 mov a,b
 487 0116 E608 ani selfmsk ; is this a self-clocked value?
 488 0118 C24001 jnz selfclkd
 489 endif
 490
 491 011B 3E03 mvi a,baudsl ; get legal baud rate mask
 492 011D A6 ana m
 493 011E 37 stc
 494 011F C8 rz ; return with error if its an illegal rate
 495
 496 if slfclkd
 497 0120 3E05 mvi a,5 ; else-->switch off possible self-clock mode
 498 0122 D306 out siocmd
 499 0124 3E6A mvi a,dtroff ; disable DTR in SIO register 5
 500 0126 D306 out siocmd
 501
 502 0128 3E04 mvi a,4 ; disable sync mode in register 4
 503 012A D306 out siocmd
 504 012C 3E4F mvi a,disslf
 505 012E D306 out siocmd

CP/M RMAC ASSEM 1.1 #012 ULCNET DATA LINK LAYER MP/M XIOS MODULE

 506 endif
 507
 508 0130 211400 lxi h,baudtbl ; point to async baud rate table
 509
 510 outbau:
 511
 512 0133 19 dad d ; get async baud rate value
 513 0134 7E mov a,m
 514 0135 D300 out baudgen ; load it into the baud rate generator
 515 ; NOTE: This is not a CTC
 516
 517 0137 210B00 lxi h,curbaud
 518 013A 70 mov m,b ; set current baud byte
 519
 520 013B CD1E02 call wait ; allow the system to reach equilibrium
 521
 522 013E A7 ana a ; return success
 523 013F C9 ret
 524
 525 if slfclkd
 526 ; Throw SIO into self-clocked mode
 527
 528 selfclkd:
 529

 530 0140 3E2A mvi a,baudsh ; Is this a legal rate?
 531 0142 A6 ana m
 532 0143 37 stc
 533 0144 C8 rz ; return an error if not
 534
 535 0145 3E04 mvi a,4 ; enable sync mode in register 4
 536 0147 D306 out siocmd
 537 0149 3E0F mvi a,enaslf
 538 014B D306 out siocmd
 539
 540 014D 3E05 mvi a,5 ; enable DTR in register 5
 541 014F D306 out siocmd
 542 0151 3EEA mvi a,dtron
 543 0153 D306 out siocmd
 544
 545 0155 211600 lxi h,scbaudt ; point to baud rate table for self-clock mode
 546 0158 C33301 jmp outbau ; program the baud rate generator
 547 endif
 548
 549
 550 ; DSBLXMIT: Disable the transmitter if in self clocked mode
 551
 552 dsblxmit:
 553
 554 if slfclkd
 555 015B 3A0B00 lda curbaud ; are we in self-clocked mode?
 556 015E E608 ani selfmsk
 557 0160 C8 rz ; no-->don't bother
 558
 559 0161 3E05 mvi a,5 ; disable SIO from transmitting by disabling

CP/M RMAC ASSEM 1.1 #013 ULCNET DATA LINK LAYER MP/M XIOS MODULE

 560 0163 D306 out siocmd ; DTR in register 5
 561 0165 3E6A mvi a,dtroff
 562 0167 D306 out siocmd
 563
 564 0169 3E05 mvi a,5 ; Enable receive by re-enabling DTR
 565 016B D306 out siocmd
 566 016D 3EEA mvi a,dtron
 567 016F D306 out siocmd
 568 endif
 569
 570 0171 C9 ret
 571
 572
 573 ; XMIT: Transmit the byte in A on network A.
 574
 575
 576 xmit:
 577
 578 if not interrupts
 579 push psw
 580
 581 xmit1:
 582
 583 in siostat ; don't overrun the transmitter if we're
 584 ani xrdymsk ; interrupt-driven; wait for TxReady
 585 jz xmit1
 586
 587 pop psw
 588 endif
 589
 590 0172 D304 out sioxmit ; blast that byte
 591 0174 C9 ret
 592
 593
 594 ; RECV: Receive a byte from Network A. Set the carry flag if there was
 595 ; a receive error.
 596 ;
 597 ; For Z80-SIO receive errors are handled by the special receive
 598 ; condition interrupts.
 599
 600 recv:
 601
 602 if not interrupts
 603 call netidle

 604 jc rto ; set error condition if the net went idle
 605
 606 in siostat ; else-->wait until a character is in the
 607 ani rrdymsk ; buffer
 608 jz recv
 609
 610 call chkstat ; check for receive errors
 611
 612 else
 613 0175 A7 ana a ; clear carry flag

CP/M RMAC ASSEM 1.1 #014 ULCNET DATA LINK LAYER MP/M XIOS MODULE

 614 endif
 615
 616 0176 DB04 in siorecv ; input the character
 617 0178 C9 ret
 618
 619 rto: ; set an error
 620
 621 0179 AF xra a
 622 017A 37 stc
 623 017B C9 ret
 624
 625
 626 ; CHKSTAT: Check error status bits of a receive error. If not error then
 627 ; clear the carry flag and return. Otherwise figure out which
 628 ; error occured and increment its counter and set the carry flag.
 629 ; Issue an error reset command to the UART.
 630
 631
 632 chkstat:
 633
 634 017C 3E01 mvi a,1 ; get error status from SIO read register 1
 635 017E D306 out siocmd
 636 0180 DB06 in siostat
 637
 638 0182 E670 ani errbits
 639 0184 C8 rz ; no error occurred-->all done
 640
 641 if netstats ; gather statistics on the type of error
 642 0185 47 mov b,a
 643 0186 E610 ani pmsk
 644 0188 CA9101 jz np ; not a parity error
 645
 646 018B 210000 lxi h,parcntr ; else-->
 647 018E CD0000 call inccntr ; increment parity error counter
 648
 649 np:
 650
 651 0191 78 mov a,b
 652 0192 E605 ani obit
 653 0194 CA9D01 jz no ; not an overrun
 654
 655 0197 210000 lxi h,ovrcntr ; else-->
 656 019A CD0000 call inccntr ; increment overrun counter
 657
 658 no:
 659
 660 019D 78 mov a,b
 661 019E E606 ani fbit
 662 01A0 CAA901 jz nf ; not a framing error
 663
 664 01A3 210000 lxi h,frmcntr ; else-->
 665 01A6 CD0000 call inccntr ; increment framing error counter
 666
 667 nf:

CP/M RMAC ASSEM 1.1 #015 ULCNET DATA LINK LAYER MP/M XIOS MODULE

 668 endif
 669
 670 01A9 3E30 mvi a,errst ; reset error condition
 671 01AB D306 out siocmd
 672 01AD 37 stc ; signal an error
 673 01AE C9 ret

 674
 675
 676
 677 ; NETIDLE: See if network A is idle. If idle then set the carry flag.
 678
 679 netidle:
 680
 681 01AF 3E10 mvi a,10h ; reset interrupts
 682 01B1 D306 out siocmd
 683 01B3 D306 out siocmd ; do it twice to reject glitches on DCD
 684
 685 01B5 DB06 in siostat ; is there a data-carrier detect?
 686 01B7 E608 ani carmsk
 687 01B9 C8 rz ; yes-->net is in use-->carry flag cleared
 688
 689 01BA AF xra a
 690 01BB CD0401 call setbaud ; net is idle-->reset to hailing rate (9600)
 691 01BE 37 stc ; set net idle to true
 692 01BF C9 ret
 693
 694
 695 if interrupts
 696
 697 ; ENBLRECV: Enable the channel A receiver interrupts.
 698
 699 enblrecv:
 700
 701 01C0 3E01 mvi a,1 ; enable interrupts on all characters
 702 01C2 D306 out siocmd
 703 01C4 3E11 mvi a,011h ; NOTE: This mask would have to be 015h on
 704 01C6 D306 out siocmd ; channel B
 705 01C8 C9 ret
 706
 707 ; DSBLRECV: Disable the channel A receiver interrupts.
 708
 709 dsblrecv:
 710
 711 01C9 3E01 mvi a,1 ; Disable interrupts on received characters
 712 01CB D306 out siocmd ; (Keep status interrupts enabled)
 713 01CD D306 out siocmd ; NOTE: Channel B mask is 05h
 714 01CF C9 ret
 715
 716 endif
 717
 718
 719 ; PGMUART: Program the Network UART channel
 720
 721 pgmuart:

CP/M RMAC ASSEM 1.1 #016 ULCNET DATA LINK LAYER MP/M XIOS MODULE

 722
 723 if interrupts
 724 ; The 820 already has the SIO vector address
 725 ; programmed from channel B. Other
 726 ; implementations will have to provide linkage
 727 ; to the vector area in the main XIOS, and
 728 ; load the vector offset into SIO write
 729 ; register 2
 730
 731 01D0 210000 lxi h,niisr ; load status interrupt service routine vector
 732 01D3 220AFF shld siov5
 733 01D6 210000 lxi h,dlisr ; load transmit ISR vector
 734 01D9 220CFF shld siov6
 735 01DC 210000 lxi h,reisr ; load receiv ISR vector
 736 01DF 220EFF shld siov7
 737 endif
 738
 739 01E2 211C00 lxi h,sioiblk ; point to SIO initialization block
 740 01E5 060C mvi b,sioilen ; length of block
 741 01E7 F3 di
 742
 743 pgm1:
 744
 745 01E8 7E mov a,m ; output the block to the SIO
 746 01E9 D306 out siocmd
 747 01EB 23 inx h

 748 01EC 05 dcr b
 749 01ED C2E801 jnz pgm1
 750
 751 01F0 FB ei
 752 01F1 AF xra a ; set up hailing baud rate = 9600
 753 01F2 CD0401 call setbaud
 754 01F5 C9 ret
 755
 756
 757 ; INITUART: Initialize the uart for network A by issuing a reset command
 758 ; and clearing out the receive buffer.
 759
 760 inituart:
 761
 762 01F6 3E03 mvi a,3 ; disable the receiver through register 3
 763 01F8 D306 out siocmd
 764 01FA 3EC0 mvi a,disrcv
 765 01FC D306 out siocmd
 766
 767 01FE DB06 in siostat ; is there a garbage byte?
 768 0200 E601 ani rrdymsk
 769 0202 CA0A02 jz initu ; no-->continue initialization
 770
 771 0205 DB04 in siorecv ; else-->eat the character
 772 0207 C3F601 jmp inituart ; try again
 773
 774 initu:
 775

CP/M RMAC ASSEM 1.1 #017 ULCNET DATA LINK LAYER MP/M XIOS MODULE

 776 020A 3E30 mvi a,errst ; reset error conditions
 777 020C D306 out siocmd
 778
 779 020E 3E03 mvi a,3 ; re-enable the receiver
 780 0210 D306 out siocmd
 781 0212 3EC1 mvi a,enarcv
 782 0214 D306 out siocmd
 783
 784 0216 C9 ret
 785
 786 ; INITRECV: Initialize a receive operation
 787
 788 initrecv:
 789
 790 0217 CDF601 call inituart
 791
 792 if interrupts
 793 021A CDC001 call enblrecv ; enable receiver interrupts
 794 endif
 795
 796 021D C9 ret
 797
 798
 799 ; WAIT - Wait 100 micro seconds
 800
 801 wait:
 802
 803 021E 3E16 mvi a,timeval
 804
 805 w:
 806
 807 0220 3D dcr a ; 04
 808 0221 A7 ana a ; 04
 809 0222 C22002 jnz w ; 12
 810 ; ---
 811 0225 C9 ret ; 30 T-States total
 812
 813
 814 ; RESTUART: Reinitialize the UART to the way it was in the
 815 ; original BIOS after completing the network operations
 816
 817
 818 restuart:
 819 0226 C9 ret ; UART not used except by network
 820
 821

 822 ; CSNIOD: Do any cold start initialization which is necessary.
 823 ; Must at least return the value of BAUDS
 824 ; If the network uses the printer port then set theh carry flag
 825 ; otherwise clear it.
 826
 827 csniod:
 828
 829 0227 01032A lxi b,bauds ; return the legal baud rates

CP/M RMAC ASSEM 1.1 #018 ULCNET DATA LINK LAYER MP/M XIOS MODULE

 830 022A B7 ora a ; not using a printer port
 831 022B C9 ret
 832
 833 022C end

CP/M RMAC ASSEM 1.1 #019 ULCNET DATA LINK LAYER MP/M XIOS MODULE

BAUDGEN 0000 70# 514
BAUDS 2A03 68# 829
BAUDSH 002A 65# 68 530
BAUDSL 0003 64# 68 491
BAUDTBL 0014 141# 508
BTBL 000C 138# 482
CARBIT 0003 80#
CARMSK 0008 81# 686
CHKSTAT 017C 39 610 632#
CONIN 0000 53 242
CONOUT 0000 53 269
CONST 0000 53 216
CSDLL 0000 50 218
CSNIOD 0227 40 827#
CURBAUD 000B 135# 473 517 555
DEVOK 0036 184 189#
DEVTABLE 0005 126# 130 195
DISRCV 00C0 95# 764
DISSLF 004F 97# 504
DLISR 0000 58 733
DLLBAU 0003 42 120#
DLLON 0000 50 219
DSBLRECV 01C9 45 709#
DSBLXMIT 015B 41 552#
DTROFF 006A 93# 499 561
DTRON 00EA 92# 542 566
ENARCV 00C1 94# 781
ENASLF 000F 96# 537
ENBLRECV 01C0 45 699# 793
ERRBITS 0070 83# 638
ERRST 0030 82# 670 776
EXITDL 00CE 306 378#
FALSE 0000 27#
FBIT 0006 88# 661
FMSK 0040 89#
FRMCNTR 0000 52 664
GETRCODE 0000 49 395
GETTCODE 0000 49 316
INCCNTR 0000 52 647 656 665
INITRECV 0217 39 788#
INITU 020A 37 769 774#
INITUART 01F6 38 760# 772 790
INTERRUPTS FFFF 29# 44 56 155 414 440 578 602 695 723
 792
NCONIN 005C 35 238#
NCONOUT 0075 35 265#
NCONST 0043 35 212#
NETADR 0000 42 119#
NETCON 0020 106# 214 240 267
NETIDLE 01AF 39 603 679#
NETSTATS FFFF 30# 641
NF 01A9 662 667#
NIISR 0000 58 731
NO 019D 653 658#

CP/M RMAC ASSEM 1.1 #020 ULCNET DATA LINK LAYER MP/M XIOS MODULE

NP 0191 644 649#
NUMDEVICES 0002 130# 183
NXTADD 0050 222# 230
OBIT 0005 86# 652
OMSK 0020 87#
OUTBAU 0133 510# 546
OVRCNTR 0000 51 655
PARCNTR 0000 51 646
PBIT 0004 84#
PGM1 01E8 743# 749
PGMUART 01D0 38 721#
PMSK 0010 85# 643
POLDEV 0000 54 181
POLLDEVICE 0028 36 177#
PSRECV 00C1 253 366#
PSXMIT 0088 278 297#
PSXRET 00B7 331 332 333 334 344#
RBAD 00F6 411 412 415 435# 445
RCODE 000A 133# 374 431
RECEIVE 0000 48 368
RECV 0175 37 600# 608
REGSHRT 0000 50 228
REISR 0000 58 735
RESTUART 0226 40 818#
RGOOD 00F0 410 428#
RIDLE 00FA 417 442#
RRDYBIT 0000 78#
RRDYMSK 0001 79# 607 768
RRETRY 0064 247# 258
RRTBL 00E2 399 410#
RSLEEP 00EE 420 421 423# 446
RTMOCHK 0000 57 444
RTO 0179 604 619#
RWAIT 00D3 129 393#
RWAKEUP 00F0 429# 438
SCBAUDT 0016 146# 545
SELFBIT 0003 90#
SELFCLKD 0140 488 528#
SELFMSK 0008 91# 487 556
SETBAUD 0104 37 470# 690 753
SIOCMD 0006 71# 498 500 503 505 536 538 541 543 560
 562 565 567 635 671 682 683 702 704 712
 713 746 763 765 777 780 782
SIOIBLK 001C 156# 158# 161 739
SIOILEN 000C 161# 740
SIORECV 0004 74# 616 771
SIOSTAT 0006 72# 583 606 636 685 767
SIOV4 FF08 101#
SIOV5 FF0A 102# 732
SIOV6 FF0C 103# 734
SIOV7 FF0E 104# 736
SIOXMIT 0004 73# 590
SLFCLKD FFFF 31# 485 496 525 554
TCODE 0009 132# 305 351

CP/M RMAC ASSEM 1.1 #021 ULCNET DATA LINK LAYER MP/M XIOS MODULE

TERRCNT 0000 51
TIMEVAL 0016 122# 803
TRANSMIT 0000 48 299
TRETRY 007D 274# 283
TRTBL 00A7 320 331#
TRUE FFFF 26# 27 29 30 31
TSLEEP 00B5 335 336 337 339#
TWAIT 0098 128 314#
TWAKEUP 00BB 346 349#
ULCRX 0021 112# 371
ULCTX 0020 111# 180 302
W 0220 805# 809
WAIT 021E 40 520 801#
XDOS 0000 53 303 372
XMIT 0172 37 576#
XRDYBIT 0002 76#
XRDYMSK 0004 77# 584

Listing F-3: ULCnet Data-link Layer MP/M XIOS Module

Appendix G
Using CP/NET 1.2 with CORVUS OMNINET

Corvus OMNINET is an inexpensive, high-performance CSMA/CA networking system supporting up to 63
hosts on a one-megabit-per second, twisted-pair cable. OMNINET host interface adaptors are intelligent
coprocessors that deal with all aspects of network communication of the host in which they are installed, up
to and including the transport layer of the ISO open system model. The sample SNIOS and NETWRKIF files
following this discussion show one way to use Corvus engineering transporters to implement a CP/NET
system.

G.1 The Corvus Engineering Transporter

The Corvus engineering transporter is a card for evaluating Corvus OMNINET with minimum modification
to an existing Z80 system. The transporter is not an end-user product, but it is similar enough in hardware
design to most production systems using OMNINET to work with little modification.

General information about the Corvus transporter is presented here to help you understand the operation of
the sample codes at the end of this appendix. For more information, refer to Corvus documentation.

Communication with the transporter hardware is simplified by the fact that the transporter is microprocessor-
based and uses autonomous DMA to access its host computer's memory directly. All communication
between host and transporter is controlled by well organized data structures existing in host memory. The
only port I/O the host ever does is the transmission, to the transporter hardware, of 24-bit pointer objects (as
three serial bytes, most significant byte first) via an output port. Note that all Corvus multibyte objects are in
most significant byte first order. These pointer objects refer to transporter command blocks, described in
Table G-1.

Field Size Explanation

OPERATION
COMMAND
CODE

8 bits sends a message.

RESULT
BLOCK
POINTER

24 bits
gives the address of a data structure for the transporter to update with
completion information.

SOCKET CODE 8 bits
defines which of the 4 virtual communication channels to use for this
operation.

DATA BUFFER
POINTER

24 bits gives the address of a message buffer for this operation.

DATA
LENGTH
FIELD

16 bits
gives the length of the message to be transmitted or maximum message
length accepted, if this is a receive operation. The maximum length allowed
for a single message packet is 2048.

CONTROL
FIELD

8 bits gives the length of an independent auxiliary message that can be sent to a
special CONTROL buffer in the destination host at an address different from

LENGTH
that of the destination message buffer. In the case of a receive command, this
field specifies the largest such CONTROL message acceptable.

DESTINATION
HOST

8 bits
specifies network address of the target host. Legal network addresses are 0-
63, or 255 for broadcast messages. A host's address is set by switches
connected to the transporter hardware.

Table G-1. Transporter Command Block
Not all fields are used by all commands, but the syntax of the command block is usually consistent, except in
the case of special diagnostic commands.

The result pointer in the command block must contain the address of a large enough data structure in host
memory to accept the completion information that the specified command produces. Note that the result
block is associated with the operation the command block describes. If more than one operation is posted to
the transporter hardware, each must have its own result block available. Table G-2 describes a typical result
block.

Field Size Explanation

OPERATION
STATUS CODE

8 bits
set to 254 by the transporter processor once it has read and accepted the
command block. This field is later set by the transporter to a result code when
it has completed the requested operation.

SOURCE HOST
NUMBER

8 bits gives the network address of the node from which this message packet came.

ACTUAL DATA
LENGTH

16 bits gives the actual length of the message in the receive buffer.

CONTROL
MESSAGE
BUFFER

0-255
bytes

a buffer large enough to accept any CONTROL message transmitted with the
main message packet. The command block that points to this result block
must allow such messages.

Table G-2. Receive Result Block

Up to four simultaneous receive operations can be in progress at any one time, waiting for messages for the
four logical sockets in the host. Only one message can be posted for transmission at any one time, but this
can be done even while four receive operations are pending. Messages from one node are only acceptable to
another node if it has a receive command outstanding specifying the socket to which the message is directed.

In use, the host processor must build a command block, then post it to the transporter hardware by outputting
one byte at a time of its 24-bit address to the transporter via an output port. The transporter uses an input
ready status bit to synchronize this transfer. Command pointers can be transfers done at any time except
while the transporter is processing a command block to transmit a message. That operation ties up the
transporter until the message has been delivered, or the transporter has given up trying. Network latency is
low, so the transporter is unavailable only briefly.

Once the transporter has read and accepted a command, it sets the operation status code in the result block to

254. It is advisable for the host to preset this byte to 255 before sending the transporter the pointer, so that the
transporter can confirm that the command was accepted by checking for the change.

The host then polls all active result blocks, waiting for any operation status code to change to a value other
than 0FEh. This change means the transporter has completed the operation associated with that result block,
and data and result information are available. To simplify interpretation of results, all error codes are between
80h and 0FEh, and all success codes are less than 80h. Send and receive calls that succeed give the number
of retries as a completion code, but this code is always less than 7Fh.

OMNINET transporter interfaces usually support generation of a host interrupt whenever the transporter
writes to a result block. This relieves the host of having to poll result blocks for completion. To simplify
OMNINET evaluation, the engineering transporter is not usually configured to use interrupts. The sample
programs demonstrate the use of the transporter both without interrupts and with external interrupt hardware.
Servers usually need interrupt hardware or an XIOS polling routine to achieve a usable throughput, but the
sample drivers can be made to run without either if high throughput is not a goal.

The coprocessor interface structure the transporter uses is close to the ideal model of a perfect transport layer.
The transporter hardware deals with all retries, message acknowledgments, packet sequencing checking, and
error detection totally transparently to the host it serves. The data-structure based message interface between
the host and transport layer is useful even in implementing non-OMNINET interrupt-driven transport layers
for CP/NET.

G.2 Implementation Structure

In the sample implementation, very few OMNINET features were needed. All CP/NET traffic is on one
logical channel (SOCKET 2), leaving the others free for such non-CP/NET uses as providing bootstrap
channels between diskless devices and optional processes to load them, providing non-CP/NET peripheral
sharing routines or even supporting a second network operating system in concurrent use.

Because CP/NET processes its own control fields (message headers), the control message options are not
used and are set to zero. In the evaluation transporter, the most significant byte of the memory address is not
used and is always set to zero. Other hardware implementations can use this byte for segment control to
allow the message buffers to be banked out, or for a 16-bit processor.

The network node ID of an OMNINET host is set by six switches on its transporter hardware. In this
implementation, the NODE number is the CP/NET network ID. Set the ID of the SERVER to 00. A requester
can have any other unique OMNINET ID code except 0FF hex. This ID code freedom is achieved by a
routine in the NETWRKIF module that binds requester ID codes dynamically to processes in the
SERVER.RSP module by tracking login and logoff messages. Hence, up to 63 requesters can be supported,
as long as no more than NSLAVES are logged in at any one time. Because the transporter handles all low-
level communication concerns, the NETWRKIF module is relatively compact; and 16 requesters are easily
supported in most systems.

To simplify coding the interface modules, data structure constructor macros eliminate the need for typing all
the definitions again and again for each requester. This technique requires that the indices into the resulting
arrays of data structures be computed at run-time, but this is easy to do and, where possible, is part of
initialization.

G.3 The SNIOS Implementation

The intelligent nature of the OMNINET interface makes coding the SNIOS a simple exercise. Allocate a set
of prefabricated transporter command blocks and associated result blocks. Even though the requester never
has more than one operation pending at a time, it is simpler to use separate command blocks for each needed

operation type than to recycle the same command block.

Unfortunately, relocating 8080 assemblers like RMAC do not easily deal with relocation of multibyte
pointers that are not in Intel® standard memory order. It is simplest to set the result block pointers at
initialization; that approach is used here.

After setting up these pointers, the NTWRKINIT routine posts a prebuilt transporter command block called
INITTCB to the transporter via the routine called OMNI$STROBE. If the transporter does not accept the
pointer, initialization aborts and an error returns to the NDOS. If the transporter accepts the pointer,
NTWRKINIT calls OMNI$WFDONE to poll the result block associated with INITTCB until the transporter
reports a completion. If the initialization operation succeeds, the node number presently set into the
transporter's switches is found as a result code. If initialization fails, a value > 80h corresponding to an error
code is found and returned to NTWRKINIT, and NTWRKINIT aborts and returns an error code to the
NDOS. Otherwise, the node number returned is installed in configtbl and the default message buffer's SID
field, the requester ID and a banner print on the console, and a success code is returned to the NDOS.

The NTWRKERROR entry is functionally identical to NTWRKINIT except that it does not print a banner or
requester ID code.

The NTWRKSTS, CNFGTBLADR, and NTWRKWBOOT routines are identical in function and operation to
those used with other transport layers.

When the NDOS calls the SENDMSG routine, the BC register pair contains a pointer to the message to be
sent on the network. This routine translates the CP/NET header information of that message into a form
consistent with OMNINET and then puts it into a prefabricated transporter command block called TXTCB.
The CP/NET DID is used as the target node physical address on the network. The address of the whole
message, including the CP/NET header, is placed in the buffer field of TXTCB after the pointer is rearranged
into MSB, LSB sequence. The CP/NET SIZ field is adjusted to give the total message length, including the
CP/NET header, and is placed in the appropriate field of the TXTCB.

The OMNINET interface primitives OMNI$STROBE and OMNI$WFDONE again post the command to the
transporter and, if successful, await completion of the transmission operation. The completion code is
transformed into a flag the NDOS expects. Because a very busy server might not have a buffer posted when
the requester sends the message, even though 'the transporter does multiple retries by itself, a retry loop tries
to send the message again, if necessary. In practice, retries are rare, but the retry loop is useful when
debugging a server.

Like SENDMSG, the RECEIVEMSG routine is primarily an exercise in the translation of parameters and
their transmission to the transporter. The operation of RECEIVEMSG is easily understood by reading its
code, with one exception; if a receive is posted, and no message ever comes in, the transporter waits forever
for a message. To simplify debugging and recovery from network errors, the OMNI$WFDONE routine times
out after about 20 seconds (on a 2 mhz processor) and returns an error flag to its caller. Most servers
ordinarily respond in this time, so the RECEIVEMSG routine issues a cancel receive command to the
transporter via a prefabricated command block called UNRXTCB. RECEIVEMSG then returns to the NDOS
with an error code.

If the receive call is not cancelled, an unsolicited or late message might be written into host memory at the
requested address long after the host is using that memory for something else. Most autonomous transport
layers support this kind of cancellation.

The implementation here is less than 280h bytes long, including the default 138-byte message buffer. If space
is tight, the message printing and banner routines can be placed in the default buffer, a single transporter
command block and result block can be recycled for all commands, and concessions to modularity can be

made to yield an even smaller SNIOS.

G.4 The NETWRKIF Implementation Model

This sample OMNINET NETWRKIF uses a slightly different intermodule communication model from the
one usually used to implement a serial asynchronous star network. Instead of using one process per server
process to implement the network input and output, a single input process and a single output process route
all messages. This type of structure is far more efficient for any party-line type of network interface hardware
because fewer dispatches occur per transaction. Those transactions that do occur take less time and far less
code is required to implement the NETWRKIF. In addition, the structure is easier to understand and debug,
and all traffic converges through one piece of code, allowing you to implement message routing extensions to
your network.

This model is easily understood by studying the general function of the network receiver and transmitter
process separately.

The network receiver process in this version is named SERVERX. It is responsible for collecting each
incoming message as it arrives, identifying the server process it is for, and writing a pointer to the message
into that process's input queue. In addition, SERVERX functions as a surrogate server process to advise
requesters that are not logged in that they have no server process to use.

SERVERX uses run-time binding of requester ID codes to server processes. SERVERX does this by keeping
a table of the input queue addresses of all the server processes it supports and the ID code of the requester
currently logged in to each process. SERVERX examines each incoming messages SID field and searches
the table to find out whether SID is presently associated with a server process. If not, an error reply message
is constructed in the same buffer that the message arrived in, and SERVERX writes this message directly to
the network output process for transmission back to the requester.

For this process to function properly, SERVERX must track all login and logoff messages that pass through
it. Every time a login message is received, SERVERX checks its mapping table to find out whether that
requester is currently associated with a server process. If it is, no action is taken. If not, SERVERX tries to
find an idle server entry in the table. Idle entries are shown in this table as in use by requester 255. If a free
server entry is located, SERVERX enters the requester's ID into it, and then sends the login message to that
server process's input queue. If none are available, an error reply message is constructed by SERVERX and
sent back to the requester.

Logoff messages are handled by finding that requester's server entry, marking it as empty (255) , and then
routing the logoff message to the server's input queue. If that requester was never logged in in the first place,
SERVERX sends it an error, as previously explained.

Because there is no way to know which server process an incoming message will be for at the time a buffer is
posted to the transporter for a receive call, buffers are not permanently assigned to particular server
processes. Instead, a list of empty buffers is kept in an MP/M II queue, and SERVERX obtains the buffers
from the queue as needed and available for posting to the transporter.

The OMNINET primitives are similar to those used by the SNIOS, except that an MX queue ensures that the
transporter is not in use by another process when SERVERX wants to post a command block pointer to it.

As the arrival time of the next message is unknown, SERVERX must be suspended while it waits for the next
message to arrive. This can be done by an XDOS flag wait in the WF$RXDONE OMNINET primitive or by
delay-based polling. If your XIOS can be easily modified, another alternative is to add an XIOS polling
routine. Using the delay call to suspend the process drastically reduces network throughput because only 60
incoming messages can arrive per second.

The SERVETX process is extremely simple. It reads messages from a single input queue and posts them,
using mutual exclusion, to the transporter. Because messages are quickly disposed of by the network, there is
no point in suspending SERVETX. It uses a different completion routine than SERVERX, which merely
waits until a completion code is received from the transporter, and then returns to its caller. To simplify
debugging, a timeout is included to prevent a hardware or software problem from locking up the system.

Once SERVETX has finished sending the message, it returns the buffer that it was in to the free buffer
management queue, making it available for SERVERX. SERVETX then goes back to read its input queue to
wait for another message to process.

Theoretically, such a system can function with fewer buffers than server processes. But in practice, it is best
to have at least one more buffer than the number of server processes in the pool to deal with messages such
as failed login attempts that never get routed to a server.

The rest of the code in each process simply initializes data structures, creates queues, initializes hardware,
and performs other routine tasks.

Note that the distribution version of CP/NET 1.2 does not work with this SERVETX process without a minor
patch. SERVER.RSP must be patched to create output UQCBs with the same name for all server processes
instead of making each queue name unique. Once this is done, all processes in SERVER.RSP direct their
output to a single SERVETX process. Instructions for installing this patch are included in CP/NET V1.2
Application Note 02.

G.5 Possible Improvements to NETWRKIF

This interface is by no means ideal. Little error recovery is done for registers that fail to log off. A watchdog
timing process can be easily added to correct this problem. This process is not shown here, to simplify
understanding of the OMNINET interface. But such a process is only needed in systems with more physical
requesters than server processes to prevent their being locked up by departed users.

One possible improvement is to further reduce the number of dispatches per CP/NET transaction by using
direct code to manage the buffer list and using the transporter mutual exclusion function instead of the MP/M
II queue facility. The M/PM II queue facility is powerful and easy to use, but avoid using it in situations
where dispatch overhead exceeds the time for which a process is likely to require suspension unless the
suspension is unavoidable for process synchronization reasons.

Another worthwhile improvement is to modify the NETWRKIF to minimize the period during which the
server cannot respond to incoming messages, by seeing that the next buffer is more quickly posted for the
next received message after a receive completion occurs. The present version does not do this until the
incoming message has been processed by SERVERX. This causes unneeded network traffic because
messages sent by requesters during this time are futile.

High-performance servers can make good use of two physical sets of transporter hardware, with different
node addresses, on the same loop. Using two transporters can totally bypass the need to use MX techniques
because one transporter can be reserved solely for transmitting messages.

Interesting networks can be easily constructed by having more than one OMNINET loop, each with its own
transporter. The SERVERX process associated with each loop can filter messages not intended for local
SLVSPs to a second, third, or fourth SERVETX process associated with higher level loops. Such filtering
bridges can be used to build hierarchical CP/NET systems of any degree of complexity.

Other processes can concurrently send and receive messages totally unrelated to the CP/NET context using
the same transporter as long as they honor the MXomni mutual exclusion queues and do not use the same

socket for their communication as CP/NET. These processes can implement a variety of supervisory and
auxiliary functions, or they can implement additional concurrent virtual circuits that cooperating requesters
can use for point-to-point traffic. Such point-to-point virtual circuits can be coordinated by CP/NET mail
functions.

CP/M RMAC ASSEM 1.1 #001 SAMPLE SLAVE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20 OCT 82

 1 title 'Sample Slave Network I/O System for CORVUS OMNINET 20 Oct 82'
 2 page 54
 3
 4 ;__
 5 ;__
 6 ; ;
 7 ; SAMPLE SLAVE NETWORK IO SYSTEM FOR CP/NET 1.2 ;
 8 ; VERSION FOR CORVUS OMNINET "ENGINEERING" TRANSPORTER ;
 9 ; (Requires RMAC for assembly) ;
 10 ; ;
 11 ; COPYRIGHT (C) 1982 by VANO ASSOCIATES, INC. ;
 12 ; P.O. BOX 12730 ;
 13 ; New Brighton, MN 55112 ;
 14 ; U.S.A. ;
 15 ; (612) 631-1245 ;
 16 ; ALL RIGHTS RESERVED ;
 17 ; ;
 18 ; ANY USE OF THIS CODE without the imbedded copyright notice and ;
 19 ; banner is hereby strictly prohibited. ;
 20 ; ;
 21 ; Permission is hereby granted to Digital Research Inc. to use ;
 22 ; this source file for educational and illustrative purposes in ;
 23 ; conjunction with CP/Net 80 documentation. Any other use of ;
 24 ; this code without the EXPRESS WRITTEN PERMISSION of VANO ;
 25 ; ASSOCIATES INC. is hereby strictly prohibited. ;
 26 ; ;
 27 ; This file is provided courtesy of: ;
 28 ; ;
 29 ; R2E (Realisations Etude Electroniques) ;
 30 ; Z.A.I. de Courtaboeuf ;
 31 ; BP 73 91942 Les Ulis ;
 32 ; FRANCE ;
 33 ; ;
 34 ; who sponsored the development of one of its ancestors. ;
 35 ;__
 36 ;__
 37
 38 ; ***** CONSTANT DECLARATIONS *****
 39
 40 0000 = FALSE equ 0
 41 FFFF = TRUE equ not FALSE
 42
 43 ; configuration and option constants
 44 0064 = TXTRIES equ 100 ;Transmit message retries
 45 008A = BUFFSIZE equ 138 ;max default buffer size
 46 0200 = MAXMSG equ 512 ;largest message accepted by receiver
 47 0080 = SKT0 equ 80h ;legal omninet socket tokens
 48 0090 = SKT1 equ 90h
 49 00A0 = SKT2 equ 0a0h
 50 00B0 = SKT3 equ 0b0h
 51 00A0 = SOCKET equ SKT2 ;this SNIOS uses only channel 2
 52
 53 ; OMININET Constants
 54 ; Completion/return codes

CP/M RMAC ASSEM 1.1 #002 SAMPLE SLAVE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20 OCT 82

 55 0000 = NOERR equ 0 ;done (no errors or retries)
 56 00C0 = ETXOK equ 0c0h ;echo succeeded with no retries (not used here)
 57 0080 = ETXFAIL equ 80h ;Transmit failed
 58 0081 = E2LONG equ 81h ;wouldn't fit in destination socket
 59 0082 = ENOSKT equ 82h ;destination socket not set up
 60 0083 = EBDCTL equ 83h ;bad control field length
 61 0084 = EBDSKT equ 84h ;illegal socket number
 62 0085 = EBDDES equ 85h ;invalid destination node number/socket in use
 63 0086 = EBDNODE equ 86h ;bad node number in command (not 0-7fh or ffh)
 64 00FE = ECMDOK equ 0feh ;command has been read by transporter

 65 ; legal command tokens
 66 0040 = SENDF equ 40h ;send message
 67 00F0 = RCVF equ 0f0h ;set up receive socket
 68 0010 = ENDRCVF equ 10h ;stop receive
 69 0020 = INITF equ 20h ;initialize transporter
 70 ; Transporter control ports
 71 00F8 = NETBASE equ 0f8h ;base address of transporter IO interface
 72 00F9 = TSTAT equ Netbase+1 ;ready status port
 73 0010 = TCRDY equ 10h ;status mask for ready bit
 74 00F8 = TDATA equ Netbase ;command block pointer port
 75
 76 ; Network Status Byte Constants
 77 ;
 78 0010 = ACTIVE equ 10h ;slave logged in on network
 79 0002 = RCVERR equ 2h ;error in received message
 80 0001 = SENDERR equ 1h ;unable to send message
 81
 82 ; CP/M BDOS function constants
 83 0005 = BDOS equ 5 ;absolute BDOS entry
 84 0009 = PRINTF equ 9 ;print message function
 85 0002 = CONOUTF equ 2 ;output char in E to console
 86
 87 ; General Constants
 88 000A = LF equ 0ah ;Line Feed
 89 000D = CR equ 0dh ;Carriage Return
 90
 91 ; ***** GENERATED CODE AND DATA BEGIN HERE *****
 92
 93 ; Public Jump vector for SNIOS entry points
 94 0000 C3F400 jmp ntwrkinit ;network initialization
 95 0003 C34801 jmp ntwrksts ;network status
 96 0006 C35201 jmp cnfgtbladr ;return config table addr
 97 0009 C36701 jmp sendmsg ;send message on network
 98 000C C3A601 jmp receivemsg ;receive message from network
 99 000F C33801 jmp ntwrkerror ;network error
 100 0012 C35601 jmp ntwrkwboot ;network warm boot
 101
 102 ; Public Slave Configuration Table
 103 configtbl:
 104 Network$status:
 105 0015 00 db 0 ;network status byte
 106 0016 00 slvid1: db 0 ;slave ID (from switches)
 107 0017 0000000000 db 0,0, 0,0, 0,0, 0,0 ;Disk map table for units A:-P:
 108 001F 0000000000 db 0,0, 0,0, 0,0, 0,0

CP/M RMAC ASSEM 1.1 #003 SAMPLE SLAVE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20 OCT 82

 109 0027 0000000000 db 0,0, 0,0, 0,0, 0,0
 110 002F 0000000000 db 0,0, 0,0, 0,0, 0,0
 111 0037 0000 db 0,0 ;console device
 112 0039 0000 db 0,0 ;list device
 113 003B 00 db 0 ;buffer index
 114 ;
 115 003C 00 dflt: db 0 ;FMT (DEFAULT MESSAGE BUFFER)
 116 003D 00 db 0 ;DID
 117 003E 00 slvid2: db 0 ;SID
 118 003F 05 db 5 ;FNC
 119 0040 00 db 0 ;SIZ
 120 0041 ds 1 ;MSG(0) List number
 121 0042 ds BUFFSIZE ;MSG(1) ... MSG(128)
 122
 123
 124 ; ***** PREFABRICATED OMNINET TRANSPORTER COMMAND BLOCKS *****
 125
 126 ; Command block for transmitting a message
 127 TXtcb:
 128 00CC 40 TXtcmd: db SENDF ;command field
 129 00CD 00 db 0 ;bits 16-24 of result block ptr
 130 00CE 0000 TXtrslt: db 0,0 ;result block pointer (MSB,LSB)
 131 00D0 A0 TXtskt: db SOCKET ;socket (channel) number
 132 00D1 00 db 0 ;bits 16-24 of message buffer ptr
 133 00D2 0000 TXtmsg: db 0,0 ;message buffer pointer (MSB,LSB)
 134 00D4 0000 TXtdlen: db 0,0 ;data field length (MSB,LSB)
 135 00D6 00 TXtclen: db 0 ;control field length
 136 00D7 00 TXtdest: db 0 ;Destination address (transport layers)
 137 ; Result vector for above command block
 138 TXresult:

 139 00D8 00 TXrcode: db 0 ;return code
 140
 141 ; Command block for setting up a receive operation
 142 RXtcb:
 143 00D9 F0 RXtcmd: db RCVF ;command field
 144 00DA 00 db 0
 145 00DB 0000 RXtrslt: db 0,0 ;result block pointer (MSB,LSB)
 146 00DD A0 RXtskt: db SOCKET ;socket number
 147 00DE 00 db 0
 148 00DF 0000 RXtmsg: db 0,0 ;message address (MSB,LSB)
 149 00E1 02 RXtdlen: db MAXMSG/256 ;max data field length (MSB,LSB)
 150 00E2 00 db MAXMSG and 255
 151 00E3 00 RXtclen: db 0 ;max control field length
 152 00E4 00 RXtdest: db 0 ;(not used in a receive operation)
 153 ; Result vector for receiver
 154 RXresult:
 155 00E5 00 RXrcode: db 0 ;return code
 156 00E6 00 RXrsrce: db 0 ;source HOST #
 157 00E7 0000 RXrdlen: db 0,0 ;received message length (MSB,LSB)
 158
 159 ; Command block for receive cancel operation
 160 UNRXtcb:
 161 00E9 10 UNRXtcmd: db ENDRCVF ;command field
 162 00EA 00 db 0

CP/M RMAC ASSEM 1.1 #004 SAMPLE SLAVE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20 OCT 82

 163 00EB 0000 UNRXtrslt: db 0,0 ;result block pointer (MSB,LSB)
 164 00ED A0 UNRXtskt: db SOCKET ;socket number
 165 ; Result vector for receive cancel
 166 UNRXresult:
 167 00EE 00 UNRXrcode: db 0 ;return code
 168
 169 ; Command block for transporter initialization command
 170 INITtcb:
 171 00EF 20 INITtcmd: db INITF ;command field
 172 00F0 00 db 0
 173 00F1 0000 INITtrslt: db 0,0 ;result block pointer (MSB,LSB)
 174 ; Result vector for initialization
 175 INITresult:
 176 00F3 00 INITrcode: db 0 ;return code (if valid,=ID code)
 177
 178
 179 ; ***** PUBLIC CODE ENTRIES BEGIN HERE *****
 180
 181 ; Externally accessed routine to initialize transporter
 182 ; (RETURNS A=0 if succeeds, else 0ffh.)
 183 ntwrkinit:
 184 00F4 CD3801 call ntwrkerror ;init transporter, tcbs and id code
 185 00F7 D8 rc ;return error if init fails
 186 00F8 110601 lxi d,initmsg ;else prinw slave ID and banner
 187 00FB CDF001 call print$msg
 188 00FE 3A1600 lda slvid1
 189 0101 CDD601 call prhex ;print slave ID
 190 0104 AF xra a ;and return to caller with a=0
 191 0105 C9 ret
 192
 193 initmsg:
 194 0106 0D0A534E49 db CR,LF,'SNIOS (c)1982 Vano Associates Inc.'
 195 012A 0D0A534C41 db CR,LF,'SLAVE ID = $'
 196
 197
 198 ; Externally accessed routine inits or re-inits module
 199 ; (RETURNS A=0 if succeeds, else 0ffh.)
 200 ntwrkerror:
 201 0138 AF xra a
 202 0139 321500 sta Network$status ;zero network status byte
 203 013C CDF501 call omni$init ;init transporter, tcbs and id code
 204 013F D8 rc ;carry means error, A=0ffh
 205 0140 321600 sta slvid1 ;update this slaves id in table
 206 0143 323E00 sta slvid2 ;and default message
 207 0146 AF xra a ;and return with no error
 208 0147 C9 ret
 209
 210
 211 ; Externally accessed routine returns Network Status Byte in A
 212 ; (also clears any error bits active)

 213 ntwrksts:
 214 0148 211500 lxi h,network$status
 215 014B 46 mov b,m
 216 014C 3EFC mvi a,not(RCVERR or SENDERR)

CP/M RMAC ASSEM 1.1 #005 SAMPLE SLAVE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20 OCT 82

 217 014E A0 ana b
 218 014F 77 mov m,a
 219 0150 78 mov a,b
 220 0151 C9 ret
 221
 222
 223 ; Externally accessed routine Returns Configuration Table Ptr in HL
 224 cnfgtbladr:
 225 0152 211500 lxi h,configtbl
 226 0155 C9 ret
 227
 228
 229 ; Externally accessed routine is called each time the CCP is reloaded
 230 ; from disk. (Dummy procedure for now.)
 231 ntwrkwboot:
 232 0156 115C01 lxi d,wboot$msg ;return via print$msg
 233 0159 C3F001 jmp print$msg
 234
 235 wboot$msg:
 236 015C 0D0A3C4350 db CR,LF,'$'
 237
 238
 239 ; Externally accessed routine sends Message BC--> on Network
 240 ; (returns A=0 if succeeds, else A=0ffh.)
 241 ;
 242 ; NOTE that although the OMNINET transporter does its own transport
 243 ; layer retries, this routine does additional retries to deal with
 244 ; servers that are slow in posting receive calls since transport
 245 ; level retries are exhausted in a very short real-time period.
 246 sendmsg:
 247 0167 61 mov h,c ;move buffer pointer to Transporter ctrl block
 248 0168 68 mov l,b ;(note reversed byte order for Transporter.)
 249 0169 22D200 shld TXtmsg
 250 ;
 251 016C 210400 lxi h,4 ;get CP/Net message length from SIZ field
 252 016F 09 dad b
 253 0170 6E mov l,m
 254 0171 2600 mvi h,0
 255 0173 110600 lxi d,6 ;add packet header lgth to get actual size
 256 0176 19 dad d ; of packet for transport layer purposes
 257 0177 7C mov a,h ;swap bytes to MSB, LSB order
 258 0178 65 mov h,l
 259 0179 6F mov l,a
 260 017A 22D400 shld TXtdlen ;store length in TCB data length field
 261 ;
 262 017D 03 inx b ;get DID from message
 263 017E 0A ldax b
 264 017F 32D700 sta TXtdest ;put it into TCB destination address field
 265 ;
 266 0182 116400 lxi d,TXTRIES ;use DE as retry counter
 267 ;
 268 send$again: ;head of message transmission retry loop
 269 0185 D5 push d
 270 0186 01CC00 lxi b,TXtcb ;send TCB pointer to transporter hardware

CP/M RMAC ASSEM 1.1 #006 SAMPLE SLAVE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20 OCT 82

 271 0189 CD2E02 call omni$strobe
 272 018C D1 pop d
 273 018D DAA101 jc snderr ;if not accepted, goto fatal error handler
 274 ;
 275 0190 01D800 lxi b,TXresult ;else poll result block until completion code
 276 0193 D5 push d ;is returned by hardware
 277 0194 CD5C02 call omni$wfdone
 278 0197 D1 pop d
 279 ;
 280 0198 E680 ani 80h ;completion codes 80h-ffh are error codes
 281 019A C8 rz ;return 00 to caller if no errors
 282 ;

 283 019B 1B dcx d ;else decrement retry counter
 284 019C 7B mov a,e
 285 019D B2 ora d
 286 019E C28501 jnz send$again ;retry transmit if any retries left
 287 ;
 288 01A1 3E01 snderr: mvi a,SENDERR ;goto common exit code to update error flags
 289 01A3 C3CE01 jmp nerr ;(part of receivemsg routine)
 290
 291
 292 ; Externally accessed routine waits for a message directed to this node
 293 ; and returns it in the buffer BC-->. To aid debugging, a timeout of
 294 ; about 20 seconds (2 Mhz processor) is implemented that will return an
 295 ; error if no message is received. That is long enough for most normal
 296 ; servers to respond.
 297 ;
 298 ; (RETURNS A=0 if good msg, =0ffh if bad msg or timeout.)
 299 receivemsg:
 300 01A6 68 mov l,b ;swap buffer pointer bytes to MSB,LSB order
 301 01A7 61 mov h,c
 302 01A8 22DF00 shld RXtmsg ;put buffer ptr to its TCB field
 303 ;
 304 01AB 01D900 lxi b,RXtcb
 305 01AE CD2E02 call omni$strobe ;post control block address to hardware
 306 01B1 DACC01 jc rxerr ;fatal error if hardware won't accept it
 307 ;
 308 01B4 01E500 lxi b,RXresult
 309 01B7 CD5C02 call omni$wfdone ;else wait for a completion from hardware
 310 01BA E680 ani 80h
 311 01BC C8 rz ;return 00 to caller if no error reported
 312 ; the rest is the fatal error handler for receive calls
 313 01BD 01E900 lxi b,UNRXtcb ;otherwise cancel the receive call
 314 01C0 CD2E02 call omni$strobe ; (using prefabricated cancel command block)
 315 01C3 D2CC01 jnc rxerr ;If won't accept this command either, quit here
 316 ;
 317 01C6 01EE00 lxi b,UNRXresult ;else wait for completion of cancel command
 318 01C9 CD5C02 call omni$wfdone ;ignore result (always fatal error return)
 319 01CC 3E02 rxerr: mvi a,RCVERR ;exit via code that updates status byte
 320
 321 ; This is also used by sendmsg to update Network$status and return 0ffh
 322 01CE 211500 nerr: lxi h,Network$status
 323 01D1 B6 ora m
 324 01D2 77 mov m,a ;update status

CP/M RMAC ASSEM 1.1 #007 SAMPLE SLAVE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20 OCT 82

 325 01D3 3EFF mvi a,0ffh
 326 01D5 C9 ret ;return 0ffh to caller
 327
 328
 329 ; ***** UTILITY ROUTINES CALLED BY ABOVE BEGIN HERE *****
 330
 331 ; prints A in hex on console
 332 01D6 F5 prhex: push psw
 333 01D7 07 rlc
 334 01D8 07 rlc
 335 01D9 07 rlc
 336 01DA 07 rlc
 337 01DB CDDF01 call nibl ;print high nibble
 338 01DE F1 pop psw ;and fall through to print low nibble
 339
 340 01DF E60F nibl: ani 0fh
 341 01E1 C630 adi '0'
 342 01E3 FE3A cpi '9'+1
 343 01E5 DAEA01 jc printa
 344 01E8 C607 adi 7
 345 01EA 5F printa: mov e,a
 346 01EB 0E02 mvi c,CONOUTF
 347 01ED C30500 jmp BDOS ;print ascii and return
 348
 349
 350 ; print message DE--> until $ on console device
 351 print$msg:
 352 01F0 0E09 mvi c,PRINTF ;prints $ delimited string DE-->
 353 01F2 C30500 jmp BDOS ;bdos(printf,wboot$msg)
 354
 355
 356 ; ***** LOW LEVEL OMNINET TRANSPORTER DRIVERS BEGIN HERE *****

 357
 358 ; Initialize transporter and return its ID code in A or 0ffh if can't.
 359 ; Carry is also set if error, clear if no error.
 360 omni$init: ;initialize pointers in our control blocks
 361 01F5 11D800 lxi d,TXresult ;NOTE: this is done at run time to avoid
 362 01F8 63 mov h,e ; relocation problems caused by the need to
 363 01F9 6A mov l,d ; have pointers for CORVUS transporter use
 364 01FA 22CE00 shld TXtrslt ; in MSB, LSB form instead of 8080 format.
 365 ;
 366 01FD 11E500 lxi d,RXresult
 367 0200 63 mov h,e
 368 0201 6A mov l,d
 369 0202 22DB00 shld RXtrslt
 370 ;
 371 0205 11EE00 lxi d,UNRXresult
 372 0208 63 mov h,e
 373 0209 6A mov l,d
 374 020A 22EB00 shld UNRXtrslt
 375 ;
 376 020D 11F300 lxi d,INITresult
 377 0210 63 mov h,e
 378 0211 6A mov l,d

CP/M RMAC ASSEM 1.1 #008 SAMPLE SLAVE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20 OCT 82

 379 0212 22F100 shld INITtrslt
 380 ;
 381 0215 01EF00 lxi b,INITtcb ;send init command block pointer to transporter
 382 0218 CD2E02 call omnistrobe ;to reset it and get its ID code
 383 021B 9F sbb a ;in case of error, preset return code 0 or ff
 384 021C D8 rc ;fatal error if hardware won't accept pointer
 385 ;
 386 021D 01F300 lxi b,INITresult ;else wait for result of operation
 387 0220 CD5C02 call omni$wfdone ;wait for done
 388 0223 321600 sta slvid1 ;result code should be ID code so put in table
 389 0226 323E00 sta slvid2 ;and in default message SID
 390 ;
 391 0229 07 rlc ;set CY=bit 7 of return code
 392 022A 1F rar ;so CY=1 if error
 393 022B D0 rnc ;return with ID code if no error
 394 022C 9F sbb a ;else set carry=1 and A=0ffh and return
 395 022D C9 ret
 396
 397
 398 ; Sends the 16 bit POINTER in BC to the transporter hardware as
 399 ; a 24 bit pointer (MSB first). Returns CY set if hardware will
 400 ; not accept any byte in a reasonable time else CY clear.
 401 omni$strobe:
 402 022E 210200 lxi h,2 ;Find address of rslt block from TCB BC-->
 403 0231 09 dad b ;pre-set result code in block to ff (busy)
 404 0232 7E mov a,m
 405 0233 23 inx h
 406 0234 6E mov l,m
 407 0235 67 mov h,a
 408 0236 36FF mvi m,0ffh
 409 ;
 410 0238 AF xra a ;MSB is always 0
 411 0239 CD4302 call omni$st ;send bits 23-16 of pointer to hardware
 412 023C D8 rc ;(abort if timeout)
 413 ;
 414 023D 78 mov a,b ;send bits 15-8 of pointer to hardware
 415 023E CD4302 call omni$st
 416 0241 D8 rc ;(abort if timeout)
 417 ;
 418 0242 79 mov a,c ;send bits 7-0 of pointer to hardware
 419 ; (fall into omni$st)
 420
 421 ; called by omni$strobe to send one byte from A to transporter hardware
 422 ; returns CY set if hardware doesn't come ready in a reasonable time.
 423 omni$st:
 424 0243 F5 push psw ;save data for now
 425 0244 1150C3 lxi d,50000 ;set timeout
 426 omni$st0:
 427 0247 DBF9 in TSTAT ;read status port and check busy bit
 428 0249 E610 ani TCRDY
 429 024B CA5302 jz omni$st1 ;if busy, go increment and test timeout
 430 ;

 431 024E F1 pop psw ;else output the byte
 432 024F D3F8 out TDATA ;to the transporter TCB pointer input register

CP/M RMAC ASSEM 1.1 #009 SAMPLE SLAVE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20 OCT 82

 433 0251 B7 ora a
 434 0252 C9 ret ;and return with no error shown (CY=0)
 435 ;
 436 omni$st1: ;else
 437 0253 1B dcx d
 438 0254 7A mov a,d
 439 0255 B3 ora e
 440 0256 C24702 jnz omni$st0 ;loop back if not timed out yet
 441 ;
 442 0259 F1 pop psw ;else
 443 025A 37 stc
 444 025B C9 ret ;return error flag (CY=1)
 445
 446
 447 ; waits till timeout (about 20 secs) for result block BC--> to show done
 448 ; returns A=returned status code. If timeout occurs, the returned
 449 ; status will still be 0FEH or 0FFH.
 450 omni$wfdone:
 451 025C 11FFFF lxi d,0ffffh ;setup timeout counters
 452 025F 2E14 mvi l,20
 453 ;
 454 omni$wfdone1:
 455 0261 0A ldax b ;is the result code still > 0f0h?
 456 0262 FEF0 cpi 0f0h
 457 0264 D8 rc ;no, return to caller
 458 ;
 459 0265 1B dcx d ;else decrement timeout
 460 0266 7B mov a,e
 461 0267 B2 ora d
 462 0268 C26102 jnz omni$wfdone1 ;timeout yet?
 463 026B 2D dcr l
 464 026C C26102 jnz omni$wfdone1 ;no, go back and check again
 465 ;
 466 026F 0A ldax b ;yes, timeout
 467 0270 C9 ret ;return with completion code in A
 468
 469
 470 0271 end

CP/M RMAC ASSEM 1.1 #010 SAMPLE SLAVE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20 OCT 82

ACTIVE 0010 78#
BDOS 0005 83# 347 353
BUFFSIZE 008A 45# 121
CNFGTBLADR 0152 96 224#
CONFIGTBL 0015 103# 225
CONOUTF 0002 85# 346
CR 000D 89# 194 195 236
DFLT 003C 115#
E2LONG 0081 58#
EBDCTL 0083 60#
EBDDES 0085 62#
EBDNODE 0086 63#
EBDSKT 0084 61#
ECMDOK 00FE 64#
ENDRCVF 0010 68# 161
ENOSKT 0082 59#
ETXFAIL 0080 57#
ETXOK 00C0 56#
FALSE 0000 40# 41
INITF 0020 69# 171
INITMSG 0106 186 193#
INITRCODE 00F3 176#
INITRESULT 00F3 175# 376 386
INITTCB 00EF 170# 381
INITTCMD 00EF 171#
INITTRSLT 00F1 173# 379
LF 000A 88# 194 195 236
MAXMSG 0200 46# 149 150
NERR 01CE 289 322#
NETBASE 00F8 71# 72 74

NETWORKSTATUS 0015 104# 202 214 322
NIBL 01DF 337 340#
NOERR 0000 55#
NTWRKERROR 0138 99 184 200#
NTWRKINIT 00F4 94 183#
NTWRKSTS 0148 95 213#
NTWRKWBOOT 0156 100 231#
OMNIINIT 01F5 203 360#
OMNIST 0243 411 415 423#
OMNIST0 0247 426# 440
OMNIST1 0253 429 436#
OMNISTROBE 022E 271 305 314 382 401#
OMNIWFDONE 025C 277 309 318 387 450#
OMNIWFDONE1 0261 454# 462 464
PRHEX 01D6 189 332#
PRINTA 01EA 343 345#
PRINTF 0009 84# 352
PRINTMSG 01F0 187 233 351#
RCVERR 0002 79# 216 319
RCVF 00F0 67# 143
RECEIVEMSG 01A6 98 299#
RXERR 01CC 306 315 319#
RXRCODE 00E5 155#
RXRDLEN 00E7 157#

CP/M RMAC ASSEM 1.1 #011 SAMPLE SLAVE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20 OCT 82

RXRESULT 00E5 154# 308 366
RXRSRCE 00E6 156#
RXTCB 00D9 142# 304
RXTCLEN 00E3 151#
RXTCMD 00D9 143#
RXTDEST 00E4 152#
RXTDLEN 00E1 149#
RXTMSG 00DF 148# 302
RXTRSLT 00DB 145# 369
RXTSKT 00DD 146#
SENDAGAIN 0185 268# 286
SENDERR 0001 80# 216 288
SENDF 0040 66# 128
SENDMSG 0167 97 246#
SKT0 0080 47#
SKT1 0090 48#
SKT2 00A0 49# 51
SKT3 00B0 50#
SLVID1 0016 106# 188 205 388
SLVID2 003E 117# 206 389
SNDERR 01A1 273 288#
SOCKET 00A0 51# 131 146 164
TCRDY 0010 73# 428
TDATA 00F8 74# 432
TRUE FFFF 41#
TSTAT 00F9 72# 427
TXRCODE 00D8 139#
TXRESULT 00D8 138# 275 361
TXTCB 00CC 127# 270
TXTCLEN 00D6 135#
TXTCMD 00CC 128#
TXTDEST 00D7 136# 264
TXTDLEN 00D4 134# 260
TXTMSG 00D2 133# 249
TXTRIES 0064 44# 266
TXTRSLT 00CE 130# 364
TXTSKT 00D0 131#
UNRXRCODE 00EE 167#
UNRXRESULT 00EE 166# 317 371
UNRXTCB 00E9 160# 313
UNRXTCMD 00E9 161#
UNRXTRSLT 00EB 163# 374
UNRXTSKT 00ED 164#
WBOOTMSG 015C 232 235#

Listing G-1. Sample Slave Network I/O System for Corvus OMNINET
CP/M RMAC ASSEM 1.1 #001 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

 1 title 'Sample Server Network I/F for CORVUS OMNINET 20-Oct-82'
 2 page 54
 3
 4 ;__
 5 ;__
 6 ; ;
 7 ; SAMPLE MASTER NETWORK IO SYSTEM FOR CP/NET 1.2 ;
 8 ; VERSION FOR CORVUS OMNINET "ENGINEERING" TRANSPORTER ;
 9 ; (Requires RMAC for assembly) ;
 10 ; ;
 11 ; COPYRIGHT (C) 1982 by VANO ASSOCIATES, INC. ;
 12 ; P.O. BOX 12730 ;
 13 ; New Brighton, MN 55112 ;
 14 ; U.S.A. ;
 15 ; (612) 631-1245 ;
 16 ; ALL RIGHTS RESERVED ;
 17 ; ;
 18 ; ANY USE OF THIS CODE without the imbedded copyright notice ;
 19 ; is hereby strictly prohibited. ;
 20 ; ;
 21 ; Permission is hereby granted to Digital Research Inc. to use ;
 22 ; this source file for educational and illustrative purposes in ;
 23 ; conjunction with CP/Net 80 documentation. Any other use of ;
 24 ; this code without the EXPRESS WRITTEN PERMISSION of VANO ;
 25 ; ASSOCIATES INC. is hereby strictly prohibited. ;
 26 ; ;
 27 ; This file is provided courtesy of: ;
 28 ; ;
 29 ; R2E (Realisations Etude Electroniques) ;
 30 ; Z.A.I. de Courtaboeuf ;
 31 ; BP 73 91942 Les Ulis ;
 32 ; FRANCE ;
 33 ; ;
 34 ; who sponsored the development of one of its ancestors. ;
 35 ; ;
 36 ; Note that this version requires that the CP/NET SLAVESP ;
 37 ; process be properly patched to send all output traffic ;
 38 ; to output queue 0. For the current (1.2) beta release, the ;
 39 ; following patch is enough: ;
 40 ; ;
 41 ; Make this change in unrelocated server.rsp module. ;
 42 ; -a543 ;
 43 ; 0543 mvi a,30 ;
 44 ; 0545 jmp 34f ;
 45 ; Then resave the module and its bit map. ;
 46 ; ;
 47 ;__
 48 ;__
 49
 50 FFFF = YES equ 0ffffh
 51 0000 = NO equ not YES
 52
 53 ; assembly mode switches
 54 0000 = DEBUG equ NO ;assemble for debugging with rdt

CP/M RMAC ASSEM 1.1 #002 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

 55 FFFF = RSP equ YES ;assemble as a resident process
 56 0000 = INTERRUPT equ NO ;transporter can interrupt (advisable)
 57
 58 ; Logical Configuration constants
 59 0002 = NSLAVES equ 2 ;maximum number of slaves supported
 60 0096 = SRVRSTKSIZ equ 150 ;stack size needed by SLVSPs
 61 0034 = SRVRPDSIZ equ 52 ;PD size for SLVSPs
 62 0118 = BUFFSIZE equ 280 ;maximum message buffer size
 63 0003 = NMSG$BUFFS equ 1+NSLAVES ;number of message buffers allocated
 64 0040 = RX$PRIORITY equ 64 ;receive process priority
 65 003F = TX$PRIORITY equ 63 ;usually higher than rx
 66
 67 ; Physical configuration constants (FOR OUR INSTALLATION)
 68 00F8 = OMNI$BASE equ 0F8h ;transporter base address
 69 00A0 = OMNI$SOCKET equ 0a0h ;omninet transporter socket code (2)
 70 0008 = OMNI$FLAG equ 8 ;XDOS flag for int. driven transporter
 71 0007 = RST$NUM equ 7 ;interrupt level if interrupt driven
 72 0038 = INT$VCTR equ RST$NUM * 8
 73

 74 ; transporter IO PORT constants for CORVUS "ENGINEERING" transporter
 75 00F8 = OMNI$DATA equ OMNI$BASE ;TCB pointer data port
 76 00F9 = OMNI$STAT equ OMNI$BASE + 1 ;status port
 77 0010 = OMNI$RDY equ 10h ;ready bit (=1) in OMNI$STAT
 78 ; the rest are not part of standard CORVUS "ENGINEERING" transporter
 79 00FA = OMNI$ACK equ OMNI$BASE + 2 ;int ack port (any data write)
 80 00FB = OMNI$MASK equ OMNI$BASE + 3 ;int mask port (b0, 1= enbl)
 81 0001 = OMNI$PENDING equ 1 ;int pending (=1) in " "
 82 0001 = OMNI$ENABLE equ 1 ;int enable mask command
 83 0000 = OMNI$DISABLE equ 0 ;int disable mask command
 84
 85 ; BDOS and XDOS Equates
 86 0009 = PRINTF equ 9 ;message to console
 87 0084 = FLAGWAITF equ 132 ;flag wait
 88 0085 = FLAGSETF equ 133 ;flag set
 89 0086 = MAKEQ equ 134 ;make queue
 90 0089 = READQ equ 137 ;read queue
 91 008B = WRITEQ equ 139 ;write queue
 92 008D = DELAY equ 141 ;delay
 93 008E = DSPTCH equ 142 ;dispatch
 94 0090 = CREATEP equ 144 ;create process
 95 0091 = SET$PRIORITY equ 145 ;set caller's priority
 96 0093 = DETACH equ 147 ;detach console
 97 009A = SYDATAD equ 154 ;get system data page address
 98
 99 ; MISC useful constants
 100 000D = CR equ 0dh ;carriage return
 101 000A = LF equ 0ah ;line feed
 102
 103
 104 codeseg:
 105 if not RSP
 106 ; .PRL Initialization entry point for whole module
 107 lxi sp,ServerxSTKTOP ;switch to rx process stack
 108 mvi c,SET$PRIORITY

CP/M RMAC ASSEM 1.1 #003 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

 109 mvi e,RX$PRIORITY
 110 call bdos
 111 if not DEBUG
 112 mvi c,DETACH
 113 call bdos ;detach console
 114 endif ; DEBUG
 115 ret
 116
 117 bdosadr:
 118 dw codeseg - 100h + 5 ;bdos entry pointer
 119 else ; not RSP
 120 ; in an rsp, this is filled in by GENSYS and the rx process is created
 121 ; automatically
 122 bdosadr:
 123 0000 0000 dw 0000h
 124 endif ; not RSP
 125
 126 page

CP/M RMAC ASSEM 1.1 #004 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

 127
 128 ;__
 129 ;__
 130 ; ;
 131 ; This is the network receiver server process module ;
 132 ; ;
 133 ; The receive server obtains a buffer from FreeBuff and gives it ;
 134 ; to the transporter hardware for receive use. It then waits ;
 135 ; for a message completion by calling the wfrxdone routine ;
 136 ; Once a return from that routine occurs, the receiver server ;
 137 ; checks the slave number and sends a pointer to that message ;
 138 ; buffer to the SLVSP support process corresponding to that ;
 139 ; slave's server. Once the message pointer has been passed, the ;
 140 ; process loops back for the next message and continues in this ;
 141 ; fashion forever. ;
 142 ; ;
 143 ; At present, receive errors are considered to be the Slave's ;

 144 ; problem since normal error recovery is allegedly handled by the ;
 145 ; transporter firmware. Only error free messages are passed on, ;
 146 ; the rest are ignored unless the error is the absence of a free ;
 147 ; support process in which case a "NOT LOGGED IN" error is sent ;
 148 ; by the receiver process to the offending slave. ;
 149 ; ;
 150 ; In order to prevent clobbering the transporter when it is busy ;
 151 ; transmitting, the receiver must be synchronized with the ;
 152 ; transmit server. In this implementation, this is handled by ;
 153 ; an MX Queue. ;
 154 ; ;
 155 ;__
 156 ;__
 157
 158 ; receiver server process descriptor (position dependent if RSP)
 159 ServerxPD:
 160 0002 0000 dw 0 ;link
 161 0004 0040 db 0,RX$PRIORITY ;status,priority
 162 0006 6400 dw $ + 94 ;stack pointer
 163 0008 5365727665 db 'ServeRX ' ;name
 164 0010 00FF db 0,0ffh ;console, memseg
 165 0012 ds 82 ;reserved for MP/M use and stack
 166 ServerxSTKTOP:
 167 0064 9800 dw InitRX ;startup PC for process
 168
 169 ; User queue control block array used by this module for message queues.
 170 ; Each element is 3 words long and is one UQCB followed by its message.
 171 0006 = UQCBLEN equ 6 ;constant used to index array
 172 0004 = XQCBMSG equ 4 ;subindex for message word
 173
 174 INUQCB: ;array name
 175 0000 # ??xx set 0
 176 rept NSLAVES
 177 dw (inqcb$array + ??xx) ;;Q pointer, msg addr, message word
 178 dw $+2
 179 dw 0
 180 ??xx set ??xx + INQCB$SIZE

CP/M RMAC ASSEM 1.1 #005 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

 181 endm
 182 0066+AC04 DW (INQCB$ARRAY + ??XX)
 183 0068+6A00 DW $+2
 184 006A+0000 DW 0
 185 006C+C604 DW (INQCB$ARRAY + ??XX)
 186 006E+7000 DW $+2
 187 0070+0000 DW 0
 188
 189 ; UQCB used by ServeRX to get free buffers from Q
 190 0072 1E057600 gbuf$uqcb: dw buffQCB,newbuff
 191 0076 0000 newbuff: dw 0 ;message is a free buffer ptr from pool
 192
 193 ; UQCB used by ServeRX to get transporter from MX Q
 194 0078 A8087C00 omnirx$uqcb: dw omniQ,rxmxmsg
 195 007C 0000 rxmxmsg: dw 0
 196
 197 ; UQCB used by ServeRX to send error messages to outQ
 198 007E E0048200 erroutuqcb: dw outQCB,erroutmsg ;pointer, msgadr
 199 0082 erroutmsg: ds 2 ;used to send error messages
 200
 201 ; receiver transporter control block
 202 0084 F0 rxtcb: db 0f0h ;post read command
 203 0085 00 db 0 ;result hi (always 0)
 204 rxrsltp:
 205 0086 0000 db 0,0 ;result middle and low (NOT 8080 order)
 206 0088 A0 db OMNI$SOCKET ;transporter message socket code
 207 0089 00 db 0 ;data pointer high (always 0)
 208 008A 0000 db 0,0 ;data pointer middle, low
 209 008C 01 db BUFFSIZE/256 ;data max length hi
 210 008D 18 db BUFFSIZE and 255 ;data max length lo
 211 008E 0000 db 0,0 ;ctrl lgth (0 for now), host (not used)
 212
 213 0090 0000000000rxrslt: db 0,0,0,0,0,0,0,0 ;result block for rx
 214
 215 ;__
 216 ; ;
 217 ; Receiver server process initialization entry point ;

 218 ; (initializes all of module) ;
 219 ;__
 220 0098 CDCD08 InitRX: call omni$init ;init hardware & get ID code from its switches
 221 009B 32FB02 sta configtbl+1 ; store ID in config table as master ID
 222 ;
 223 009E 0E86 mvi c,MAKEQ ;create the free buffer Q
 224 00A0 111E05 lxi d,buffQCB
 225 00A3 CDA408 call bdos
 226 ;
 227 00A6 11AC04 lxi d,inqcb$array
 228 00A9 0E02 mvi c,NSLAVES ;create input Qs (1/slave supported)
 229 make$inQs:
 230 00AB D5 push d
 231 00AC C5 push b
 232 00AD 0E86 mvi c,MAKEQ
 233 00AF CDA408 call bdos
 234 00B2 C1 pop b

CP/M RMAC ASSEM 1.1 #006 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

 235 00B3 D1 pop d
 236 00B4 211A00 lxi h,INQCB$SIZE
 237 00B7 19 dad d
 238 00B8 EB xchg
 239 00B9 0D dcr c
 240 00BA C2AB00 jnz make$inQs
 241 ;
 242 00BD 11E004 lxi d,outQCB ;create the output Queue (only 1)
 243 00C0 0E86 mvi c,MAKEQ
 244 00C2 CDA408 call bdos
 245 ;
 246 00C5 11B901 lxi d,ServetxPD ;create the network output process
 247 00C8 0E90 mvi c,CREATEP
 248 00CA CDA408 call bdos
 249 ;
 250 00CD 0E9A mvi c,SYDATAD ;get system data page address
 251 00CF CDA408 call bdos
 252 00D2 110900 lxi d,9
 253 00D5 19 dad d ;install config table address at sysdat(9)
 254 00D6 11FA02 lxi d,configtbl
 255 00D9 73 mov m,e
 256 00DA 23 inx h
 257 00DB 72 mov m,d
 258 ;
 259 00DC 219000 lxi h,rxrslt ;initialize transporter command block result
 260 00DF 55 mov d,l ;field to point to receive result block
 261 00E0 5C mov e,h ; (done at run time because of reversed byte
 262 00E1 EB xchg ; order used by CORVUS.)
 263 00E2 228600 shld rxrsltp
 264
 265
 266 ; Receiver server process loop head
 267 00E5 0E89 RXloop: mvi c,READQ
 268 00E7 117200 lxi d,gbuf$uqcb
 269 00EA CDA408 call bdos ;get a free message buffer from Q
 270 ;
 271 RXretry:
 272 00ED 2A7600 lhld newbuff
 273 00F0 5C mov e,h
 274 00F1 55 mov d,l
 275 00F2 EB xchg ;swap bytes for CORVUS command block
 276 00F3 228A00 shld rxtcb+6 ;put buffer address pointer in rx tcb
 277 ;
 278 00F6 117800 lxi d,omnirx$uqcb ;read MX message from OMNINET HARDWARE MX Q
 279 00F9 0E89 mvi c,READQ
 280 00FB CDA408 call bdos
 281 ;
 282 00FE 018400 lxi b,rxtcb ;send TCB pointer to hardware
 283 0101 CDF508 call omni$strobe
 284 ;
 285 0104 F5 push psw ;return MX message
 286 0105 117800 lxi d,omnirx$uqcb
 287 0108 0E8B mvi c,WRITEQ
 288 010A CDA408 call bdos

CP/M RMAC ASSEM 1.1 #007 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

 289 010D F1 pop psw ;restore return code from omni$strobe routine
 290 ;
 291 010E DAED00 jc RXretry ;no choice except to retry if not accepted
 292 ;
 293 0111 019000 lxi b,rxrslt ;wait for a completion from hardware
 294 0114 CD2309 call wfrxdone
 295 0117 E680 ani 80h ;if error on message, re-post buffer
 296 0119 C2ED00 jnz RXretry
 297 ;
 298 ; buffer contains a valid message at this point, so process it
 299 011C 2A7600 lhld newbuff ;get FMT to A
 300 011F 7E mov a,m
 301 0120 23 inx h ;get SID to C
 302 0121 23 inx h
 303 0122 4E mov c,m
 304 ;
 305 0123 E6FE ani 0feh ;look for login/logoff messages
 306 0125 C24601 jnz RXl2 ;message type 0 or 1?
 307 0128 23 inx h ;yes, check FNC
 308 0129 7E mov a,m
 309 012A FE40 cpi 40h ;login?
 310 012C C23801 jnz RXl1 ;not login, go on
 311 012F CDA301 call logiton ;ELSE try to find a free SLVSP in table
 312 0132 C26C01 jnz RXl3 ;found one (or already logged in), go on
 313 0135 C34C01 jmp RX$send$err ;sorry,no free processes, go advise slave
 314 ;
 315 0138 FE41 RXl1: cpi 41h ;logoff?
 316 013A C24601 jnz RXl2 ;not logoff, go on
 317 013D CD9A01 call logitoff ;ELSE try to remove that slave from table
 318 0140 C26C01 jnz RXl3 ;if successful, go on
 319 0143 C34C01 jmp RX$send$err ;otherwise go tell slave it wasn't logged in
 320 ;
 321 0146 CD8001 RXl2: call get$slvsp ;not login/logoff so get slvsp msg address
 322 0149 C26C01 jnz RXl3 ; for that slave if it is logged in and go
 323 ; send message to its Q else fall through
 324 ;
 325 ; this code sends a "NOT LOGGED IN" error message back to requester
 326 RX$send$err:
 327 014C 2A7600 lhld newbuff ;build an error message in the same buffer
 328 014F 228200 shld erroutmsg
 329 0152 3601 mvi m,1 ;FMT=1
 330 0154 23 inx h
 331 0155 7E mov a,m ;swap DID and SID
 332 0156 23 inx h
 333 0157 46 mov b,m
 334 0158 77 mov m,a
 335 0159 2B dcx h
 336 015A 70 mov m,b
 337 015B 23 inx h ;leave FNC field alone
 338 015C 23 inx h
 339 015D 23 inx h
 340 015E 3601 mvi m,1 ;SIZ=1
 341 0160 23 inx h
 342 0161 36FF mvi m,0ffh ;message = 0FFH (extended error flag)

CP/M RMAC ASSEM 1.1 #008 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

 343 0163 23 inx h
 344 0164 360C mvi m,12 ;"NOT LOGGED IN" code
 345 0166 117E00 lxi d,erroutuqcb ;post to network transmitter process
 346 0169 C37801 jmp rxl4 ;using common write Q code
 347 ;
 348 ; this code sends the message address to the appropriate SLVSP Q
 349 016C 2A7600 RXl3: lhld newbuff ;DE--> msg field of correct UQCB here
 350 016F EB xchg ;put message ptr in UQCB message field
 351 0170 73 mov m,e
 352 0171 23 inx h
 353 0172 72 mov m,d
 354 0173 11FBFF lxi d,-(XQCBMSG + 1);index back to UQCB base address
 355 0176 19 dad d
 356 0177 EB xchg
 357 ;
 358 0178 0E8B rxl4: mvi c,WRITEQ
 359 017A CDA408 call bdos ;send it to Queue
 360 017D C3E500 jmp RXloop ;go back and get another buffer and continue
 361

 362
 363 ; routine dynamically maps physical slave number passed in C
 364 ; to a slave support process and returns its INUQCB message buffer addr
 365 ; in DE and A = 0 with flags set if no room or not found, else NZ
 366 get$slvsp:
 367 0180 79 mov a,c ;A= requester ID
 368 0181 0602 mvi b,NSLAVES ;set up for table search
 369 0183 21B301 lxi h,idtbl
 370 find$match: ;search till match or table end
 371 0186 BE cmp m
 372 0187 C29101 jnz not$match ; goto not$match if not this one
 373 018A 23 inx h ;else match found, get ptr to SLVSP message
 374 018B 5E mov e,m
 375 018C 23 inx h
 376 018D 56 mov d,m ;its slvsp msg addr
 377 018E 37 stc
 378 018F 9F sbb a
 379 0190 C9 ret ;and return TRUE in A to caller
 380 not$match:
 381 0191 23 inx h ;no match, skip to next entry
 382 0192 23 inx h
 383 0193 23 inx h
 384 0194 05 dcr b ;any more entries?
 385 0195 C28601 jnz find$match ;loop back until all searched
 386 0198 AF xra a ;else return failure (A=00)
 387 0199 C9 ret
 388
 389
 390 ; removes entry (C=SID) from map table (but still returns msg ptr)
 391 logitoff:
 392 019A CD8001 call get$slvsp
 393 019D C8 rz ;not in table, just exit
 394 019E 2B dcx h ;else mark entry as free and then exit
 395 019F 2B dcx h
 396 01A0 36FF mvi m,0ffh

CP/M RMAC ASSEM 1.1 #009 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

 397 01A2 C9 ret
 398
 399 ; installs entry (C=SID) in first free entry of map table and returns
 400 ; msg address. RETURNS A=0 if no space, else non-zero.
 401 logiton:
 402 01A3 CD8001 call get$slvsp ;see if already in table
 403 01A6 C0 rnz ;if so, just use old entry
 404 01A7 C5 push b ;else look for a free entry (CODE=FF)
 405 01A8 0EFF mvi c,0ffh
 406 01AA CD8001 call get$slvsp
 407 01AD C1 pop b
 408 01AE C8 rz ;no free entries, exit
 409 01AF 2B dcx h ;else enter SID in table and return success
 410 01B0 2B dcx h
 411 01B1 71 mov m,c
 412 01B2 C9 ret ;PSW is still correct from search
 413
 414 ; Slave mapping table has one entry per SLVSP. First byte = SID
 415 ; of the requester currently using SLVSP (0ffh if none). Next word is
 416 ; the address of the message field of that SLVSP's input UQCB.
 417 idtbl:
 418 0000 # ??xx set 0
 419 rept NSLAVES
 420 db 0ffh
 421 dw (INUQCB + XQCBMSG + ??xx)
 422 ??xx set ??xx + UQCBLEN
 423 endm
 424 01B3+FF DB 0FFH
 425 01B4+6A00 DW (INUQCB + XQCBMSG + ??XX)
 426 01B6+FF DB 0FFH
 427 01B7+7000 DW (INUQCB + XQCBMSG + ??XX)
 428
 429 page

CP/M RMAC ASSEM 1.1 #010 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

 430
 431 ;__

 432 ;__
 433 ; ;
 434 ; This is the network transmitter server process module. ;
 435 ; NOTE THAT THE OMNINET TRANSPORTER MUST NOT BE DISTURBED ONCE ;
 436 ; A TRANSMIT HAS BEEN POSTED UNTIL IT RETURNS A COMPLETION. ;
 437 ; An MX Queue is used in this version to protect the transporter ;
 438 ; from other processes. ;
 439 ; ;
 440 ; This process reads a message from the SLVSP output Q and when ;
 441 ; awakened by one posts that buffer for transmission via the ;
 442 ; transporter to the requester. This process then waits until ;
 443 ; the transporter reports a completion as determined by the ;
 444 ; wf$txdone routine. The buffer pointer from that message is ;
 445 ; then sent back to the FreeBuff Q and the process loops back for ;
 446 ; another message from the SLVSP output Q. Transmitter errors ;
 447 ; are considered the Transporter's problem and are ignored here. ;
 448 ;__
 449 ;__
 450 ; Transmitter server process descriptor
 451 ServetxPD:
 452 01B9 0000 dw 0 ;link
 453 01BB 003F db 0,TX$PRIORITY ;status,priority
 454 01BD 1B02 dw $ + 94 ;stack pointer
 455 01BF 5365727665 db 'ServeTX ' ;name
 456 01C7 00FF db 0,0ffh ;console, memseg
 457 01C9 ds 82 ;reserved for MP/M use and as stack
 458 021B 4302 dw InitTX ;stack top has startup PC
 459
 460 ; There is only one output queue (SLVSP --> NTWRKIF)
 461 OUTUQCB:
 462 021D E0042102 UQCBNtwrkQO0: dw outQCB,outQMSG ;pointer, msgadr
 463 0221 outQMSG: ds 2 ;used to receive msg pointer from SLVSP
 464
 465 ; used by ServeTX to return them to Q when done (used at init also)
 466 0223 1E052702 pbuf$uqcb: dw buffQCB,oldbuff
 467 0227 0000 oldbuff: dw 0 ;msg is a freed buff ptr back to pool
 468
 469 ; UQCB used by ServeTX to get transporter from MX Q
 470 0229 A8082D02 omnitx$uqcb: dw omniQ,txmxmsg
 471 022D 0000 txmxmsg: dw 0
 472
 473 ; transmitter transporter control block
 474 022F 40 txtcb: db 40h ;command
 475 0230 00 db 0 ;result hi
 476 txrsltp:
 477 0231 0000 db 0,0 ;result middle and low
 478 0233 A0 db OMNI$SOCKET ;transporter message socket code
 479 0234 000000 db 0,0,0 ;data ptr (MSB,SB,LSB)
 480 0237 0000 db 0,0 ;length (MSB,LSB)
 481 0239 00 db 0 ;control length
 482 023A 00 db 0 ;dest host
 483

CP/M RMAC ASSEM 1.1 #011 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

 484 023B 0000000000txrslt: db 0,0,0,0,0,0,0,0 ;result block for tx
 485
 486 ;__
 487 ; ;
 488 ; ServeTX initialization entry point ;
 489 ;__
 490 InitTX:
 491 0243 215C05 lxi h,msgbuffs ;preload the Free buffer Q with buffer ptrs
 492 0246 0E03 mvi c,NMSG$BUFFS ;from start of buffer space
 493 freeloop:
 494 0248 222702 shld oldbuff
 495 024B E5 push h
 496 024C C5 push b
 497 024D 0E8B mvi c,WRITEQ
 498 024F 112302 lxi d,pbuf$uqcb
 499 0252 CDA408 call bdos
 500 0255 C1 pop b
 501 0256 E1 pop h
 502 0257 111801 lxi d,BUFFSIZE
 503 025A 19 dad d
 504 025B 0D dcr c
 505 025C C24802 jnz freeloop

 506 ;
 507 025F 213B02 lxi h,txrslt ;initialize TX Transporter Command Block
 508 0262 5C mov e,h ;to point to TX Result Block
 509 0263 55 mov d,l
 510 0264 EB xchg
 511 0265 223102 shld txrsltp
 512
 513 ; ServeTX process loop
 514 TXloop:
 515 0268 0E89 mvi c,READQ ;wait for a message in network output Q
 516 026A 111D02 lxi d,outuqcb
 517 026D CDA408 call bdos
 518 ;
 519 0270 2A2102 lhld outQMSG
 520 0273 5C mov e,h
 521 0274 55 mov d,l ;put message buffer address in TX TCB
 522 0275 EB xchg ;(NOTE, NOT (8080 byte order)
 523 0276 223502 shld txtcb+6
 524 ;
 525 0279 13 inx d
 526 027A 1A ldax d ;set transport layer destination addr=DID
 527 027B 323A02 sta txtcb + 11
 528 ;
 529 027E 210300 lxi h,3
 530 0281 19 dad d ;calculate physical message length
 531 0282 6E mov l,m ;from SIZ field
 532 0283 2600 mvi h,0
 533 0285 110600 lxi d,6 ;put in TCB length field
 534 0288 19 dad d
 535 0289 55 mov d,l
 536 028A 5C mov e,h
 537 028B EB xchg

CP/M RMAC ASSEM 1.1 #012 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

 538 028C 223702 shld txtcb+8
 539 ;
 540 028F 112902 lxi d,omnitx$uqcb ;get transporter hardware MX message
 541 0292 0E89 mvi c,READQ
 542 0294 CDA408 call bdos
 543 ;
 544 TXretry:
 545 0297 012F02 lxi b,txtcb ;send TCB pointer to hardware
 546 029A CDF508 call omni$strobe ;if can't, not much else to do but try again
 547 029D DA9702 jc TXretry ; (ALTHOUGH THIS IS A FATAL HARDWARE ERROR)
 548 ;
 549 02A0 013B02 lxi b,txrslt ;wait for transmit completion
 550 02A3 CD3409 call wftxdone ;ignore errors here as no recovery possible
 551 ;
 552 02A6 112902 lxi d,omnitx$uqcb
 553 02A9 0E8B mvi c,WRITEQ
 554 02AB CDA408 call bdos ;release MX msg
 555 ;
 556 02AE 2A2102 lhld outQMSG ;send the buffer back to FREEBUFF Q
 557 02B1 222702 shld oldbuff
 558 02B4 0E8B mvi c,WRITEQ
 559 02B6 112302 lxi d,pbuf$uqcb
 560 02B9 CDA408 call bdos
 561 ;
 562 02BC C36802 jmp txloop ;and go back and do it all with next msg
 563
 564
 565 page

CP/M RMAC ASSEM 1.1 #013 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

 566
 567 02BF 4E5457524Bcnote: db 'NTWRKIF (c)1982 VANO ASSOCIATES, INC. - ALL RIGHTS RESERVED'
 568 ;__
 569 ;__
 570 ; ;
 571 ; GLOBAL Master Configuration Table and storage ;
 572 ; (address must be installed on SysData page(9,10) at init.) ;
 573 ;__
 574 ;__
 575 configtbl:

 576 02FA 00 db 0 ;Master status byte
 577 02FB 00 db 0 ;Master processor ID
 578 02FC 02 db NSLAVES ;Maximum number of slaves supported
 579 02FD 00 db 0 ;Number of logged in slaves
 580 02FE 0000 dw 0 ;16 bit vector of logged in slaves
 581 0300 ds 16 ;Slave processor ID array
 582 0310 5041535357 db 'PASSWORD' ;login password
 583
 584 ; builds Server stacks and initializes them with PD storage pointers
 585 0000 # ??xx set 0
 586 rept NSLAVES
 587 ds SRVRSTKSIZ - 2
 588 dw srvrpdbase + ??xx
 589 ??xx set ??xx + SRVRPDSIZ
 590 endm
 591 0318+ DS SRVRSTKSIZ - 2
 592 03AC+4404 DW SRVRPDBASE + ??XX
 593 03AE+ DS SRVRSTKSIZ - 2
 594 0442+7804 DW SRVRPDBASE + ??XX
 595
 596 ; allocates PD storage
 597 srvrpdbase:
 598 0444 ds NSLAVES * SRVRPDSIZ
 599
 600 ;__
 601 ;__
 602 ; ;
 603 ; INTERPROCESS QUEUES (both local and global) and COMMON data ;
 604 ;__
 605 ;__
 606
 607 ; ServeRX --> SLVSP message queues (INPUT), 1/slave support proc.
 608 001A = INQCB$SIZE equ 26 ;constant used for index calculation
 609 inqcb$array: ;ARRAY BASE NAME
 610 ;
 611 ; generate INQCBs as required
 612 0030 # ??xx set '0'
 613 rept NSLAVES
 614 ds 2 ;;link
 615 db 4eh,74h,77h,72h ;;common name is NTwrkQI
 616 db 6bh,51h,49h ;;(macro can't do lower case)
 617 db ??xx ;;slave ID
 618 dw 2,1 ;;msglen, nmbmsgs
 619 ds 12 ;;MP/M pointers and buffers

CP/M RMAC ASSEM 1.1 #014 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

 620 ??xx set ??xx + 1
 621 if (??xx EQ ('9'+1))
 622 ??xx set ??xx + 7
 623 endif
 624 endm
 625 04AC+ DS 2
 626 04AE+4E747772 DB 4EH,74H,77H,72H
 627 04B2+6B5149 DB 6BH,51H,49H
 628 04B5+30 DB ??XX
 629 04B6+02000100 DW 2,1
 630 04BA+ DS 12
 631 04C6+ DS 2
 632 04C8+4E747772 DB 4EH,74H,77H,72H
 633 04CC+6B5149 DB 6BH,51H,49H
 634 04CF+31 DB ??XX
 635 04D0+02000100 DW 2,1
 636 04D4+ DS 12
 637
 638 ; SLVSP --> NETWRKIF queue (OUTPUT)
 639 04E0 outQCB: ds 2 ;link
 640 04E2 4E7477726B db 'NtwrkQO0' ;name
 641 04EA 02001000 dw 2,16 ;msglen, nmbmsgs
 642 04EE ds 48 ;Used by MP/M
 643
 644 ; free buffer list management queue
 645 buffQCB:
 646 051E ds 2 ;link
 647 0520 4672656542 db 'FreeBuff' ;name
 648 0528 02001000 dw 2,16 ;msglen, nmbmsgs
 649 052C ds 48 ;reserved for MP/M

 650
 651
 652 ; global message buffer pool
 653 055C msgbuffs: ds NMSG$BUFFS * BUFFSIZE
 654
 655 ; Utility Procedure to allow indirect BDOS/XDOS access as needed by RSP
 656 08A4 2A0000 bdos: lhld bdosadr
 657 08A7 E9 pchl
 658
 659 page

CP/M RMAC ASSEM 1.1 #015 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

 660
 661 ;__
 662 ;__
 663 ; ;
 664 ; low level omninet support routines ;
 665 ;__
 666 ;__
 667
 668 ; Transporter mutual exclusion QUEUE
 669 08A8 omniQ: ds 2
 670 08AA 4D586F6D6E db 'MXomniQ '
 671 08B2 00000100 dw 0,1 ;msglen, nmsgs
 672 08B6 ds 12 ;dqph,nqph,msgin,msgout,msgcnt,buff
 673
 674 ; UQCB used by omni$init to load MX Q
 675 08C2 A808C608 omni$init$uqcb: dw omniQ,initmxmsg
 676 08C6 0000 initmxmsg: dw 0
 677
 678
 679 ; Initialization transporter control block
 680 inittcb:
 681 08C8 20 db 20h ;command
 682 08C9 00 db 0 ;result hi
 683 initrsltp:
 684 08CA 0000 db 0,0 ;result middle and low
 685 ;
 686 initrslt:
 687 08CC 00 db 0 ;result block for init
 688
 689
 690 ; initializes transporter hardware and return its network ID code in A
 691 omni$init:
 692 08CD 11A808 lxi d,omniQ
 693 08D0 0E86 mvi c,MAKEQ
 694 08D2 CDA408 call bdos ;create hardware MX Q
 695 08D5 11C208 lxi d,omni$init$uqcb ;send it one message
 696 08D8 0E8B mvi c,WRITEQ
 697 08DA CDA408 call bdos
 698 if INTERRUPT
 699 call int$init ;(optional) setup interrupt system
 700 endif
 701 08DD 21CC08 lxi h,initrslt ;install result block pointer in initialization
 702 08E0 55 mov d,l ;TCB
 703 08E1 5C mov e,h ;NOTE: NOT 8080 order, MSB,LSB
 704 08E2 EB xchg
 705 08E3 22CA08 shld initrsltp
 706 ;
 707 08E6 01C808 lxi b,inittcb ;post initialization command block to
 708 08E9 CDF508 call omnistrobe ;hardware
 709 08EC D8 rc ;cy=1 means can't talk to hardware
 710 ;
 711 08ED 01CC08 lxi b,initrslt ;wait for a completion from operation
 712 08F0 CD2309 call omni$wfdone
 713 08F3 B7 ora a

CP/M RMAC ASSEM 1.1 #016 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

 714 08F4 C9 ret ;return ID/result code to caller with flags set
 715
 716
 717 ; sends the command block pointer in BC to transporter hardware
 718 omni$strobe:
 719 08F5 210200 lxi h,2 ;first preset result code byte in

 720 08F8 09 dad b ;result block TCB result field --> to 0ffh
 721 08F9 7E mov a,m
 722 08FA 23 inx h
 723 08FB 6E mov l,m
 724 08FC 67 mov h,a
 725 08FD 36FF mvi m,0ffh
 726 ;
 727 08FF AF xra a ;send bits 23-16 of ptr to hardware (always 0)
 728 0900 CD0A09 call omni$st
 729 0903 D8 rc ;carry means can't talk to hardware
 730 ;
 731 0904 78 mov a,b ;send bits 15-8 of ptr to hardware
 732 0905 CD0A09 call omni$st
 733 0908 D8 rc
 734 ;
 735 0909 79 mov a,c ;send bits 7-0 of ptr to hardware
 736 ;fall into omni$st to send last byte
 737
 738 ; called by omni$strobe to send one byte to transporter when ready
 739 ; (waits a reasonable time for transporter to come ready and if
 740 ; it doesn't, returns with carry set; this is a fatal error) returns
 741 ; cy=0 if succeeds
 742 omni$st:
 743 090A F5 push psw ;save data for now
 744 090B 1150C3 lxi d,50000 ;set timeout
 745 omni$st0:
 746 090E DBF9 in OMNI$STAT ;see if transporter will accept byte
 747 0910 E610 ani OMNI$RDY
 748 0912 CA1A09 jz omni$st1 ;if busy, go decrement timeout and retry
 749 0915 F1 pop psw ;else output the byte and return with CY=0
 750 0916 D3F8 out OMNI$DATA
 751 0918 B7 ora a
 752 0919 C9 ret
 753 omni$st1:
 754 091A 1B dcx d ;loop back if not timeout yet
 755 091B 7B mov a,e
 756 091C B2 ora d
 757 091D C20E09 jnz omni$st0
 758 0920 F1 pop psw
 759 0921 37 stc
 760 0922 C9 ret ;else return CY=1 as error flag
 761
 762
 763 ; routine waits for a completion to occur on the result block
 764 ; pointed to by BC. This routine is used by the initialization
 765 ; and receiver processes. If there is no interrupt hardware in
 766 ; the system, ONLY ONE MESSAGE CAN BE RECEIVED PER CLOCK TICK of
 767 ; the system clock. This will considerably reduce server throughput

CP/M RMAC ASSEM 1.1 #017 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

 768 ; in most systems.
 769 omni$wfdone:
 770 wfrxdone:
 771 0923 0A ldax b ;all completion codes are < 0f0h
 772 0924 FEF0 cpi 0f0h ;see if already done before suspending caller
 773 0926 D8 rc ;yes, return immediately
 774 ; else suspend caller until a completion occurs
 775 0927 C5 push b
 776 if INTERRUPT
 777 lxi d,OMNI$FLAG ;wait for ISR to set flag
 778 mvi c,FLAGWAITF
 779 call bdos
 780 else
 781 0928 110100 lxi d,1 ;if no ISR, poll result block once/tick
 782 092B 0E8D mvi c,DELAY
 783 092D CDA408 call bdos
 784 endif
 785 0930 C1 pop b
 786 0931 C32309 jmp omni$wfdone
 787
 788 ; As above but instead polls continually to give transmitter priority
 789 ; since transmitter usually unloads messages in less time than MP/M
 790 ; dispatch overhead, it is not worth suspending it.
 791 ; A timeout routine is included to avoid locking up system if hardware
 792 ; fails so diagnosing the problem is possible with RDT.
 793 wftxdone:

 794 0934 1150C3 lxi d,50000 ;initialize hardware fail timeout
 795 0937 0A wftxd0: ldax b ;done yet?
 796 0938 FEF0 cpi 0f0h
 797 093A 3F cmc ;set up carry properly in case of return
 798 093B D0 rnc ;yes, return to caller with result in A, CY=0
 799 093C 1B wftxd1: dcx d ;if not timeout, loop back
 800 093D 7B mov a,e
 801 093E B2 ora d
 802 093F C23709 jnz wftxd0
 803 0942 37 stc
 804 0943 C9 ret ;else return to caller with CY=1 as error flag
 805
 806 page

CP/M RMAC ASSEM 1.1 #018 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

 807
 808 if INTERRUPT
 809 ;
 810 ; Since the CORVUS "ENGINEERING" transporter has no interrupt hardware
 811 ; associated with it, the details of the interrupt initialization and
 812 ; service routines will vary from system to system. The skeleton of
 813 ; our code is provided here as a guide to understanding what is needed.
 814 ;
 815 ; Routine initializes interrupt hardware and attaches ISR to XIOS
 816 ; at run-time (in somewhat bizarre fashion.) It would be better
 817 ; to make your ISR a permanent part of your XIOS since if not
 818 ; used it does no harm to the system.
 819 int$init:
 820 di
 821 mvi a,(jmp) ;build jump in vector
 822 sta (INT$VCTR)
 823 lxi h,omni$isr
 824 shld (INT$VCTR + 1) ;install new isr
 825 out OMNI$ACK ;clear interrupt latch
 826 mvi a,OMNI$ENABLE ;unmask transporter interrupt
 827 out OMNI$MASK
 828 ; this code does an extremely Klugey run-time linkage to needed XIOS routines
 829 lhld 1 ;find CBOOT in MPM-II BIOS simulation table
 830 mvi l,1
 831 mov e,m
 832 inx h
 833 mov d,m
 834 push d ;save to find exit$reg.
 835 ;
 836 xchg ;need to go one more level to find real entry
 837 inx h
 838 mov e,m
 839 inx h
 840 mov d,m ;this is address of real CBOOT entry in XIOS
 841 ;
 842 lxi h,9 ;calculate PDISP entry from CBOOT address
 843 dad d
 844 shld pdisp ;and save it in local vector
 845 ;
 846 lxi d,3 ;XDOS address is 3 bytes above PDISP
 847 dad d
 848 shld xd$adr ;save it in a local vector
 849 ;
 850 pop h ;get XIOS branch table address back
 851 mvi l,40h ;calculate address of EXIT$REGION entry
 852 mov e,m
 853 inx h
 854 mov d,m
 855 xchg
 856 shld exit$region ;save it for later use in pre-empt routine
 857 ei
 858 ret
 859
 860 ; omninet isr sets the appropriate XDOS flag and causes a dispatch

CP/M RMAC ASSEM 1.1 #019 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

 861 omni$isr:
 862 shld svhl
 863 pop h

 864 push psw ;save PSW and HL
 865 shld svret ;save return address
 866 lxi h,0 ;swap stacks
 867 dad sp
 868 shld svstk
 869 lxi sp,isr$stk
 870 push d ;save the other registers on new stack
 871 push b
 872 ;
 873 out OMNI$ACK ;clear interrupt latch
 874 ;
 875 lhld exit$region ; do a PRE-EMPT by patching a RET into table
 876 mov a,m ; (Very KLUGEY but there's no other way.)
 877 push psw ; save what was in XIOS branch table entry
 878 push h ; and put a RET there to prevent XDOS from
 879 mvi m,(RET) ; re-enabling interrupts
 880 ;
 881 mvi c,FLAGSETF ;call XDOS to set isr flag
 882 mvi e,OMNI$FLAG
 883 call xdos
 884 ;
 885 pop h
 886 pop psw
 887 mov m,a ;restore XIOS table entry
 888 ;
 889 pop b ;pop interrupted registers
 890 pop d
 891 lhld svstk ;restore interrupted stack
 892 sphl ;restore other regs. and exit
 893 pop psw
 894 lhld svret
 895 push h
 896 lhld svhl
 897 db (JMP) ; via dispatcher
 898 pdisp: dw 0 ;(link to dispatcher)
 899
 900 xdos: db (JMP) ;special XDOS entry
 901 xd$adr: dw 0 ;for ISR use
 902
 903 ; ISR data areas
 904 exit$region:
 905 dw 0 ;address of XDOS critical region exit routine
 906 ds 64 ;isr stack space
 907 isr$stk:
 908 svhl: dw 0 ;temporary reg storage
 909 svret: dw 0
 910 svstk: dw 0 ;careful, make sure all of .RSP is reserved
 911
 912 endif ; of if INTERRUPT
 913
 914 0944 end

CP/M RMAC ASSEM 1.1 #020 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

BDOS 08A4 110 113 225 233 244 248 251 269 280 288
 359 499 517 542 554 560 656# 694 697 779
 783
BDOSADR 0000 117# 122# 656
BUFFQCB 051E 190 224 466 645#
BUFFSIZE 0118 62# 209 210 502 653
CNOTE 02BF 567#
CODESEG 0000 104# 118
CONFIGTBL 02FA 221 254 575#
CR 000D 100#
CREATEP 0090 94# 247
DEBUG 0000 54# 111
DELAY 008D 92# 782
DETACH 0093 96# 112
DSPTCH 008E 93#
ERROUTMSG 0082 198 199# 328
ERROUTUQCB 007E 198# 345
FINDMATCH 0186 370# 385
FLAGSETF 0085 88# 881
FLAGWAITF 0084 87# 778
FREELOOP 0248 493# 505
GBUFUQCB 0072 190# 268
GETSLVSP 0180 321 366# 392 402 406

IDTBL 01B3 369 417#
INITMXMSG 08C6 675 676#
INITRSLT 08CC 686# 701 711
INITRSLTP 08CA 683# 705
INITRX 0098 167 220#
INITTCB 08C8 680# 707
INITTX 0243 458 490#
INQCBARRAY 04AC 177 182 185 227 609#
INQCBSIZE 001A 180 236 608#
INTERRUPT 0000 56# 698 776 808
INTVCTR 0038 72# 822 824
INUQCB 0066 174# 421 425 427
LF 000A 101#
LOGITOFF 019A 317 391#
LOGITON 01A3 311 401#
MAKEINQS 00AB 229# 240
MAKEQ 0086 89# 223 232 243 693
MSGBUFFS 055C 491 653#
NEWBUFF 0076 190 191# 272 299 327 349
NMSGBUFFS 0003 63# 492 653
NO 0000 51# 54 56
NOTMATCH 0191 372 380#
NSLAVES 0002 59# 63 176 228 368 419 578 586 598 613
OLDBUFF 0227 466 467# 494 557
OMNIACK 00FA 79# 825 873
OMNIBASE 00F8 68# 75 76 79 80
OMNIDATA 00F8 75# 750
OMNIDISABLE 0000 83#
OMNIENABLE 0001 82# 826
OMNIFLAG 0008 70# 777 882
OMNIINIT 08CD 220 691#

CP/M RMAC ASSEM 1.1 #021 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

OMNIINITUQCB 08C2 675# 695
OMNIMASK 00FB 80# 827
OMNIPENDING 0001 81#
OMNIQ 08A8 194 470 669# 675 692
OMNIRDY 0010 77# 747
OMNIRXUQCB 0078 194# 278 286
OMNISOCKET 00A0 69# 206 478
OMNIST 090A 728 732 742#
OMNIST0 090E 745# 757
OMNIST1 091A 748 753#
OMNISTAT 00F9 76# 746
OMNISTROBE 08F5 283 546 708 718#
OMNITXUQCB 0229 470# 540 552
OMNIWFDONE 0923 712 769# 786
OUTQCB 04E0 198 242 462 639#
OUTQMSG 0221 462 463# 519 556
OUTUQCB 021D 461# 516
PBUFUQCB 0223 466# 498 559
PRINTF 0009 86#
READQ 0089 90# 267 279 515 541
RSP FFFF 55# 105
RSTNUM 0007 71# 72
RXL1 0138 310 315#
RXL2 0146 306 316 321#
RXL3 016C 312 318 322 349#
RXL4 0178 346 358#
RXLOOP 00E5 267# 360
RXMXMSG 007C 194 195#
RXPRIORITY 0040 64# 109 161
RXRETRY 00ED 271# 291 296
RXRSLT 0090 213# 259 293
RXRSLTP 0086 204# 263
RXSENDERR 014C 313 319 326#
RXTCB 0084 202# 276 282
SERVERXPD 0002 159#
SERVERXSTKTOP 0064 107 166#
SERVETXPD 01B9 246 451#
SETPRIORITY 0091 95# 108
SRVRPDBASE 0444 588 592 594 597#
SRVRPDSIZ 0034 61# 589 598
SRVRSTKSIZ 0096 60# 587 591 593
SYDATAD 009A 97# 250
TXLOOP 0268 514# 562

TXMXMSG 022D 470 471#
TXPRIORITY 003F 65# 453
TXRETRY 0297 544# 547
TXRSLT 023B 484# 507 549
TXRSLTP 0231 476# 511
TXTCB 022F 474# 523 527 538 545
UQCBLEN 0006 171# 422
UQCBNTWRKQO0 021D 462#
WFRXDONE 0923 294 770#
WFTXD0 0937 795# 802
WFTXD1 093C 799#

CP/M RMAC ASSEM 1.1 #022 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

WFTXDONE 0934 550 793#
WRITEQ 008B 91# 287 358 497 553 558 696
XQCBMSG 0004 172# 354 421 425 427
YES FFFF 50# 51 55

Listing G-2. Sample Server Network I/O for Corvus OMNINET

