
, ,

."

HONEYWELL

GENERAL SYSTEM:

SUBJECT:

SPECIAL
INSTR UC TIO NS:

MOD 1 (MSR)

DATA MANAGEMENT

SUBSYSTEM

SERIES 200/0PERATING SYSTEM - MOD 1
(MASS STORAGE RESIDENT)

Programming and Operating Procedures for
the Data Management Subsystem of the Mod 1
(MSR) Operating System.

This edition completely supersedes the manual
of the same name dated May 31. 1968. It is
one of a series of manuals describing the Mod 1
(MSR) Operating System. Refer to the Preface
for other related information. The portions of
this publication containing new and changed in
formation are indicated on page iii.

INCLUDES UPDATE PAGES PUBLISHED AS ADDENDUM NO. 1 ON
AUGUST 29, 1969. AND ADDENDUM NO.2 ON JANUARY 5, 1970.

DATE: December 3, 1968

'\"...../ 0644
10M

10170
Printed in U. S. A.

* FILE NO.: 123.6005. 141C. 5-618

* Underscoring denotes Order Number.

PREFACE

This manual describes the Data Management Subsystem of the Series 200/0perating

System - Mod 1 (Mass Storage Resident). Besides this manual, other pertinent publications

include the following:

Mod 1 (MSR) Operating System Summary Description (Order No. 615);

Supervisor (Order No. 616);

Program Development Subsystem (Order No. 617);

Utility Routines (Order No. 619); and

Operating Procedures (Order No. 620).

The introductory bulletin cited above is prerequisite reading to this manual and the other

manuals listed. In addition, a publications guide is provided in the introductory bulletin to aid

the reader in his study of the system.

Section I describes the basic elements of the Data Management Subsystem. Section II

gives the concepts relating to data and volume conventions and the rules of file organization.

Section III describes the input/output routines associated with data files, and, finally, Section

IV describes the file support routines. A series of appendices offers other topics of related

interest to the reader.

Mod 1 (MSR)- Data Management Subsystem is a coded system
designed to extend the power of Series 200 in the area of data
control. It is supported by comprehensive documentation and
training; periodic program maintenance and, where feasible,
improvements are furnished for the current version of the
system. provided it is not modified by the user.

Copyright 1970
Honeywell Ina.

Wellesley Hills, Massachusetts 02181

#5-618

•
f ..

NEW AND CHANGED INFORMATION

This edition incorporates a number of additions and changes reflecting the added capability

of the Mod I (MSR) Operating System to process volumes containing bad tracks. (This capability

is fully described in the Utility Routines manual.) These changes occur for the most part in

Sections III and IV, particularly in tables listing halt codes, console messages, and exits.

Because of the addition of this capability, it has also been necessary to expand the entries in

Tables A-I and A-2, Volume Label and Volume Directory.

Besides the information noted above, the following changes have also been made:

Section m. Logical 110 C.

A supplementry list is typed out at the console giving information relevant
to device condition messages and file 110 condition messages.

Section IV. File Support C.

The ability to load or unload a sequential file to a direct access file on
mass storage.

File Support diagnostics for the 5040 halt have been expanded.

A number of minor corrections have been made to the text, and, wherever necessary,

explanations have been clarified or expanded •

iii #5-618

Section I

Section II

Section In

I

TABLE OF CONTENTS

Introduction ••.••.••.•.••.••••.
Data Management Conventions
Logical I/O C Program ••••••••••••••••
File Support C Program ••••••••••••••••••••••••••
Job Control Language for Data Management Subsystem ••••••••
Equipment Requirements for Data Management Subsystem •••••

Required Equipment ••••••••••••••••
Additional Usable Equipment .•••••••

Data Management Conventions •••••••••••••••••••••••••••
Volutlle Conventions .••.•.•....•..•....•.••.•.•..........•.

Formatting and Volume Preparation ••••••••••••••••••••••
Bootstrap Records•....•............
Volume Label
Volume Directory •.•

Data Conventions ••.•.•
Allocation Conventions

Units of Allocation •.••••••
Track-Linking Records •.•

File Organization Conventions•....................•
Sequential File Organization•..

Allocation•..•....•...........
Data Structure•..•.•....•..•......••

Indexed Sequential File Organization •••••••••••••••
Allocation ••••••••••••
File Structure.

Prime Data Area ••
Index Areas ••••••
Overflow Areas

Directly Processing an Indexed Sequential File ••••••••••
Data Item. Status Character

Direct Access File Organization ••.••••••••••
Allocation•.................•.
File Organization•.......•...........

Data Area•................•.......
Overflow Areas ••••.•••••••.

Direct Access Files and Keys ••.
Data Item Status Character •••.•
Cumufative Loading of a Direct Access File

Proce s sing Conventions•.....•.•
Sequential or Direct Proce s sing ••••••••••••••••••••••••••
Volume Processing Functions ••••••.••••••••••••••
File Processing FWlctions•.........•....•.....•.•
Backup Proc edure s ..•....•....•.......•....•.••.•......

Logical Backup•.......•.....................•...
Physical Backup .•..•.....•.•........................

Logical I/O C•................•.................
Mass Storage Input/Output Control Macro Routine (MIOC) ••.••

iv

Page

1-1
1-1
1-4
1-5
1-6
1-7
1-7
1-7

2-1 ..
2-1
2-3
2-3 ;

2-3
J,
~

2-3
2-4
2-6
2-6
2-8
2-8
2-8
2-9 ~
2-9
2-9
2-10
2-11
2-11
2-11
2-12
2-13 ...
2-20
2-20
2-23
2-23 .:;;

2-23
2-23
2-24
2-25
2-25
2-26
2-26
2-26
2-27
2-27
2-27
2-27

3-1
3-2

#5-618

Section III (cont)

,
:

'-

8/29/69

TABLE OF CONTENTS (cont)

File Description Macro Routine (MCA) •.•.•••••••••••••••••••
Communication Area Service Macro Routines (MLCA and

MUCA)•....•..........•••......••....••
Action Macro Routines ...•..•......•......•••••.•.•••...•.•
Summary of Logical I/O C Macro Routines •••••••••••••••••••
File Processing Modes ...•.........•...................•...

Input/Output Processing Mode ••••••••••••••••••••••••••••
Input - Onl y Proc e s sing Mode •••••••••••••••••••••••••••••
Output-Only Processing Mode ••••••••••••••••••••••••••••

Action Macro Processing Functions •••••••••••••••••••••••••
Opening File s .•.......•.•.......•......••.•••..........

Opening Sequentia I File s •••••••••••••••••••••••••.••••
Opening Partitioned Sequential Files ••••••.••••••••••••
Opening an Indexed Sequential File ••.••.•••••••••••••••
Opening Direct Access Files ••••.•••••••••••••••••••••

Closing Files .. .
Closing Sequential and Partitioned Sequential Files •••••••
Closing Indexed Sequential and Direct Access Files ••••••

Retrieving Items in File s•........
Retrieving Items in Sequential and Partitioned Sequential

File s••••......
Retrieving Items in Indexed Sequentia.l Files •••••••••••••
Retrieving Items in Dir ect Access Files ••••••••••••••••

Replacing Itetns in File s ..•....•........••......•....•.•.
Replacing Items in Sequential and Partitioned Sequential

File s•....•....•..•......•..•............
Replacing Items in Indexed Sequential Files •••••••••••••
Replacing Items in Direct Access Files ••••.••••••.•••••

Putting Items to Sequential and Partitioned Sequential Files ••
Action Macro Calls (for Partitioned Sequential Files Only) .••

Set Processing to Beginning of Specified Member (SETM).
End Processing of Current Member (ENDM) ••••••••.••••
Alter Status of Member (MALTER} ••••••••••••••••.••••
Release Complete File to Unused State (MSREL} •••••••••

Inserting Items in File s
Inserting Items in Indexed Sequential Files •.••••••.•••••
Inserting Items in Direct Access Files ••••••••••••••••••

Deleting Items from. File s ;••....•...
Seeking a Desired Cylinder ..•....•..•....•......•••....•.
Setting Processing to a Specified Location •••••••••••••••••

Program. Organization
Language Elements for Logical I/O C ••••••••••••••••••••••••

Input/Output Control Macro Routine (MIOC) ••••••••••••••••
MIoe Macro Call
Parameters of MIOC Macro Call •••••••••••••••••••••••

File Description Macro Routine (MCA) ••••••••••••••••••••
MeA Mac ro Call•......•.........•..•.•.••..•.•.

Communication Area Service Macro Routines (MLCA and
MUCA)•.....•....... ..•.

v

Page

3-2

3-2
3-2
3-2
3-4
3-4
3-4
3-4
3-4
3-6
3-6
3-8
3-8
3-9
3-10
3-10
3-10
3-11

3-11
3-12
3-13
3-15

3-16
3-16
3-16
3-17
3-17
3-17
3-18
3-19
3-19
3-20
3-20
3-21
3-21
3-22
3-22
3-22
3-23
3-26
3-26
3-36
3-38
3-38.1 I
3-50

#5-618

Section III (cont)

Section IV

TABLE OF CONTENTS (cont)

Mass Storage Load Communication Area Macro Call
(MLCA) .. .

Mass Storage Unload Communication Area Macro Call
(MUCA) •.•.••••.•••••••.•••••••.••••

Communication Area Field Designators ••••••••••••••
Action Macro Calls

Open (MSOPEN) •••••••••
Close (MSCLOS)
Get (MSGET)•.•.••.•.•.
Replace (MSREP) ••••••••••••••••
Insert (MSINS) ••••••••••••••••••
Delete (MSDEL)
Put (MSP U'I') •••••••••••.••••••.•••••••.•••••••.••
Set Member (SETM) ..•....•..•......•.......•....•
End Member (ENDM) ••••••••••••.•.•
Alter Member (MALTER) ••.•.••••.••••••••••••••••
Release (MSREL)
Set Location (SET L) •••••••••••••••••••••••••••••••
Seek (MSEEK) .•....•......•.•..•.•..•.••••.•.••.••

Programmer's Preparation Information for Logical
I/O C .. .

Logical I/O C Memory Requirements ••••••
Program. Organization•••..•..•.•.

MIoe Segmentation .•....•••..•....•.....••.....
MIOe Re strictions
Physical I/O C Relationships with MIOC •
Physical I/O C Relationships with MCA ••

Address Mode•.•..•.•.••.•....•....•••.....
Index Registers•............................
Read/Write Channel Utilization •••••
Direct Access Addressing.
Item Key Specification ••••

Direct Access ••••••••• .
Indexed Sequential ..•...........................

Exits and Halts ...•....•....•..•......•....••.•....
Operating Procedures for Logical I/O C

Control Panel Operating Procedures ••••••••••••••••
Console Typewriter Operating Procedures •••••••••••

Page

3-51

3-51
3-52
3-54
3-55
3-56
3-56
3-58
3-58
3-59
3-59
3-59
3-60
3-60
3-61
3-62
3-62

3-64
3-64
3-64
3-65
3-67
3-69
3-69
3-69
3-69
3-70
3-70
3-71
3-71
3-n
3-n
3-77
3-77
3-82

File Support C . • • 4-1
General Description of File Support C •••••••••••••••••••••
Foreground/Background Processing of File Support C ••••••
Functions of File Support C .•..............••....••......

Allocate ...•..•................•............•.......
Deallocate
Load .••••
Unload

4-1
4-1
4-2
4-2
4-2
4-2
4-2

Map. • • . . • 4-2

vi '5-618

.J

Section IV (cont)

'-

TABLE OF CONTENTS (cont)

Map Description of a File •••••••••••••••••••••••
Map Expired File s .•...............••.......•..
Map Unused Areas ...•.....................•...

Considerations•.............................
Number of Functions Performed •..•..
Block and Record Sizes Within 12K Memory.

Job Control Language for File Support C ••••••.•..••••.•••
Execute Statement
Job Control for a Single Operation •••••••••••••••••
Job Control for a Sequence of Operations ••••••••••••

Allocate Function 0 ••••••••••••••••••••••••••

Job Control Language for Allocate Function •••••••••
Execute Statement ...•.•...............•.•........
Function Statement II •••••••••••••••
File Statelllent .•.•..•..• " ..••.•..••.•.••••••••.•..

File -Natlle Parameter••....•.•....•..
File -Organization Parameter ••••••••••••••••••••
General Overflow Parameter ••••••••••••••••••••
Item -Key Parameter•......••.....•
Pas sword Parameter
File-Expiration Date Parameter ••.
Protection-Status Parameter.
Device-Address Parameter •.

Size Statement •••••••.••.••
Record-Length Parameter
IteIll-Length Parameter•......•.......
Block-Size Parameter•......•.......
Bucket-Size Pararn.eter
Index-Size Pararn.eter•.....•.•....•........
Cylinder Overflow-Size Parameter ••••••••••••
String -Size Pararnete r .•................••...

Uni ts Staternent
Volurn.e-Nam.e Parameter•....•
Master /Cylinder Index Parameter •••••••••••••••
Overflow Parameter•.••.•......
Data Unit of Allocation•...•......
FROM Parameter ••
TO Parameter •••

Member Statement •.
Member -Name Parameter •••••••••••••••••••
Member-Length Parameter •.••••••••••••••••

File Statement for the Li st File •••••••••••••••••••
Device-Address Parameters •••••••••••••••••

Da y Statem.ent•......••.•.....
Job Control Language Example for Allocate Function.
Summary of Job Control Statements for Allocate

Function•............•.••..•...•...
Deallocate Function•....•.........•....•..•.•....•

vii

Page

4-2
4-6
4-6
4-6
4-6
4-6
4-8
4-8
4-8
4-9
4-9
4-10
4-11
4-12
4-12
4-12
4-12
'4-13
4-13
4-13
4-14
4-14
4-14
4-15
4-15
4-15
4-16
4-16
4-16
4-16
4-17
4-17
4-17
4-18
4-18
4-19
4-19
4-19
4-19
4-19
4-20
4-20
4-20
4-21
4-21

4-24
4-28

#5-618

Section IV (cont)

TABLE OF CONTENTS (cont)

Job Control Language for Deallocate Function •.••••••••
Execute Statement
Function Statement
Volume Statement

Volume-Natne Parameter
File Staternent•........•.............

File-Name Parameter
Expiration-Date Check Parameter •••••••••••••••
Password Parameter•...........
Device-Address Parameter •••••••••••••••••••••

Da y Statement•..•••.........•....•.......
Job Control Language Example for Deallocate Function ••
SUITlITlary of Job Control Statements for Deallocate

Function•......•..........
Load and Unload Functions

Job Control Language for Load and Unload Functions ••••
Execute Statement
Function Statement .••••••.•.••.•..•.•••..•..•.•.•
File StateITlent s •.•..•.••.•.••••..•.••.•••••••••••

In/Out Parameter ••••.••.••••••••••••.••••••••
File -NaITle Paramete r ••••••.••••.••••••••••••••
Device-Type ParaITleter •.••••.•••••••••••••••••
Device-Address ParaITleter •••••••••••••••••••••
IteITl-Length ParaITleter ••••.•••••••••••••••••••
Record-Length ParaITleter •••••••••••••••••••••.
Banne r -Character ParaITleter •••••••••••••••••••
Parity Parameter•......•...
Padding-Character Parameter ••••••••••••••••••
Mode Parameter•..•..........
Pa s sword Parameter•.•....•...
Bucket-Addressing ParaITleter •••.••••••••••••••
Protection-Status Parameter ••••.•••.••.•..•..•
Imbed ParaITleter ••••..•.•••••••••••.••.•
Release ParaIlleter•....
Report-NuITlber Parameter •••••••.••••.••••••••

Member Statements ..•................•......•...
Member-Name Parameter •••••••••••••••.••••••

Exits Statement•....•.....
PrograITl-ScgITlent -Name Parameter •••••••••••••
Low-Memory-Address ParaITleter •••••••••••••••

Job Control Language ExaITlples for Load and Unload
Functions•.......•.......................•...

SUITlmary of Job Control StateITlents for Load and Unload
Functions•........••......•......•.•.....•••..

Map Function .•.......•.•..•......•......••...........
Job Control Language for Map Function ••••••••••••••..

Execute Statement t ••••••••••••••••••

Function Statement

viii

Page

4-28
4-28
4-29
4~29

4-29
4-29
4-29
4-29
4-30
4-30
4-31
4-31

4-33
4-33
4-35
4-36
4-36
4-36
4-37
4-37
4-37
4-38
4-39
4-39
4-40
4-40
4-41
4-41
4-41
4-42
4-42
4-43
4-43
4-43
4-44
4-44
4-44
4-45
4-45

4-45

4-48
4-51
4-51
4-51
4-51 ~

#5~618

Section IV (cont)

TABLE OF CONTENTS (cont)

Page

Volume Statement......... • • . • • . • • • • • • .• 4 - 52
Volurn.e-Name Parameter
Device -Addre s s Parallleter ••••••••••••••••••••.•

File Statement ...•............................•...
Da y Statement •••••••.••.•..•.•..•.••••.••.•..••••
File Statelllent for the List File

Device -Type Parameter•.•.....•••.....•..
Device -Addre s s Paralllete r ••••••••••••••••••••••

Job Control Language Exalllples for Map Function •••••••
SUllllllary of Job Control Statelllents for Map Function ••••

Prograllllller's Preparation Inforlllation for File Support C ••
File Considerations .•.••••.•.......•...••••••..•..•.•

Direct Access Files ...•.•......•••...•.•••..•..•..
Unloading a Direct Access File ••••••••••••••••••
Loading a Direct Access File ••••••••••••••••••••

Sequential File s
Partitioned Sequential Files ••••••••••••••••••••••••

Unloading a Partitioned Sequential File •••••••••••
Unloading by File .•.........•..•......••.•...
Unloading Selected Melllbers ••••••••••••••••••

Loading a Partitioned Sequential File •••••••••••••
Loading by File ..•.................•......•..
Loading Selected Melllbe r s ••••••••••••••••••••

Processing a Partitioned Sequential File by Melll-
her Names•..•.......•......•.•........

Loading frolll Mass Storage to Mass Storage •••••••
Indexed Sequential File s•....•.•....•..

Allocating an Indexed Sequential File •••••••••••••
Loading an Indexed Sequential File •••••••••••••••
Unloading an Indexed Sequential File ••••••••••••••

Mixed File Organizations•....•.•..........
Loading or Unloading

Own-Coding Considerations ••••••.••••••••••••••••••••
Structure of Own-Coding Routine ••••••••••••••••••••
Own-Coding Considerations for Tape-Resident

4-52
4-52
4-53
4-53
4-53
4-54
4-54
4-54
4-55
4-57
4-57
4-57
4-57
4-57
4-57
4-58
4-58
4-58
4-58
4-58
4-58
4-58

4-58
4-59
4-59
4-59
4-59
4-60
4-60
4-60
4-60
4-61

Operation.. 4-61
Own-Coding COllllllunication with Load/Unload

Functi on • • 4 -·62
Olllitting Itellls frolll the Output File. • • • • • • • • • • • •• 4-62
Invalid Bucket Addresses.................... •••• 4-62
Insufficient Space.. 4-62
Entrance to General Overflow ••••••••••••••••••• 4-63
Key Out of Sequence.. • • • .. • ... 4-63

Tape and Card File Considerations. • • • • • • • • • • • • • • • • • •• 4-63
1 /2-Inch Tape Forlllats...................... •••••• 4-63

Header Label. . . . • . • • .. • • . . • • • .. 4-63
Data Records. . . . • • • • . • 4-65

Padding Items. 4 -66

ix #5-618

Section IV (cont)

Appendix A

Appendix B

Appendix C

TABLE OF CONTENTS (cont)

Trailer Label •...••.•.•••••••.••.•.••••.••••.•
Tape Marks ••..••••.•.•.•••••.•..•.••.••••••••

Card File Formats •••••.••.••••••.•••••••••••••••
Header Label .•...•.•....•..•....•.••...••.••..
Data Itenls .•.•...........................•....
Trailer Label•...........................

Unloading Mass Storage Files onto Printer ••••••••••••
Operating Procedure s for File Support C •••••••••••••••••

Loading File Support C•.......
Mod 1 (MSR) Operating System •••••••••••••••••••••

Page

4-66
4-66
4-66
4-66
4-67
4-67
4-67
4-68
4-68
4-68

Mod I (TR) Operating System. ••• •• • • • •••• • •••••••• 4-70
Protectionof Mass Storage During Execution of File

Support C................. 4-70
Protection During Allocate ••••••••••••••••••••••••
Protection During Deallocate ••••••••••••••••••••••
Protection During Load/Unload •••••••••••••.••••••
Protection During Map •••.•••••••.••••.••.•.••.•.•

Operator Control and Messages for File Support C ••••••
Operator Control with Control Panel. .•.•..•••••••.•

Pe ri phe ral C ondi ti on s ••••••••••••••.•.••••••••••••••
File Related Conditions •••••.•••••••.•.••.•.•••••••••

Job Control File Conditions •••••••••••••••••••••
Conditions Specific to File Support C •••••••••••••

Operator Control with Console Typewriter ••••••••••
Peripheral Conditions•..................
File -Related Conditions •••••••••••••••••••.••••
Job Control File Conditions •••••••••••••••••••••
Typewriter Messages SpecifIC to File Support C •••

Failure During Allocation and Deallocation ••••••••••
Failure During Allocation •••••••••••••••••••••••
Failure During Deallocation •••••••••••••••••••••

4-70
4-70
4-70
4-70
4-70
4-70
4-71
4-72
4-72
4-77
4-83
4-83
4-84
4-84
4-86
4-93
4-93
4-94

Volume Label and Volume Directory........................ A-I

Partitioning a Sequential File. •• • •• • • • • •• • • • • • ••• •• • • • •• ••• B-1

File Design and Allocation........... ...•..........•....... C-l
File Design Criteria.... •• •• ••• •• •• • • • . •. . •••. . •• • •••.• C-l

Application Considerations. . • • . • . • • • • • • • • • • • • • • • • • • •• C-l
File Additions
File Inquiries••...
Random Ve rsus Sequential File s •••••••••••••••••••
Random Plus Sequential File s •••••••••••••••••••••

General File De sign Considerations ••••.••••••••••••••
Block Size•............•......
Assignment of Units of Allocation ••••••••••••••••••
Multi volume File Proce s sing ••••••••••••••••••••••
Assignment of Files to be Processed Concurrently •••

Sequential File Considerations ••••••••••••••••••••••••••

x

C-I
C-l
C-2
C-2
C-2
C-2
C-3
C-3
C-4
C-4

#5-618

..

;

App,endix C (cont)

Appendix D

I

TABLE OF CONTENTS (cont)

Allocation •.•.••••..•.••••.•....••....•.•••••••.•••.•
Direct Access File Considerations •.••••••••••.•••••••••.

Bucket Size and Overflow ••...•••.•.••.••••.••••••••••
Allocation •••••••••.••••••.•••••••.••••••••••••.•••••

Page

C-4
C-IO
C-IO
C-12

Indexed Sequential File Considerations •.•••••••••••••••••• C-17
De sign Considerations. . • • • . . . •• C -17

Item Sequence••......•••..•....••.. C -17
Distribution and Volatility •••••••••••••••••••••••••• C-17
Type s of Overflow. . • • . . . • . • • . . . • . . • . • . .. C -17

Optitnization•.••.....................•...••..... C -18
Optimizing Access Time •.••••••••••••••••••••••••• C-18
Optimizing Storage Capacity. •• C - 20
Comprising Between Access Time and Storage

Capacity•....................
Allocation ••••.••••...•..•....••.•..•.••••.••.••••.••

Data Cylinder s Required •.•.••••.••••••••••.•••••••
Tracks Required for Master/Cylinder Index •••.••••.•

C-22
C-24
C-24
C-25

Physical I/O C•.•......... D-I
Use of Physical I/O C

Read Action•....••.•............•.•....•..•.....
W rite Action .••••.••.•.••.....••..•.•.••.•..•.•••••.
Wait Action•......•.......•.......••..••.•.•.••
Restore Action .••..•.•.•....•.•..•....•••..•.••.•...
Verify Action ..•.•••...••............................
Seek Action•...............•............

Detailed Description of PhYSical I/O C Macro Routines ••••
Control Macro Routine (MPIOC) ••••.••.••••..•.••••.•.
Communication Area Macro Routine (MPCA) ••.•.••••..•
Communication Area Service Macro Calls (MLCA and

M UCA)•...•
Action Macro Routine s•........

Language Elements of Physical I/O C •••••••••••••••••••••
Control Macro Call (MPIOC) ••••••••••••••••••••••••••
Parameters of MPIOC Macro Call ••••••••••••••••••••
Communication Area Macro Call (MPCA) •••••••••••••••
Parameters of the MPCA Macro Call ••••••••••••••••••
Communication Area Service Macro Calls (MLCA and

MUCA) .•..•••.•..••.•.•..•.••••.•.••.••••..•••....
Action Macro Calls•......•.......•••...........

Read Action Macro Call•...............
Write Action Macro Call
Wait Action Macro Call
Restore Action Macro Call •.•••••..••••••••••••••••
Verify Action Macro Call ••.•••••••••••••.•••••••••
Seek Action Macro Call ••••.•••••.••••••••.••••••••

D-l
D-2
D-2
D-2
D-2
D-2
D-2
D-3
D-3
D-3

D-3
D-4
D-4
D-4
D-4
D-6
D-6

D-9
D-IO
D-IO
D-IO
D-ll
D-ll
D-ll
D-ll

Programmer I S Preparation Information for Physical I/O C.. D-12
Address Mode .•......................•.............. D-12

xi #5-618

Appendix D (cont)

Appendix E

Appendix F

Appendix G

8/29/69

TABLE OF CONTENTS (cont)

Page

Read/W rite Channel Utilization. •• D-12
Special Considerations for Specifying Parameters ••••••• D-13

Use of Index Registers ••••••••••••••••••••••••••••• D-13
Peripheral Address Assignment and RWC Configura-

tion Considerations
Fixed Peripheral Address Assignment ••••••••••••
Variable Peripheral Address Assignment ••••••••••

Considerations for MPIOC Parameter Specification ••••••
Suffix Character•.••....•.•.....•••.......•....
Peripheral Address Assignment ••••••••••••••••••••
Device Protection •.•....••....•.•...•.•.•....•....

Considerations for MPCA Parameter Specification •••••••
File Prefix•............•
Suffix of Related MPIOC •••••••••••••••••••••••••••
Buffer Address (AAD) ..•.••••••........•....••.••..
User's Uncorrectable Error Routine Entrance (EAD) ••
Type of Read or Write (TRW) •••••••••••••••••••••••
Control Unit Current Address and Status •••••••••••••

Considerations for Action Macro Routines ••••••••••••••
Read Action Macro Routine
Write Action Macro Routine .•............•...•....•
Verify Action Macro Routine •••••••••••••••••••••••
Wait Action Macro Routine ••••••••••.•••.•••.••••••
Restore Action Macro Routine ••••••••••••••.•••••••
LOKDEV Action Macro Routine .•••.•..•..•..•••.••.
Handling Track Linking Records ••••••••••.•••••••••

User's Uncorrectable Error Routine ••••••.••••.•••••••
Error Type Indicator (ERI) ••••••••••••••••••••••••
Address Register Contents at Time of Error Exit

D-13
D-13
D-13
D-14
D-14
D-14
D-14
D-14
D-15
D-15
D-15
D-15
D-15
D-16
D-17
D-17
D-17
D-18
D-18
D-18
D-18
D-18
D-19
D-19

(EDF). • • . • . . • . • .. D-20
Re -execution of Correction Procedure. • • • • • • • • • • • • •• D-20
Bypass Error Condition•....•••..•.••.•.•... D-21
Issue New Action Macro Call ••••••••••••••••••••••• D-21

Operating Procedures for Physical 1/0 C ••••••••••••••••• D-21

Randomizing Techniques E-l
Randomizing Addressing ••••••••••••••••••••••••••••••••• E-l

Prime Number Division. . •• E-l
Square Enfold and Extract. •• E - 2

Radix Conversion. E-4
Nonnumeric IteIl1 Keys, E-5
Multifield Keys..• E-6
Frequency Anal ysi s .. E-7

Mass Storage File Protection•...... F-l
File Protection.. • . . • .. F-l
Write Protection••.•.....•.•......•.......•..... F-l
Password Protection•......•....•..•.•..•..•..... F-2

Ter minal File s ••••••••••••••••••.
Creation of Terminal Files ••••.

xii

G-l
G-l

#5-618

...
I

I

I

I -.

..

I~

Appendix G (cont)

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.

Figure 2-5.

Figure 2-6.

Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure B-1.
Figure D-l.

Table 3-1.
Table 3-2.

Table 3-3.

Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.
Table 3-9.
Table 3-10.
Table 3-11.
Table 3-12.
Table 3-13.

TABLE OF CONTENTS (cont)

Print-Image Files
Card-Image Files

......................................

LIST OF ILLUSTRA TIONS

Page

G-2
G-2

Disk Pack Cylinder Concept - Type 259 Disk Pack Drives...... 2-2
Relationship Between Items and Records. . . • . • • • • • • • . • . • • • • .• 2-5
Relationship Between Items, Records, and Blocks. • • • • • • • . • •• 2-5
Illustration of Units of Allocation - Type 261 or Type 262

Disk File. • • • • • • • • • • • • • • . • • • • • • . . •. 2-7
Relationship Between Items of the Master and Cylinder

Index..•.. 2-14
Relationship Between String Index Items and the Data Area of

a Cylinde r•.................•.••..........
Insertion of Items into a String •••••••••••.•••••••••••••••••
De letion of an Item from a String •••••••••••••••••••••••••••
Using the Item Position of a Deleted Item ••••••••••••••••••••
Relationship Between Items, Records, Blocks, and Buckets ••••
Omission of Single Parameter from Macro Call •••••••••••••••
Omission of Consecutive Parameters from Macro Call ••••••••
Program Segtl1.ent Loading ...•.................•.....•......
Format of File Support C Execute Statement •••••••••••••••••
Job Control Statements for Allocation of Files ••••••••••••••••
Job Control Statements for Deallocate Function •••••••••••••••
Job Control Statements for Loading and Unloading Files •••••••
Listing of Sample Unload-to-Printer Function ••••••••••••••••

2-15
2-16
2-21
2-22
2-24
3-25
3-25
3-68
4-8
4-10
4-28
4-35
4-69

Sequential File Using Partitioning Option ••••••••••••••••••••• B-4
MPCA Control Unit Current Address and Status Field ••••••••• D-16

LIST OF TABLES

Summary of Logical I/O C Macro Routines. • • ••••••• ••• •••••• 3-3
Action Macro Calls for Each File Type in Each Processing

Mode • . • • • • . • • . • . • .. 3-6
Summary of MSGET Macro Functions for Direct Access

Fil e s ..••••••....•.••....••••....••••.•.••••••••••••••••
Parameter s of MIOC Mac ro Call ••••••••••••••••••••••••••••
Summary of MIOC Parameter Value s ••••••••••••••••.•••••••
Parameters of MCA Macro Call ••.••••••....••••.•.•••••••.
Summary of MCA Parameter Value s •••••••••.••••.••.•••••••
Mnemonic Designators for Communication Area Fields ••••••••
Summary of Action Macro Call Coding ••••.••••••••••••••••..
MIoe Segm.entation•...................
Exit and Return Codes for Volume Directory Exits ••••••••••••
Exit and Return Codes for Member Index Exits •••••••••••••••

3-15
3-27
3-36
3-39
3-49
3-52
3-63
3-66
3-73
3-75

Exit and Return Codes for Data Exits........................ 3-75

xiii #5-618

Table 3-14.
Table 3-15.
Table 3-16.

Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.

Table 4-5.

Table 4-6.
Table 4-7.
Table 4-8.
Table 4-9.
Table 4-10.
Table 4-11.

Table 4-12.
Table 4-13.
Table A-I.
Table A-2.
Table B-1.
Table B-2.
Table B-3.

I Table C-l.

Table C-2.
Table C-3.
Table C-4.
Table C-5.
Table C-6.
Table D-l.
Table D-2.
Table D-3.
Table D-4.
Table E-l.

1/05/70

LIST OF TABLES (cont)

Page

Exit and Return Codes for Device Exits •.••••••••..•..•...••• 3-76
Halt Codes for Logical I/O C •••••••.••••..•..••.••••.•••••• 3-78
Console Typewriter Pause Codes and Messages for

Logical I/O C ••••••••••••••••••.••••••.•••••.•.•.••.•••• 3-83
Available Memory per I/O Media for 12K Configuration ••••••• 4-7
Summary of Job Control Statements for Allocation Function 4-25
Summary of Job Control Statements for Deallocate Function ••• 4-34
Minimum Device Requirements for Mass Storage File

Organizations ••.•••••••.•••.••••••••.•••••••.•..••••.•.•• 4-39
Summary of Job Control Statements for Loan/Unload

Functions ••.•••••••.•.••.••.••••••.••••.•••••••.•••••••• 4-49
Summary of Job Control Statements for Map Function ••••••••• 4-56
Conditions Related to Non-Mass Storage File ••.••••.••.•••••• 4-71
Job Control Halt Codes •••••••••.••••••••••••••••••••••••••• 4-73
File Support Diagnostics for 5040 Halt •••••.••••••••..••••••• 4-74
File Support C Halts •••••••.•..••••.••••••.••.••.•.••.••••• 4-78
Typewriter Messages for Conditions Related to Non-Mass

Storage Files ••.•••••••••••••••••••••••••••.••••••..•.••• 4-83
Job Control File Console Typewriter Messages •••••.•..•••••• 4-85
Typewriter Messages Specific to File Support C •...•......•.• 4-86
Volume Label • • • • •• A - 2
Volume Directory •••••.•.•••••••. ' ••••.••••..•.••.•.••.•••• A-3
Fields of Member Index Items ••••.••••.••.•..•••..•.•..•••• B-2
Fields of First Item in Member Index •..••••••.•.•••••.••••• B-2
Fields of Last Item in Member Index •••••.••••.••.••••.••••• B-3
Optimum Record Size - Types 155, 258, 259, 273, 259A,

and 259B Disk Pack Drives •••••...••...••.•..••.•.•••••••• C-5
Optimum Record Size - Type 261 or Type 262 Disk Files •••••• C-7
Overflow Probabilities ••..••••.•....•....•.•••••••••••••.•• C-ll
Cylinder Overflow as Percentage of Data Area •••••.••.•.••••• C-l3
Example -Optimization for an Indexed Sequential File •••••••••• C-23
Example-Summary of Optimum Points ••.•••••••••••••••••••• C-23
Parameters of MPIOC Macro Call •••••••••••.•.••••.••••.•• D-4
Parameters of MPCA Macro Call •..••••••.•••••.•.••••••••• D-6. 1
Mnemonic Designators for MLCA and MUCA •••••••.••....••• D-9
Corrective Action for User's Error Routine ••••••.•••••.••••• D-21
Prime Numbers ••.••••••••••••••.••••••••••.••.•••..•••••• E-3

xiv #5-618

...

r

SECTION I

INTRODUCTION

This manual describes the Data Management Subsystem of the Series/200 Operating

System - Mod I (Mass Storage Resident). Data management, as described herein, involves:

conventions established by Honeywell for the organization of data, a method of processing data

in files stored on mass storage devices, and a means of transferring data files to or from mass

storage devices. The established conventions include those for preparing a volume for use, data

organization, reserving space on a volume to store a file, and file organization.

To process data in files stored on mass storage devices, a means of accessing the entire

file must be available. The input/output control program provided by Honeywell, called Logical

I/O C, supplies the programmer with this capability. To load and unload data files using mass

storage devices, a method of reserving (or allocating) space for the files must be available.

The File Support C program, included in the operating system, enables the prog.rammer to per

form these functions and, in addition, enables him to delete (or deallocate) files from mass

storage. To simplify the programmer's task when he performs these functions, a job control'

language which is common to the entire operating system is used. The programs included in

the Data Management Subsystem are fully compatible with the bad track handling procedures

described in Appendix B of the manual, Mod I (MSR) Utility Routines.

DATA MANAGEMENT CONVENTIONS

The fundamental concept of the Data Management Subsystem is that all data to be processed

by the operating system is organized according to one set of conventions. The conventions es

tablished for this operating system involve the mass storage volume, dat~ organization, alloca

tion of space, and file organization.

A volume is a unit of peripheral storage, in this case, a disk pack. Volumes are composed

physically of disk surfaces and logically of cylinders as described in Section II of this manual.

The volume conventions established to ready a volume for use in the system involve preparing

the volume, the volume label, and the volume directory. All mass storage volumes used in this

operating system must be prepared before data is written on them.

Volume preparation is performed by the Volume Preparation C program described in the

manual Mod 1 (MSR) Utility Routines (Order Number 619). The File Support C allocate function

(described later) reserves space .on a mass storage volume so that it is capable of accepting the

data file for storage. To ensure that the correct volume is being used, each volume has a label.

The volume label contains the name of the volume and a code indicating the type of disk pack being

I-I #5-618

SECTION I. INTRODUCTION

used. This information is written into the volume label by the Volume Preparation C program;

The volume directory, also established by the Volume Preparation C program, contains the

names of all files stored on the volume, a description of each file, and information about the size

and location of each file.

The data organization conventions established for this operating system involve defining

the units of data and distinguishing between logical and physical units. The units of data are

items, records, blocks, and files. An item is a logical unit of data; it is the basic unit of in

formation for a data processing program. A record is a physical unit of data written between

two gaps (interrecord gaps) on a track. A block is a group of one or more records that is trans

ferred to and from mass storage as a unit. A block contains one or more items. A file is a

collection of logically related items; it is the largest unit of data that can be stored and retrieved

by the operating system.

The conventions established for allocating space on a volume to store a file involve the

concept of "unit of allocation." The unit of allocation is the basic element in designating the

volume area that is assigned t~ store a file; it specifies the beginning cylinder and track num

bers and the ending cylinder and track numbers between which the unit of allocation is stored.

The file organization conventions established for the Mod 1 (MSR) Operating System in

volve defining the types of file organization that can be used. At present, the operating system

accepts three basic types of file organization: sequential, indexed sequential, and direct access.

The organization of a file predetermines the methods that can be used to process it.

The sequential file is organized so that items are accessed sequentially, i. e., the items

are retrieved in the same sequence in which they were written. This method of accessing items

corresponds to that used in magnetic tape processing. Thus, any function operating upon a se

quential file can process only one volume at any given time. Regardless of the number of devices

assigned to a sequential file, the second volume can be processed only after processing of the

first volume is completed. A single exception to this procedure occurs when a sort is performed,

and the item address is present. In this case, the input (sequential) file must be on-line, since

the sort must reaccess each item in the input file in a random manner.

An indexed sequential file is organized so that each item can be processed directly, se

quentially, or in combination both directly and sequentially.

VThen an indexed sequential file is loaded by File Support C or processed directly, all vol

umes of the file must be on-line at all times. An item key is provided to the input/ output rou-

1-2 #5-618

,..

..
SECTION 1. INTRODUCTION

tines. The item containing this key is located through the indexes. Items must be identified by

a contiguous set of characters within an item. The item identifiers are called "item keys" or

simply "keys." A key can be any number of characters long and can appear anywhere within an

item. However, each item key in an indexed sequential file must be the same length and appear

in the same position within each item of the file.

The File Support C load function builds three indexes for the file. The indexes built are a

master index, a cylinder index, and a string index. Overflow areas are initialized at load time.

The indexes are subsequently used in accessing an item in the file. To insert a new item, the

system simply locates the two items in the file which immediately precede and follow the new

item (based on the value of the new item's key), and the new item is placed between them. In

serting items can cause items to overflow the data area of the file; in such a case, the over

flowing items are stored in the overflow areas, and the string index entries are adjusted to

indicate this.

The logical sequence of items in an indexed sequential file does not necessarily correspond

to the physical placement of the items. When an indexed sequential file is processed sequen

tially, items are retrieved in logical sequence from the beginning. The volume(s) containing the

master/cylinder index and general overflow area must be on-line, whereas the volumes contain

ing only data are processed one at a time. However, File Support C requires that all volumes

be on-line when the file is loaded.

In some applications, an indexed sequential file can be processed both directly and sequen

tially. One example of such a combination is when processing is to begin at some point other

than the beginning of the file, but is to be sequential thenceforth. All volumes must be on-line

at all times.

A direct access file is organized to provide fast access to items. The file is normally

processed directly; items are retrieved as needed without reading intervening items on the file.

All volumes must be on-line.

A direct access file can also be processed sequentially if it is necessary to process every

item in the file, for example, if data is to be unloaded from mass storage onto tape. Volumes are

processed one at a time, and items are processed according to their physical placement on the

file.

The structure of a direct access file is in terms of buckets. A bucket is an area (defined

by the programmer) that contains one or more items. When a bucket contains more than one

1-3 #5-168

SECTION 1. INTRODUCTION

item, there need not be a relationship between the items. However, use of a randomizing rou

tine may produce identical addresses for items which may, in turn, be used to form a bucket. A

bucket and a block (defined earlier) can be the same size, or a bucket can contain more than one

block.

A direct access file is divided into a data area, a cylinder overflow area, and a general

overflow area. (The overflow areas are optional.) Because items can be inserted into a direct

access file, any bucket in the file can become completely filled with items. To accommodate

additional items, an area can be reserved at the end of each cylinder. This area is the cylinder

overflow area and is used to store the overflow items from the data area. The possibility exists

that items can overflow the cylinder overflow area. In this case, these items are stored in a

general overflow area which, if present, is the last cylinder in each unit of allocation.

Because items can be inserted and deleted in a direct access or an indexed sequential file,

a method of determining the status of an item position is required. An item position can be used,

unused, or it can contain an item that has been deleted. When an item position is used, it is

called an active item position; when unused, it is called inactive. The last character of each item

in a direct access or indexed sequential file serves as the status character, indicating whether

the item position is active, inactive, or contains a deleted item.

LOGICAL I/O C PROGRAM

The Logical I/O C program provides a method of accessing files and data stored on mass

storage devices. For this operating system, Logical I/O C consists of a set of macro routines

that the assembly-language programmer calls for in his source-language program. The called

routines are specialized (i. e., tailored to a specific need) and assembled in his machine

executable program by Mass Storage Easycoder Assembler C, described in the manual Operating

System - Mod I (Mass Storage Resident) - Program Development Subsystem (Order Number

617). Logical I/O C can be specialized and assembled using Library Processor D and Easycoder

Assembler D of the Mod 1 (TR) Operating System.

Logical I/O C consists of four types of macro routines used for: control, file description,

communication area service, and action. The control macro routine is called the mass storage

input/ output control (MIOq macro routine; it provides general control over the entire input/

output process. The file description macro routine is called the mass storage communication

area (MCA) macro routine; it sets up a communication area for a file in which all values neces

sary to describe the file and the processing options are stored. Pertinent portions of the com

munication area are available to the programmer and can be altered by him through the use of

1-4 #5-618

..

SECTION I. INTRODUCTION

the corruTIunication area service macro routines. Unloading any field of the communication area

available to the programmer is done through the mas s storage unload communication area (MUCA)

macro routine. Altering any available field of the communication area is done through the mass

storage load communication area (MLCA) macro routine. The action macro routines that the

programmer includes in the main line of his coding cause the various functions of Logical I/O C

to be performed.

The file processing functions that Logical I/O C performs are summarized below.

1. Open or close ~ file, verifying and updating the filels directory information.

2. Get, put, or replace individual items in a file, blocking and unblocking as
necessary.

3. Insert an item into or delete an item from a direct acce ss or an indexed
sequential file.

4. Directly access items in a direct access or an indexed sequential file.

5. Establish linkage to the program Physical I/O C. Physical I/O C reads
and writes data, detects errors, and (if possible) corrects errors •

6. Provide exits to user-written label and error routines.

7. Control the overlapping of central processor and input/output operations.

8. Terminate sequential processing on one volume and switch to the next volume.

9. Allow other processing or peripheral data transfers to occur during
cylinder-to-cylinder access time (seek time) of a disk device.

FILE SUPPORT C PROGRAM

The File Support C program performs frequently desired functions on mass storage files.

These functions are as follows.

1. Allocation of files to be stored on mass storage volumes.

2. Deallocation of files stored on mass storage volumes.

3. Loading files onto mass storage volumes.

4. Unloading files from mass storage volumes.

5. Listing the contents of the volume directory or the unassigned tracks
of a volume.

The allocate function is used by the programmer to assign areas of one or more volumes

for storing a file and to automatically update each volume directory accordingly. This function

also initializes a newly allocated file automatically. The deallocate function removes all entries

for a file from the directory of each volume on which the file exists. This makes all areas used

by this file available for future allocation. The load function is used by the programmer to load

a maSlS storage file from cards, tape, or another mass storage file. The unload function is used

to unload a mass storage file onto cards, tape, printer, or another mass storage file. The map

function is used by the programmer to obtain a printed listing based on the contents of the volume

directory.

.l-5 #5-618

SECTION 1. INTRODUCTION

All File Support C routines are automatically specialized at execution time. This special

ization is based on parameters supplied by the programmer in the job control statements. There

fore, it is not necessary for the programmer to perform an assembly operation to specialize

these routines.

JOB CONTROL LANGUAGE FOR DATA MANAGEMENT SUBSYSTEM

The job control language used in this manual is shown with certain typographic conventions

that aid in describing the language precisely. The typographic conventions are as follows.

1. Use of upper case. Letters or words (that are written in u,pper case),
numbers, and almost all punctuation marks represent literal information
that the programmer must write exactly as shown in an accompanying
illustration or example.

2. Use of lower case. Letters or words (including hyphenated words) that are
written without capital letters are generic expressions that represent informa
tion which the programmer must supply. The generic expressions name or
describe a quantity; the programmer must supply the actual value.

3. Use of braces. Braces ({ }) enclose information from which the programmer
must make a choice. In other words, enclosed in braces is a list of expressions
and the programmer must use one of these expressions. For example, the
parameter used to specify the type of file organization for which space is
being reserved by the allocate function is shown below.

ORG = SEQ
PART
DIR
IND

The programmer chooses the file organization appropriate for the file being
allocated; for example, sequential organization is indicated as follows.

I ORG=SEQ, I
4. Use of ellipses. An ellipsis (...) indicates that an expression can be

repeated. Each repetition has the same format as the first expression.
For example, specification of FROM and TO parameters for the File
Support C allocate function is indicated as follows.

FROM=(c, t), TO=(c, t), •

The ellipsis indicates that more than one pair of FROM and TO parameters
can be written. For example, the programmer might write the following
for two units of allocation.

FROM=(l, (6), TO=(9, 9), FROM=(75, (6), TO=(99, 9),

1-6 # 5-618

•

•

SECTION I. INTRODUCTION

EQUIPMENT REQUIREMENTS FOR DATA MANAGEMENT SUBSYSTEM

Any peripheral devices used by the Data Management Subsystem, either for system files

or data files, may be assigned to peripheral addresses in either the first or second I/O sector

(with the exception of the job control file which cannot be reassigned). The following paragraphs

describe the required equipment and the additional equipment usable in the Mod 1 (MSR) Opera

ting System.

Required Equipment

A Series 200 central processor

Advanced Programming Instructions

One card reader

One printer

12, 288 characters of main memory

One mass storage device and associated control unit, selected from any of the
following combinations:

Additional Usable Equipment

One card punch

Control Unit

157C

257C

260

257

257-1

257A

257B

155

155

258,

258,

258,

259A

259B

One or more Type 204B Magnetic Tape Unit(s)

Device Type

259, 261, 262, 273

259, 273

259, 273

One Type 220 Console with additional 4, 096 characters of rn.ern.ory

Up to 32,768 characters of rn.ain rn.ern.ory

Second I/O sector

As rn.any as 8 rn.ass storage devices on each available control unit.

1/05/70 1-7 #5-618

I

SECTION II

DATA MANAGEMENT CONVENTIONS

The basic concept in data management is that all data in a system is organized according

to one set of conventions. The set of conventions established for the Mod 1 (MSR) Operating

System involves volume, data, and allocation conventions, as well as conventions for organizing

and processing files. All files in the system, including those supplied by Honeywell for the use

of system programs and those supplied by the user, obey the data management conventions.

These files are managed (created and accessed) by a common set of Honeywell-supplied

programs (i. e., File Support C, Logical I/O C, and Physical I/O C programs). The data

management conventions that have been established for the Mod 1 (MSR) Operating System

provide full user control over data, efficiency in processing data, and ease in programming

and operating.

VOLUME CONVENTIONS

A volume is a unit of peripheral storage. In the Mod 1 (MSR) Operating System, a disk

pack is defined as a volume. Mass storage volumes are composed physically of disk surfaces

and logically of cylinders, as shown by the illustration of a Type 259 Disk Pack Drive in

Figure 2-1. Each disk surface has a series of concentric recording bands called tracks. With

the Type 155 Disk Pack Drive data is recorded on both sides of one disk. Thus, there are two

tracks (00 and 01) per cylinder. With the Types 258, 259, 259A, and 259B Disk Pack Drives

data is recorded on both sides of all disks except for the top and bottom disks. Data is recorded

on the underside of the top disk and on the top side of the bottom disk. There are six disks, and,

thus, there are ten tracks (00 through 09) in each cylinder. The Type 273 Disk Pack Drive

contains 11 disks, and, thus, there are 20 tracks (00 through 19) in each cylinder. The Types

261 and 262 Disk Files contain 128 tracks per cylinder. (For a detailed description of Types

155, 258, 259, 259A, and 259B Disk Pack Drives and the Types 261 and 262 Disk Files, see

Direct-Access Devices and Controls, Order No. 514.)

Cylinders are composed of tracks arranged vertically above and below each other on

different, but adjacent, disk surfaces. Cylinders are numbered consecutively from the outer

most (cylinder 000) to the innermost (cylinder 103 or 202 or 127). The number of tracks per

cylinder and the number of cylinders per drive for the various mass storage devices are shown

below.

1/05/70 2-1 #5-618

SECTION II. DATA MANAGEMENT CONVENTIONS

Tracks per Cylinders per
Device Type Cylinder Drive

155 2 203 I
258 10 104
259 10 203
273 20 203
259A 10 203
259B 10 203
261 128 128
262 128 128

NOTES: 1. The last four cylinders of Type 258 Disk Pack
Drive; the last three cylinders of Types 155,
259, 273, 259A, and 259B Disk Pack Drives;
and the last three cylinders of the Types 261
and 262 Disk Files are all reserved for syste:m
use.

2. Type 262 Disk Files are treated in all respects
as two Type 261 Disk Files.

1/05/70 2-1. 1 #5-618

SECTION II. DATA MANAGEMENT CONVENTIONS

.-------------------- CYLINDER
2Q12

~--....l~~---- CYLINDER
1Il"f/J

TRACKf/Jf/J

TRACK f/Jt -.
TRACK f/J2 ..
TRACK "3

TRACK f/J4

DISKS

TRACK f/J5

TRACK "6

TRACK ,,7

TRACK f/J8

TRACK f/J9

Figure 2-1. Disk Pack Cylinder Concept-Type 259 Disk Pack Drive

2-2 #5-618

"

SECTION II. DA TA MANAGEMENT CONVENTIONS

The volume conventions established for the Mod 1 (MSR) Operating System are concerned

with volume preparation, bootstrap records, the volume label, and the volume directory.

Formatting and Volume Preparation

All mass storage volumes in the operating system must be formatted before data can be

written on them. Formatting establishes the size and record number of each record on a track.

Initially, each volume is formatted throughout all tracks on the volume by Volume Preparation

C, a program which is supplied by Honeywell as a utility routine for the operating system and

which must be executed whenever a volume is introduced into the system. Volume Preparation

C formats each track to ensure the quality of the recording surfaces and creates the volume label

and volume directory.

All records other than the last record on a track must be the same size. The last record

on each track must be a track-linking record. The records are numbered in sequence, starting

with record number 0000
8

,

All system files, unless specifically noted, are formatted with a Mod 1 (MSR) standard 250-

character record size. Examples of such are bootstrap records, volume label, volume direc

tory, executable program file, library file, program development work files, and sort work

files. Portions of a volume that are assigned to files are automatically reformatted whenever

the files are allocated.

Bootstrap Records

The Bootstrap Generator C program, supplied by Honeywell as a utility routine for the

operating system, is used to create the bootstrap routine on mass storage volumes any time

after a volume has been prepared for use by Volume Preparation C. The bootstrap routine is

used for loading the system from mass storage into memory. The operating system writes the

bootstrap routine on the first track of the volume Therefore, the first track of each volume

(cylinder 000, track 00) is not available to the user.

Volume Label

The unique identification for the volume is contained in the volume label. The volume label

consists of one 2S0-character record. It is written as the first record (record 0) on the second

track (cylinder 000, track 01) of each volume by Volume Preparation C. The contents of the

volume label are listed in Appendix A of this manual.

Volume Directory

The volume directory is written by Volume Preparation C and maintained by File Support C.

2-3 #5-618

SECTION II. DATA MANAGEMENT CONVENTIONS

With the exception of the Type 155 Disk Pack Drive it begins on the third track (cylinder 000,

track 02) and can occupy from three to seven tracks of each volume. For the Type 155 Disk

Pack Drive it begins on cylinder 000, track 01, record 1 and occupies all records through

cylinder 001, track 00 and 01. The volume directory is a catalog of all files stored in whole

or in part on the volume. Three sequential files make up the volume directory. The first file

in the volume directory contains the names of all the files stored on the volume. This file is

called *VOLNAMES* and, in addition to the names of the files, it contains the addresses of the

file description and the file allocation for each file on the volume. The second file in the

volume directory contains the description of each file stored on the volume. This file is called

VOLDESCR and is made up of three distinct areas: an area for general information, an area

for labeling information, and an area for file organization information. For each file, the

general information area of ~'VOLDESCR~' contains information such as the type of file organi

zation, item and record size, and the blocking factor. The labeling information area of

VOLDESCR for each file contains information such as the creation date and number of the

file. and the modification date and number for the file. The area of ~'VOLDESCR* that contains

information on the file's organization has entries such as the length of the index and the number

blocks in the file for sequential files and the key length and position for direct access files. The

third file in the volume directory is called *VOLALLOC* and describes the allocation of each file

stored on the volume. If the file is continued on another volume, *VOLALLOC* identifies that

volume. The complete contents of the volume directory are listed in Appendix A of this manual.

DATA CONVENTIONS

The data conventions established for the operating system involve defining the units of data

and distinguishing between logical and physical units of data. Also included in the following dis

cussion are the relationships between the units of data. The units of data are: items, records,

blocks, and files.

An item is a logical unit of data. It is the basic unit of information for a data processing

program and is the smallest logica~ unit of data operated on by the input/output control programs.

For example, an item can be a single policy in an insurance policy file or an individual's account

in a master payroll file. The maximum item size, regardless of the type of file organization, is

4, 095 characters.

A record is a physical unit of data. It is that data written between two interrecord gaps on

a track. All data records on a track, just like all data records in a file, must be the same phys

ical size. A single record is the smallest physical unit of data that is operated on by the input/

output control programs. The record size is the prime determinant of the number of data char

acters that can fit on a track.

1/05/70 2-4 #5-618

SECTION II. DATA MANAGEMENT CONVENTIONS

A record can contain one item, more than one item, or a portion of an item. The total

number of characters in a given item need not be contained in a single record; i. e., the item's

characters may be interrupted by the interrecord gap (IRG). For example, if the record size

is 250 characters and the item size is 100 characters, two records contain five items. This

relationship is illustrated in Figure 2-2. Procedures for determining the optimum record size

can be found in Appendix C.

RECORD 0 I RECORD 1

250 CH. R 250 CH.

ITEM 0 ITEM 1 ITEM 2 I G I ITEM 2 ITEM 3 ITEM 4
100 CH. 100 CH. 50 CH. I I 50 CH. 100 CH. 100 CH.

i i

Figure 2-2. Relationship between Items and Records

A block is a physical unit of data. Blocks are defined as a whole number of records trans

ferred either to or from main memory by a single data transfer operation. A block can contain

one or more physical records, and block size is determined by the user. A block may be con

tained entirely on one track or may begin on one track and end on another; however, it cannot

begin on one cylinder and end on another. Since it is the contents of a block (i. e., records) that

are transferred to or from memory, a buffer should not be smaller than a block. A block also

contains a whole number of items. The number of items in a block is known as the item-block-

ing factor and may range from 1 through 4,095. The relationship between blocks, records, and

items is shown in Figure 2-3. Efficient use of mass storage capacity is dependent on optimal

relationship of records to track and blocks to cylinder.

BLOCK 0 BLOCK I
900 CH. 900 CH.

RECORD 0 j ~ I RECORD 1 I RECORD 2 I ~ I RECORD 3
40;0 Cli. 4S0 CH.

R
450 CH. 450 CH.

ITEM 0 I ITEM I I ITEM 21 G I ITEM l..1 ITEM .1 I ITEM .. G ITEM S I ITEM 6 I ITEM 1: G I ITEM 7, I ITEMS I ITEM'
180 CH. 180 CH. 90 CH.I I 90 CH. 180 CH. 180 CH. 180 CH. 180 CH. 90 CH. I I 90 CH. 180 CH. liD eM.

Figure 2- 3. Relationship between Items, Records, and Blocks

A file is a logical unit of data comprising a collection of logically related items. A file is

the largest unit of data that can be stored and retrieved by the operating system. A multivolume

file may exist on volumes assigned to both t.he first and second I/O sectors; all volumes must be

of the same device class, as shown in the following.

2-5 #5-618

I

•
I

SECTION II. DATA MANAGEMENT CONVENTIONS

Device Class Device Type

A Types 258, 259, 273, 259A, or
259B Disk Pack Drives

B Type 155 Disk Pack Drive

C Type 261 or Type 262
Disk File

NOTE: One control unit can control both class A, and Class C devices, but one
file cannot be allocated to different class devices because they have
different capacity parameters (characters per track, track per cylin-
der). Also, one file cannot be allocated across devices of different
transfer rates.

The Type 259A Disk Pack Drive has a lower data transfer rate than the other class A de

vice, but otherwise it is treated similarly by the operating system software.

ALLOCATION CONVENTIONS

A file can be stored on one volume, or a file can span up to 8 volume s. In the latte r case,

portions of the total file are stored on individual volumes. When the entire file is stored on one

volume, it is a single-volume file. When the entire file is stored on more than one volume, it

is a multivolume file and can be assigned to devices connected to the first, second, or both I/O

sectors. The portion of a file stored on one volume (in either single-volume or multivolume

file s) is called a "file volume. "

Units of Allocation

A "unit of allocation" is the basic element in the designation of an area of the volume as

signed to the file. The unit of allocation is of the form C1T1C2T2, where C is a cylinder address

and T is a track address. CI is the first cylinder of the unit of allocation, and C2 is the last

cylinder of the unit. TI is the first track used on all cylinders between C1 and C2, and T2 is the

last track used on these cylinders. The operating system maintains the status of the units of

allocation on each volume through the file allocation index *VOLALLOC*, (see page 2-4) and a

new file cannot be completely allocated if its units of allocation for any volume conflict with the

units of allocation for any file currently allocated on that volume. (See "Failure During Alloca

tion and Deallocation, " in Section IV.)

NOTE: In general, it is recommended that, for Types 155. 258, 259 or 273
Disk Pack Drives, the units of allocation of a file be made a full cyl
inder wide (two, ten, or twenty tracks). The fewer the nwnber of
tracks per cylinder, the greater the number of accesses to a new
cylinder required. An unnecessary increase in the number of such
accesses can increase the time required to process a file. However,
a file can be any track width as long as all of its data units of allo
cation have the same width. If files are small or are in communi
cation with other mass storage files, cylinder can be shared.

1/05/70 2-6 #5-618

SECTION II. DATA MANAGEMENT CONVENTIONS

When a file has more than one unit of allocation, a unit of allocation for that file cannot

start on the cylinder on which the immediately preceding unit of allocation for that file ended.

See Figure 2-4 for examples.

TRACK

00

01

02

03

10

II

12

13

CYLINDER

FILES
F1lOM~ IOIIO).
TO*(16,14,)

80 81 82 83 84 85 86 87

Figure 2-4. Illustration of Units of Allocation
Type 261 or Type 262 Disk File

A multivolume file can use as many as eight volumes. However, all volumes of a multi

volume file must be of the same device class.

A single-volume file can have up to six units of allocation. Any given file volume used to

store a multivolume file also can have up to six units of allocation, but the maximum number of

units of allocation for an entire multivolume file is sixteen.

All units of allocation for a multivolume file mum be assigned consecutively by named

volume. That is, units of allocation may not be assigned on volume A, volume B, volume C,

and then on volume A again. All of volume A's units of allocation must be assigned before any

units of allocation for volume B, etc. are assigned. In this example, volume A has the lowest

volume sequence number, volume B the next higher, etc.

2-7 #5-618

SECTION II. DATA MANAGEMENT CONVENTIONS

If the unit of allocation (C IT IC2T 2) for a file on a Type 261 or Type 262 Disk File were

10-00-16-09, it could be shown graphically as in Figure 2-4 (File A, first unit). In this illus

tration, the mass storage area is shown as if it had been rolled out into a plane. Portions of

two files are shown to illustrate the uniform track-width requirement for the data units.

Track_Linking Records

The last record on each track must be a track.linking record. Within each unit of alloca

tion, a track-linking record points to record 0 of the next successive track. The last track

linking record in the unit points to record 0 of the first track of the next unit of allocation on the

volume. If no succeeding unit of allocation exists on the volume, the track-linking record points

to record 0 of the physically successive track. For direct access files, the last track-linking

record in a file volume contains the addres s of record 0 of the first allocated track of the last

cylinder of the file volume.

FILE ORGANIZATION CONVENTIONS

A file is organized according to the method used to access its items. This, in turn, pre

determines how the file can be processed. That is, if a file is organized one way, its items can

be accessed directly (going directly from one item to another without accessing all the interven

ing items), and new items can be inserted into the file. If, however, a file is organized another

way, items must be accessed serially, and new items cannot be inserted into the file. Thus, the .-..-/

!llethod of file organization controls how the file can be processed.

Sequential File Organization

A sequential file is organized to permit accessing of each item in physical sequence. Thus,

items are retrieved in the same sequence that they were written. This type of file organization

is intended primarily for a file in which most of the items are processed each time the file is

used. Note that to process this type of file, the transaction input must be sorted to conform to

the sequence of items in the file. This is because each time this type of file is processed, the

first item is accessed first, and then each succeeding item is accessed in turn. New items can

not be inserted into a file of this type. but existing items can be replaced. There is no need to

uniquely identify each item in the file.

If the sequential file partitioning option is used (see Appendix B), there are several addi

tional advantages to sequential file organization. With this option, the sequential file can be

segmented into a number of smaller files, called "members." Immediate access to the beginning

of any member is possible. Item capacity of each member is independent, but file parameters

are uniform throughout aU members of the file.

2-8 #5-618

..

.-

•

SECTION II. DATA MANAGEMENT CONVENTIONS

ALLOCATION

All the units of allocation for a sequential file are used for data, and all the units of allo-

cation for one file on one volume are collectively called a file volume. The procedure for

determining the unit or units of allocation for a sequential file is described in Appendix C of this

manual. Note that when the partitioning option is used for a sequential file, that file must be

allocated on only one volume. A multivolume partitioned sequential file cannot be allocated or

processed.

DATA STRUCTURE

The data in a sequential file consists of one physically continuous stream of items. Pro

cessing is done in physical sequence (which corresponds to logical sequence). The end of data in

a sequential file is marked by an item starting with DEOD¢ (7625462477 octal). This item ap

pears in the last data item position of each file volume filled with data and after the last data

item of the file. All tracks allocated to a sequential file are used to store data, with the termi

nal item position of each file volume reserved for DEOD¢ .

Indexed Sequential File Organization

An indexed sequential file is organized so that each item can be accessed in logical se

quence (like a sequential file) and directly. However, when an indexed sequential file is processed

sequentially, items are retrieved in logical sequence and not necesaarily in physical sequence

(unlike a sequential file). To process an indexed sequential file, each item must be uniquely

identified. The item identifiers used are called item keys or just simply keys. An item key

is a contiguous set of characters within an item. A key can be any number of characters long and

can appear anywhere within an item. However, each item key in an indexed sequential file must

be the same length and appear in the same position within each item of the file, as determined by

the user when the file is allocated. In addition, the key of each succeeding item of the file must

be greater (in terms of the binary collating sequence) than that of the item immediately preceding

it. In other words, the first item in the file must have a key whose value (in terms of the binary

collating sequence) is the smallest, and each succeeding item in the file must have a key whose

value (in terms of the binary collating sequence) is larger than that of the preceding item.

Based on the sequential ordering of items and keys in the file, the operating system builds

three levels of indexes for the file. These are called the master index, the cylinder index, and

the string index. The indexes are used in directly accessing an item in the file. To directly

access an item in an indexed sequential file, an item key must be provided to the input/output

routines. This key is located in the master index to point to the appropriate block in the cylinder

index. The cylinder index, in turn, points to the appropriate cylinder's string index. The string

index points to the first block of a string containing the item. Since an item can be accessed in

this manner, a new item can be inserted into the file. To insert a new item, the system locates

2-9 #5-61&

SECTION II. DATA MANAGEMENT CONVENTIONS

the two items in the file which immediately precede and follow the new item (based on the value

of the new item's key). and inserts the new item between them. Inserting items can cause items

to overflow the data area of the file, in which case, the overflowing items are stored in the over

flow areas, and the string indexes are adjusted to indicate this accordingly.

To sum up the capabilities afforded by the indexed sequential file organization, the user

can: retrieve (access) and update each item in the file in logical sequence, as in the sequential

file organization; retrieve and update items in any sequence, negating the requirements of sorting

the transaction input to the sequence of the file; add new items to the file, with all adjustments to

the indexes being handled automatically; delete an item from the file, and then reuse the item

position; and retrieve any item in the file, and then all subsequent items in a logical sequence.

ALLOCATION

An indexed sequential_ file must have a mimmum of three units of allocation. The first

unit of allocation must be for the master /cylinder index; the second must be for the general

overflow area; and at least one subsequent unit of allocation must be for data. Of course, on a

single-volume indexed sequential file, all units of allocation will be on one volume. but the se

quence of units of allocation must be as stated above: master/cylinder index, general overflow.

and then data. The units of allocation for the master/cylinder index and general overflow may

be any width (tracks per cylinder); but a unit cannot begin on the same cylinder as that which

ended the previous unit of allocation. All data units must be of uniform track width. Four

methods of allocating multivolume indexed sequential files are shown below.

Method 1. Master/Cylinder Index on volume A
Overflow on volume B

Data on volume s C through H

Method 2. Master / Cylinder Index on volume A
Overflow } and on volume B

Data
Data on volumes C through H

Method 3. Master / Cylinder Index
Overflow

} on volume A
and
Data
Data on volumes B through H

Method 4. Master / Cylinder Index

} and on volume A

Overflow
Data on volume s B through H

2-10 #5-618

..

,di.,

SECTION II. DATA MANAGEMENT CONVENTIONS

As can be seen, the unit of allocation for the master/cylinder index and that for the general over

flow cannot be separated by a unit of allocation for data; but the unit of allocation for the master/

cylinder index need not be on the same volume as that for the general overflow. However, the

master / cylinder index must be allocated first, and the general overflow must be allocated im

mediately after the master / cylinder index and before any data areas are allocated.

The procedure for determining the units of allocation for an indexed sequential file is de

scribed in Appendix C of this manual.

FILE STRUCTURE

An indexed sequential file is divided into three distinct kinds of areas: prime data, index,

and overflow. The prime data area is the area initially loaded with data. There are two kinds of

index areas, one for the master/cylinder index and one for the string indexes. There are two

types of overflow areas, one for cylinder overflow and one for general overflow.

Prime Data Area

The prime data area is made up of any number of "strings" that will fit on the data portion

of a cylinder. A string consists of any number of blocks. as specified by the user. Block

length must not exceed one track. Formulas for computing the optimum string size can be found

in Appendix C. The items are entered into each string in succession, according to the se

quenced input file, when an indexed sequential file is loaded. Each cylinder allocated to the data

area contains (1) a string index with as many items as there are strings of data on the cylinder

and (2) one or more strings of data, each of which is a user-determined number of blocks long,

followed optionally by (3), a cylinder overflow area. The cylinders allocated for data mayor

may not contain cylinder overflow areas.

An additional feature of the prime data area is that the user can specify a number of items

per string as "imbedded overflow." Specifying imbedded overflow causes empty item spaces to

be left at the end of each string loaded in the data area. When new items are inserted into a

string, these item spaces can be used before either the cylinder or general overflow areas

need be used.

Index Areas

The index areas (the master/cylinder index area and the string index areas) contain the

master index, the cylinder index, and the string indexes. The master index and the cylinder

index are allocated a s a single unit, the master / cylinder index. The string indexe s are not

allocated as such; they are built when the file is loaded. Only those cylinders actually contain

ing data will contain a string index. Those cylinders beyond the last cylinder actually loaded

2-11 #5-618

I

SECTION n. DATA MANAGEMENT CONVENTIONS

are unavailable for data. Formulas for computing the size of the master/cylinder index can be

found in Appendix C.

The master index is the highest level of index for the file and it contains one item for each

block of the cylinder index. The block size of the master index is the same as the block size the

user specifies for the data area. Each item in the master index contains an address field, a

status field, and an item key field. The contents and purpose of these fields is explained in the

paragraph entitled "Directly Processing an Indexed Sequential File, " which follows this descrip

tion of file structure.

The cylinder index is an intermediate-level index, and it contains one item for each loaded

data cylinder in each data unit of allocation for the file. The block size of the cylinder index is

the same as the block size that the user specifies for the data area. Each item in the cylinder

index contains an address field, a status field, and an item key field. These fields are explained

later. An option is available to have some or all blocks of the cylinder index area resident in

main memory, providing higher processing speed.

The string indexes are the lowest-level index for the file. Each string index contains one

item for each string of data loaded on a data cylinder of the file, and each string index is always

at the beginning of that portion of each cylinder allocated for data. String indexes do not exist on

cylinders beyond the last cylinder loaded with data. The block size of the string index is the same

as the block size allocated for the file. Each item in a string index contains five fields: an

address field, a status field, two key fields, and a reserved field. These fields are explained

later.

Overflow Areas

The two overflow areas, the cylinder overflow area and the general overflow area, are

used to store data items that either overflow the data strings or overflow the cylinder overflow

areas. These areas are initialized by the File Support C load function but are used only in sub

sequent processing. Cylinder overflow areas are not required to be present; but when the user

specifies that there is to be cylinder overflow, the area is made up of a number of tracks at the

end of the allocated portion of each cylinder in the data unit of allocation. The number of tracks

used for cylinder overflow can be one or more, as determined by the user when the file is allo

cated. The general overflow area, on the other hand, is required as a separate unit of allocation.

The general overflow can be any track width (tracks per cylinder) and any number of cylinders,

but it cannot begin on the cylinder on which the immediately preceding unit of allocation for the

file ended, i. e., the master/cylinder index. Different files can share cylinders. Thus, the

master/cylinder indexes of several different files may be on one cylinder, while the general

overflow units for the same files share other cylinders.

2-12 #5-618

•

SECTION II. DATA MANAGEMENT CONVENTIONS

Items that go into the cylinder overflow areas are all those items whose key values are

greater than the highest key value for a string's data area and less than or equal to the highest

key value of the string's associated cylinder overflow area. All items in each cylinder overflow

area are always entered in ascending binary collating sequence with respect to their item key

values.

Items that go into the general overflow area are all those items that cannot be contained in

a data string or in the data string's cylinder overflow area. The general overflow area contains

all the items that overflow from all the cylinder overflow areas. The items in the general over

flow area also are always entered in ascending binary collating sequence with respect to their

item key values.

DIRECTLY PROCESSING AN INDEXED SEQUENTIAL FILE

To retrieve an item directly from an indexed sequential file, the user supplies an item key

value and specifies MSGET. Input/Output routines then begin searching the master index from

its beginning for the item containing a key value equal to or greater than that supplied by the user.

When the item in the master index is located, input/output routines are directed by that item's

address field to the appropriate block in the cylinder index. This block is then searched from

its beginning for the item equal to or greater than that supplied by the user. When the appropri

ate item in the cylinder index is located, input/output routines are directed by that item's address

field to the relative volume and data cylinder string index whose highest key value is equal to or

greater than that supplied by the user. The relationship between the items of the master index

and the cylinder index is illustrated in Figure 2-5. The string index is then searched for the item

containing the key value equal to or greater than that supplied. When the correct item is found,

input/ output routine s are directed to either the correct block in the prime data area or the appro

priate overflow area. Figure 2-6 shows the relationship between string index items and the data

area of the cylinder immediately after loading. The contents of string index items is shown in

greater detail in Figure 2-7. Addresses are shown in decimal but are recorded in binary.

Figure 2-7 also illustrates the insertion of items into a string. As can be seen in these

illustrations, items are inserted in logical order based on the value of their keys. Figure 2-7

(Sheets 1,2, and 3) illustrates how the string is filled. Notice in these illustrations that the key

values in the string index item for this string do not change. In Figure 2-7 (Sheet 4), however,

the value of the highest key currently in the string is changed by the input/output routines. The

value of the highest key associated with the string is never changed. Two key values are main

tained in each string index item to enable input/output routines to determine whether to search

the string or the overflow area.

2-13 #5-618

N
I
~

~
Ul
I
a-

00

Cylinder, track, and record
number of the first record in
the block of the cylinder index
whose highest key value is the
s arne as the key value of this
item.

Relative volume, cylinder, and
track number of the cylinder in
the data area containing the
string index whose highest key
value is the same as the key
value contained in this item.

The highest key value in the block of the
cylinder index whose first record address
is the same as the address contained in
this item. (Key length is specified by the
user.)

MASTER INDEX ITEM

I
ONE BLOCK OF MASTER INDEX

l
MASTER/CYLINDER INDEX

1
ON~ BLOCK OF CYLINDER INDEX

1
CYLINDER INDEX ITEM

t [:; highe" key value in the
addressed by this item.

string index

Figure 2-5. Relationship Between Items of the Master and Cylinder Index

~ ((
II

"'" .' I'

CIl
M
()
1-'3
H o
Z
:::

~
1-'3 »
~
~
Q
M
~

~
1-'3
()
o z
<:
M
Z
1-'3
H o
Z
CIl

N
I
~

I \J1

I
* \J1
I
0-......
00

It .) "
((

STRING INDEX ITEMS
NOTES: I. Status shown is that which exists

immediately after loading.

TRACK 00

TRACK 01

TRACK 02

TRACK 03

TRACK 04

TRACK 05

TRACK 06

TRACK 07

CYLINDER {TRACK 08
OVERFLOW

AREA TRACK 09

RECORD

2. Only the highest key for each ~
string in the cylinder is shown ~
in thi s illustration.

ITEM SPACES RESERVED
FOR IMBEDDED OVERFLOW.

D
~

~ ~
~DDD

~DDDDD
~DDDDDDD

~~DDDDDDDDD
~DDDDDDDDDDD

DjDDD
DD D

o 0
o 400 ~

~

o
D
~

~DDDDDDDDDDD~~
~~DDDDDDDDDDDB~~~
DDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDD

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

Figure 2-6. Relationship Between String Index Items and the Data Area of a Cylinder

(

en
M
()

:j
o
Z
I:::::

tl
:>
~
:>

~
:x
C)
M
~
M
Z
~

()

o z
<
M
Z
:j
o
Z en

N
I

......

I '"

• '*' U1
I

'"
00

~

STRING INDEX ITEMS

1000 III 1*** ~ 0000\ 10001 NOTES: 1. Contents of string index
items are in binary but
are shown in decimal
format for ease of ex
planation.

UNDEFINED 3-CHARACTER
VALUE FOR USE OF OPERATING
SYSTEM

1001611 1*** ~ooooE-ool

1011411 1*** ~ooo~poo;~1

VALUE OF HIGHEST
~--KEY CURRENTLY IN

THIS STRING.

[02IlGT**¥oo[W()001
[03 I orI***!z499[lli991

Z. Keys of the 12 items
loaded are shown in
string five. Note that
three item space s are
reserved for imbedded
overflow.

TRACK AND RECORD
NUMBER OF THE FIRST
RECORD IN THE STRING
WHOSE HIGHEST KEY

VALUE OF HIGHEST
KEY ASSOCIATED
WITH THIS STRING.

V ALUE IS THE SAME AS

fi40fi **:}~OO(FOOOOI
!fr5%[1T**¥OO§()o!

1060-4Il 1 ***10001800001

TRACK 00
TRACK 01
TRACK 02

TRACK 03
TRACK 04
TRACK 05
TRACK 0(,

T~ACK 07
CY LINDER {TRACK 08
OVERFLOW

AREA TRACK 09
RECORD

~ ITEM SPACES RESERVED
FOR IMBEDDED OVERFLOW.

DDDDDDDDDDD~~~~D
DDDDDDDDDD8~~~DDD
DDDDDDDDa~~~DDDDD
DDDDDD&00001~~~FlOOOII51101ImOOI~1300IEl~0115160n17861

~19001~Zl65115ZZl02343IFZ499I~~~DDDDDDDDD

DD~~~~DDDDDDDDDDD
8~~~DDDDDDDDDDD~~
~~DDDDDDDDDDD~D~~
DDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDD

00 01 02 o l 04 05 06 07 08 09 10 II 12 13 14 15 I b

Figure 2-7. Insertion of Items Into a String (Sheet 1)

(
~ \r, ., I.'

"

(

til
t'1
()

:3 o z
p

~
!oj

>

~
~
t'1
~
t'1
Z
!oj

()

o z
<:
t'1
Z
::J o
~

(

N
I
-.J

I
"*' Ul
I

0"-

00

« ,) t

(

STRING INDEX ITEMS

1000 III I *** f 00001 1 OOO~

EjTI ***foU1J'l1 " lUuol NOTE: Two items have been ins~rted: 51550 and 51f·99. No overfl<,-.v
has ::cc-:.;.rred.

1011 .. 11 I ***lo~uoll'Joool
[021 ~[I 1*** rOlJOOl400001

EFF*}Z4915Z4991
[040811 I *** ~'OOlll~ !,OOOOI

rO~[0-~~*}OOO(f7()OW]

[1)60411 I *** ~OOOi 800001

TRACK 01

TRACK 02

TRACK 03

TRACK 04

TRACK 05

TRACK 06

TRACK 07

CYLINDER {TRACK 08
OVERFLOW

AREA TRACK 09

RECORD

~ ITEM SPACES RESERVED
~ = FOR IMBEDDED OVERFLOW.

DDDDDDDDDDD~~~~D
DDDDDDDDDD8~~~DDD

DDDDDDDD~~~~DDDDD
DDDDDD&00001~~~15100~B~12001Imon14001815160q

~178618pI9001~zI65115ZZl02343IF2499I~DDDDDDDDD

DD~~~~DDDDDDDDDDD
8~~~DDDDDDDDDQD~~

~~DDDDDDDDDDD~~~~
DDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDD

00 01 02 03 04 05 06 07 08 09 10 II 12 13 14 15 16

Figure 2-7. Insertion of Items Into a String (Sheet 2)

(

(J)

M
C"l
j
o
Z
1=1

t:l
>
1-3
>
~
Z

~
M
~
M
Z
1-3
C"l
o
Z
<:
M
Z
1-3
~ o
z
(J)

IV
I

I
00

I
~
\J1
I
0'

00

(

STRING INDEX ITEMS

1000 III 1*,,* f 00001 10001
10016111 *** ~OOOOI ~'JOOO] NOTE: One item has been inserted: 52030. No overflow has

occurred. 1011411 I *** ~ooool JO~OO]
1021211 I *** F0000140001l]
lomll I ***PZ49'2499I
~;T*** [,0000/ ,,00001
[0'50611 I *** EOOO~ 700001
1060411 I ***FO()01S00001

TRACK 00
TRACK 01
TRACK 02
TRACK 03
TRACK 04
TRACK 05
TRACK 06
TitACK 07

CYLINDER {TRACK OS
OVERFLOW

AREA TRACK 09
RECORD

~=
ITEM SPACES RESERVED
Fan IMBEDDED OVERFLOW.

DDDDDDDDDDD~~~~D

DDDDDDDDDD8~~~DDD

DDDDDDDD~~~~DDDDD
DDDDDDI400001~~~flOOOIBI51200!30H400I~15501~160ol

~178H899I~f20301~1522161152343lr2499IDDDDDDDDD

DD~~~~DDDDDDDDDDD
8~~~DDDDDDDDDDD~~

~~DDDDDDDDDDD~Q~~
DDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDD 00 01 02 03 04 05 06 07 OS 09 10 II 12 13 14 15 16

Figure 2-7. Insertion of Items Into a String (Sheet 3)

((
I) > ., /I'

CIl
M
()

~ o
Z
I=:

t:l
>
t-i
>
~
~ o
M
~
M
Z
t-i
()

o z
<:
M
Z
t-i o z
CIl

(

N
I

I -.l:)

I
=11=
Vl
I
0-......
00

If () "
((

STRING INDEX ITEMS

1000 III I *** ~ OOOOF()O~

10016111 *** too01200001 NOTE: Items 51050 and 51901 have
been inserted. Items 52343
and 52499 are placed in
cylinder overflow. Also note
adjustment to string index
item for the fifth string.

10114111 *** }0(lOol300~~

1021211 I *** ~OOOo[4000~

1031011 1*** ~221f52499J

1040sII I *** ~OOO~ 600001

10506111 *** ~OOO~ 70000]

106 oil I ***I0or4

TRACK 00

TRACK 01

TRACK 02

TRACK 03

TRACK 04

TRACK 05

TRACK 06

TRACK 07

CYLINDER {TRACK OS
OVERFLOW

AREA TRACK 09

RECORD

~
ITEM SPACES RESERVED
FOR IMBEDDED OVERFLOW.

DDDDDDDDDDD~~~~D
DDDDDDDDDDB~~~DDD
DOD D D D D 0 B ~ ~'~ D DODD
QDDDDDEooool~~~15100q8BI51Z0~1513001400115155q

15160dI517S61151894151900190nZ0301~2165Ih2216IDDDDDDDDD

DDB~~~DDDDDDDDDDD
8~~~DDDDDDDDDDD~~
~~DDDDDDDDDDDB~~~
~~DDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDD 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 1&

Figure 2-7. Ins ertion of Items Into a String (Sheet 4)

en
M
()

j
o
Z
I::

o
>-
1-1
>-
~
~
Cl
M
~
M
Z
1-1
()

o z
~
Z
1-1 o
Z
til

SECTION II. DATA MANAGEMENT CONVENTIONS

Figures 2-8 and 2-9 show how the item position of a deleted item can be used. Notice that

the key of the item inserted (Figure 2-9) is less than that of the item following the deleted item

(Figure 2-8). If the key of the inserted item had been greater than that of the item following the

deleted item and less than that of the last item in the string (52216). it would have been inserted

in the string, and the item with the key 52216 would have been inserted in the cylinder overflow

area. Also. the value of the highest key currently in the string would have been changed in the

string index item.

DATA ITEM STATUS CHARACTER

In indexed sequential files, an area on mass storage that can contain an item is called an

item position. Because the indexed sequential file organization offers the ability to insert and

delete items, it is necessary to distinguish between an item position that contains an item and one

that does not. To accomplish this, an item position is defined as having two parts: the data

portion (including the item key) and the status character part. An item position, therefore, is

one character longer than the data portion. When designing indexed sequential files, the user

must include the status character in the item size computations.

The input/ output routines use the status character to indicate whether the item position is

unused (inactive), contains an active item, or contains an item that has been deleted. When an

indexed sequential file is allocated and before any data is recorded in the file, the status charac

ter of every item position is 77 (octal). The octal values the status character can have for an

indexed sequential file after the file has been loaded are as follows:

01 = Active,

41 = Deleted or imbedded, and

42 = Inactive. (If this status character appears in the prime data area, it
indicates that the current block is one beyond the last active
string of the file. If it appears in an overflow area, it
indicates that an active item was never inserted into or

beyond this position.)

Direct Access File Organization.

The direct access file is organized to provide fast access to items that are not to be re-

trieved sequentially. A direct acceSB file is organized principally in terms of buckets. Buckets

are user-defined areas that may contain one or more items. When a bucket contains more than

one item, there is no ordering of the items' within that bucket.

A bucket and a block (as defined previously) may be the same size, or a bucket may contain

more than one block. Note that a large bucket may increase the access time to a given item but

may decrease the probability of overflow. A smaller bucket, however, might reduce the access

2-20 #5-618

00
N
..0
'" ..0

N
I
N

'*I::
1.11
I

'" -00

(

I

I

1\ (')
~ ~

(

STRING INDEX ITEMS
10001111"*JOOOfiooo~

10016111*** FO()()OFOOOO] NOTE: Item 5\300 hal been deleted.
10114111***}~00ol300~~]

1021211 I .** FOOO~ 400?O]
103\0111 .** r2Z1~5Z49?J
1040811 1*** ~oooq 60000'1
!()5()6f I ! ••• rOOOfiO()O~
1060j1f ••• r000180oci~

TRACK 00
TRACK 01
TRACK 02

TRACK03
TRACK 04
TRACK 05
TRACK 06
TRACK 07

CYLINDER {TRACK 08 OVERFLOW
AREA TRACK 09

RECORD

~
*

ITEM SPACES RESERVED FOR IMBEDDED OVERFLOW.
INDICATION THAT THIS ITEM IS MARKED FOR DELETION.

DDDDDDDDDDD~~~~D
DDDDDDDDDD8~~~DDD
DDDDDDDD~~~~DDDDD
DDDDDDrOOool~~~~~B~1Z001~r\4001~

15160nl786115189~~~ISZ03HZJ651IS2216IDDDDDDDDD

DD~~~~DDDDDDDDDDD
8~~~DDDDDDDDDDD~~
~~DDDDDDDDDDD~~~~
~~DDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDD

00 01 02 03 04 05 06 07 08 09 10 II 12 13 14 IS 16

Figure 2-8. Deletion of an Item from a String

(

I

til
M
()

:j
o
Z
1=1

~
I-j

>
~
~
M
a::
M z
I-j

()

o z
<:
M z
:j
o
~

N
I

N I N

I
'11=
U1
I
0-

00

I

\

STRlNG INDEX ITEMS

1000 III 1*** f 00001 1 OOO~

EPI *** ~OOo°I200001 NOTE: Item 51059 has been
inserted. No overflow
due to previous dele ..
tion. IOUN;** ~~ol ;00001

10212111 *** rOOOO[400001
[oilo[1J *** ~Zz115Z4991
1040sl1 1 *** ~~oool
FI I I *** ~000<j 700001
1060411 1 *** ~OOOi soooq

TRACK 00
TRACK 01
TRACK 02
TRACK 03
TRACK 04
TRACK 05
TRACK 06
TRACK 07

CYUNDER {TRACK 08
OVERFLOW

AREA TRACK 09
RECORD

~ ITEM SPACES RESERVED
~ = FOR IMBEDDED OVERFLOW.

DDDDDDDDDDD~~~~D
DDDDDDDDDD8~~~DDD
DDDDDDDD~~~~DDDDD
DDDDDD&00001~~~plOoH0501151059IB~1Z001151~015501

151600J786188BI5203~15Z165115zZl6IDDDDDDDDD

DD~~~~DDDDDDDDDDD
B~~~DDDDDDDDDDD~~
~~DDDDDDDDDDD~~~~
~~DDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDD 00 01 02 03 04 05 06 07 os 09 10

Figure 2-9. Using the Item Position of a Deleted Item

~ "I)'

(
..

II 12 13 14 15 16

(
()

en
M
()

j
o
Z
I:l

t:l
>
t-3
>
~
~
M
~
M
Z
t-3
()

o z
<:
M
Z
t-3 o
Z en

-

SECTION II. DATA MANAGEMENT CONVENTIONS

tiIlle to any given iteIll in the bucket, since the area to be searched is less than that in a large

bucket.

ALLOCATION

Allocation of a direct access file is done in terIllS of the unit of allocation, as previously

defined on page 2-6. There are no restrictions to the allocation of space for direct access files.

ForIllulas for calculating a unit of allocation for a direct access file are described in Appendix C

of this Illanual.

FILE ORGANIZATION

The direct access file is divided into two areas: data area and overflow area.

Data Area

The data area of any cylinder allocated to a direct access file consists of those tracks of

the unit of allocation for that cylinder, Illinus those tracks within the unit of allocation reserved

for cylinder overflow. Cylinder overflow is optional; if not requested, the data area of the

cylinder consists of all the tracks in the unit of allocation for that cylinder.

Within the data area, the file is divided into buckets. A bucket's address is the address

of the first record within that bucket. (A bucket can contain one or Illore blocks. and a block

can contain one or Illore iteIlls.) When a bucket contains Illore than one iteIll. there need be no

logical relationship between the iteIlls. except that through SOIlle Illeans (such as randomizing).

the address of that bucket was specified as belonging to those iteIlls.

The size of a bucket cannot be greater than one cylinder and a bucket cannot begin on one

cylinder and end on the next. A bucket is processed as though it flowed directly into the cylinder

overflow area (if any) and then into the general overflow area.

One relationship between iteIlls, records, blocks, and buckets is illustrated in Figure

2-10A; a second relationship is illustrated in Figure 2-10B.

Overflow Areas

There are two types of overflow areas: the cylinder overflow area and the general over

flow area. Each cylinder overflow area is used to accoII1Illodate iteIlls that overflow the buckets

in the data area of that cylinder. The cylinder overflow area is optional; when specified, the

user defines a nUIllber of tracks to be set aside at the end of each cylinder in the units of alloca

tion for the file. The general overflow area is also optional; but. if specified. it is used to

2-23 #5-618

SECTION II. DATA MANAGEMENT CONVENTIONS

~ BLOCK 0 ·1 ~ BLOCK 1 ~I
RECORD 0 I RECORD 1 I RECORD 2 I

I
RECORD 3

R R R

10111 1121 131 14 G
151

1
61

171 1 8T1
9

G 110111111121 1 131114 G 11 151 I 161 I 17/ 1 lsi 1 19

I~ BUCKET 0 ~
A.

I'" BLOCK 0 ~ I'" BLOCK 1 ~

I I I I I
I RECORD 0 I R IRECORD 11 R 1 RECORD 2 I R IRECORD 31 R IRECORD 41 R IRECORD 51

G G G G G

~ ITEM 0 ·1'" ITEM 1 .1 1411-- ITEM 2 ~I. ITEM 3 ~

~ BUCKET 0 .1
B.

Figure 2-10. Relationship between Items, Records, Blocks, and Buckets

accommodate items that overflow the cylinder overflow areas (if any). If cylinder overflow is

not specified, items overflowing any bucket in a unit of allocation enter the general overflow

area. When general overfiow is specified, the last cylinder of each unit of allocation for the

file is used as the general ovecllow area. All tracks allocated on that cylinder are used for

overflow.

DIRECT ACCESS FILES AND KEYS

I

The meaning of the word "key" depends on the context in which it is used. To define direct

access file structure and processing, it is necessary to distinguish between the various uses of

the word key. The following list provides the definitions used in this manual:

1. Actual Key. The actual, absolute (physical) address of the bucket, in terms
of device, pack, cylinder, track, and record.

2. Relative Key. The number of a bucket, relative to the beginning of the file.
The first bucket in a file is numbered O. The input/ output (I/O) program con
verts the relative key supplied by the user into the actual key for the item.

3. Item Key. The identification field (e. g., part number or employee number)
of an item. This field must consist of contiguous characters, but its length
and location within the item are determined by the user when the file is allocated.

2-24 #5-618

..

..

""' -
~

SECTION II. DATA MANAGEMENT CONVENTIONS

Use of a relative key relieves the programmer of the following considerations: device

address, intervening overflow areas, multiple units of allocation, and multivolume file factors.

Directly accessing an item normally requires that the user provide the bucket address

(either relative or actual) and the item key to the input/output routines. The input/output routines

locate the beginning of the bucket and then search through it for the item with the specified item

key. If the item is not found in the bucket, the search continues through the cylinder overflow

area (if any) and, if necessary, through the general overflow area (if any).

DATA ITEM STATUS CHARACTER

In a direct access file, an area on mass storage that can contain an item is called an item

position. Because the direct access file organization offers the ability to insert and delete items,

it is necessary to distinguish between an item position that contains an item and one that does

not. To accomplish this, an item position is defined as having two parts: the data portion

(including the item key) and the status character. An item position, therefore, is one character

longer than the data portion. When designing a direct access file, the user must include the

status character in the item size computations.

The input/ output routines use the status character to indicate whether the item position is

unused (inactive), contains an active item, or contains an item that has been deleted. When a

direct access file is allocated and before any data is recorded in the file, the status character of

every item position is set to inactive. The octal values which the status character can assume

are as follows:

01 == Active;

41 Deleted;

77 Inactive;

00 Active, last block in file volume;

40 == Deleted, last block in file volume; and

76 Inactive, last block in file volume.

CUMULATIVE LOADING OF A DIRECT ACCESS FILE

Because the placement of any item in a direct access file is independent of the placement

of any other item, the contents of a direct access file can be accumulated into the file through

a series of separate load operations over any period of time.

The data source and the item format can vary for each load operation. It is the responsi

bility of the user's own-code program to standardize the item format for proper placement

within the direct access file. (See Section IV.)

2-25 #5-618

SECTION II. DATA MANAGEMENT CONVENTIONS

PROCESSING CONVENTIONS

Volume processing conventions within the Mod 1 (MSR) Operating System are designed to

provide standardized operating procedures which ensure maximum flexibility and operational

convenience. These conventions are dependent upon two factors: whether processing is direct

or sequential and which functions are being performed.

Sequential or Direct Processing

Data in mass storage files can generally be processed either sequentially or directly.

Sequential processing can be in physical sequence (e. g., direct access organization), in which

case there is no attempt to order data, and items are processed as they are encountered. Alter

natively, sequential processing can be in logical sequence (e. g., indexed sequential organiza

tion). In this case, items are processed according to the sequence of some item key field.

When a file is processed sequentially, each volume is operated on as needed; the second

volume is not used until processing of a prior volume is completed.

A sequential file is always processed sequentially. Direct access and indexed sequential

files can be processed using the minimum number of volumes if files are processed sequentially

from the beginning.

Direct processing can be achieved by maintaining a unique address for each item and

accessing an item by referring directly to that address. Alternatively, it is often convenient to

provide a range of addresses which may contain several items. In this case, retrieval is

achieved by beginning at the first address within this range and searching for the desired item.

Both an address and an identifier are required. In some cases, these elements are identical.

For example, when indexed sequential file organization is used, the key is applied to locate an

address from the indexes as well as to identify the item upon which the search is conducted.

When a file is processed directly, all volumes of the file must be online.

Volume Processing Functions

Volume Preparation C, Mass Storage Edit C, Bootstrap Generator C, Disk/Tape Copy,

and the File Support C map function deal with volumes as their basic unit of operation. These

functions are not oriented to the concept of a file in its usual sense. Thus, whenever these

functions are to be performed on more than one volume, each volume is treated individually and

requires a separate exe.cution of the program.

2-26 #5-618

SECTION II. DATA MANAGEMENT CONVENTIONS

File Processing Functions

Most of the remaining functions of the Mod 1 (MSR) Operating System are oriented to the

concept of a file. The file may be on one volume or it may be on several volumes. Some func

tions process only single-volume files (e. g., Library File Update C and Executable Program

File Update C).

Certain file-oriented operations are independent of file organization and mode of pro

cessing. For example, File Support C allocation and deallocation are handled similarly for all

file types, irrespective of the mode of processing. These functions are performed cyclically

upon all volumes of a file; i. e., if devices a, b, and c are assigned, allocation or deallocation

follows the order: a, b, c, a, b, c, a, etc.

BACKUP PROCEDURES

Logical Backup

When a file requires reorganization (perhaps because of a significant change in required

capacity) and the data content must be preserved, the contents of the file can be temporarily

stored on another medium or another disk by means of the File Support C load/unload program

(see Section IV). When the reorganization has been accomplished, via reallocation of the file,

the data can then be restored by the File Support C load/unload program.

Physical Backup

When it is desired to save physical areas of a volume in full track format, with or without

regard to individual file boundaries, the Disk/Tape Copy program can be used to store the

physical contents of entire tracks either onto a tape or onto another disk. (See Utility Routines

manual, Section VI.)

Disk/ Tape Copy operates on a full track at a time and thus offer s a faster method of

data transfer. However, the user must give careful consideration to maintaining a valid

correspondence between the volume directory and the file areas on the volume.

8/29/69 2-27 #5-618

SECTION III

LOGICAL I/O C

Logical I/O C consists of a set of macro routines designed to access files residing on •

mass storage and to operate on the data within those files. The assembly-language program-

mer calls for and specializes these routines in his source-language program, and they are

assembled into his machine-executable program through the use of Mass Storage Easycoder

Assembler C of the Program Development Subsystem.

The functions performed ~y Logical I/O C are summarized in the following list.

1. Open or close a file, verifying and updating the file directory information.

2. Get, put, or replace individual items in a file, blocking and unblocking as
necessary.

3. Insert an item into or delete an item from a direct access or indexed
sequential file.

4. Directly access items in a direct access or indexed sequential file.

5. Establish linkage to Physical I/O C. Physical I/O C, which reads and
writes data, detects errors, and (if possible) corrects errors, is de
scribed in Appendix D of this manual.

6. Provide exits to user-written label and error routines.

7. Ensure the simultaneity of central processor and input/ output operations.

8. Terminate sequential processing on one volume and switch to the next volume.

9. Allow other processing (including peripheral data transfers) to occur during
cylinder-to-cylinder access time (seek time) of a disk device.

Logical I/O C is composed of four types of macro routines. These are the control, file

description, communication area service, and action macro routines. The control macro rou

tine is called the mass storage input/output control (MIOC) macro routine and provides general

control over the entire input/output process. The file description macro routine (MCA) is called

the mass storage communication area macro routine and sets up a communication area for

the file being processed in which all values necessary to describe the file and the processing

options are stored. Pertinent portions of the communication area are available to the user and

can be altered by him through the use of the communication area service macro routines (see

page 3-2). Unloading any applicable field of the communication area is performed by the unload

communication area service (MUCA) macro routine; altering any applicable field of the commu

nication area is performed by the load communication area service (MLCA) macro routine. The

action macro routines are included in the main line of the user I s coding to cause the various

functions of the input/output routines to be performed.

3 -1 #5-618

SECTION III. LOGICAL I/O C

MASS STORAGE INPUT/OUTPUT CONTROL MACRO ~OUTINE (MIOC)

The mass storage input/output control macro routine (MIOC) is a segmentable series, of

subroutines that are specialized at assembly time to accommodate all input/output functions

requested within a given program. Unnecessary coding is eliminated from each subroutine on

the basis of user-specified parameters. The control macro routine further specializes itself

• at execution time on the basis of a specific description of a file that the programmer creates

with the file description macro routine.

A single MIOC can process one or more files. These files can be on different mass stor

age device types used concurrently. The control macro routine performs all necessary inter

face functions between the user's program, the user's exit routines, and Physical I/O C.

FILE DESCRIPTION MACRO ROUTINE (MCA)

The file description macro routine (MCA) creates a communication area for each file that

is to be processed by a given program. All values required to describe a file's organization and

structure are placed in the file's communication area. There are two sources for these values:

(1) the file description area of the volume directory (*VOLDESCR*) and (2) those values speci

fied by the programmer at assembly time. Most of the values that are placed in the file's com

munication area are taken from the *VOLDESCR* entry for the file and placed in the communi

cation area at execution time. Those values that cannot be placed in 'the communication area at

execution time are specified by the programmer when he writes the MCA macro call; these values

are placed in the file's communication area at assembly time.

COMMUNICATION AREA SERVICE MACRO ROUTINES (MLCA AND MUCA)

The macro routines which service the communication area (MLCA and MUCA) load infor-

mation into and interrogate certain fields of the communication area. Using these macro rou

tines, the programmer can alter the contents of certain fields of the communication area without

knowing its structure.

ACTION MACRO ROUTINES

The programmer includes action macro routines (summarized in Table 3 -1) in the main

line of his coding to cause the various functions of Logical I/O C to be performed. The file pro

cessing functions that the action macro routines perform are described in detail later in this

section.

SUMMARY OF LOGICAL I/O C MACRO ROUTINES

The macro routines that make up Logical I/O C are listed in Table 3 -1. This table lists

3-2 #5-618

SECTION III. LOGICAL I/O C

each macro routine according to its type, shows each macro name, and gives a brief description

of the general function performed by each macro routine.

Table 3-1. Summary of Logical I/O C Macro Routines

Macro General
Macro Type Name Function Performed

Input/ Output MlOC Provides general control over the entire input/
Control output process.

File MCA Sets up a communication area in which all values
Description necessary to describe a file and the processing

options are stored.

MLCA Used to alter applicable fields of information in
Communication the communication area.

Area
MUCA Used to unload applicable fields of information

Service
in the communication area.

MSOPEN Opens a file for processing.

MSCLOS Closes a file after processing.

MSGET Retrieves an item in the file.

MSPUT Delivers items sequentially from memory to
mass storage.

Action MSREP Replaces the last item retrieved.

MSINS Ins erts an item into an indexed sequential or
a direct access file.

MSDEL Deletes the last item retrieved from an
indexed sequential or a direct access file.

MSEEK Positions read/write heads to a desired cylinder
of a direct access or indexed sequential file
allowing other data processing to occur.

SETM':< Sets processing fo the beginning of the specified
member.

ENDM* Stops processing of the current member.

MALTER* Changes the specified member of a file as
directed.

MSREL* Frees the area occupied by a partitioned
sequential file.

SETL** Sets processing to a specific location of
the file for sequential delivery of items.

* Applies to partitioned sequential files only.
**Applies to indexed sequential files only.

3 -3

SECTION III. LOGICAL I/O C

FILE PROCESSING MODES

There are three file processing modes available: input/ output processing. input-only

processing. and output-only processing. Sequential and partitioned sequential files can be

processed in all three modes. but in certain processing modes. certain functions are not

applicable. Indexed sequential and direct access files can be processed only in the input/

output and the input-only modes.

Input/Output Processing Mode

In this processing mode. the user can both read data items from the file (input) and

write data items to the file (output). With sequential files. this mode is used when it is

desired to read data and then update some or all of the data read. With direct access and

indexed sequential files. the input/output processing mode is used for the same purpose as

with sequential files. or it may be used to insert new items into the file or delete items from

the file.

Input-Only Processing Mode

In this processing mode. the user can only read data items from the file (input); he cannot

write data items onto the file. This protects the file from undesired alteration.

Output-Only Processing Mode

In this processing mode. the user can only write data items onto a sequential file or parti

tioned sequential file (output); he cannot read data items from the file.

ACTION MACRO PROCESSING FUNCTIONS

Each function is identified by the name of the action macro call that requests the function.

These names are shown in this description in upper case letters. For example. the function

of opening a file for processing is requested by the MSOPEN macro call.

The functions the action macro routines perform can be divided into two groups: file-control

functions and item--handling functions. The file-control functions are:

1. Opening files for processing.

2. Closing files after processing,

3. Starting processing at the beginning of a specified member,

4. Ending processing of a member.

5. Altering the status of a member,

6. Releasing a file to an unused state,

7. Starting processing at a specified location of the file, and

3-4 #5-618

SECTION Ill. LOGICAL I/O C

8. Seeking a specific cylinder of a mass storage volume, preparatory to
actual processing of data resident on that cylinder, while allowing
other processing to occur during the seek.

In the above list, 1 and 2 apply to all file organizations; 3, 4, 5, and 6 apply only to

partitioned sequential files; 7 applies only to indexed sequential files; and 8 applies to indexed

sequential or direct access files. Item-handling functions are as follows:

1. Retrieving an item,

2. Replacing an item,

3. Putting items sequentially onto the mass storage file.

4. Inserting items, and

5. Deleting items.

In this list, 1 and 2 apply to all file organizations; 3 applies only to sequential and

partitioned sequential files; and 4 and 5 apply only to indexed sequential and direct access files.

Because the various types of files can be processed in more than one mode, certain

functions of Logical I/O C action macro calls are not always applicable. The applicable func

tions for each processing mode are shown in Tabre 3-2. In Table 3-2, the functions are repre

sented by the action macro call that requests the function. These macro calls are defined as

follows:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

MSOPEN

MSCLOS

SETM

ENDM

MSREL

SETL

MALTER

MSGET

MSREP

MSPUT

MSINS

MSDEL

MSEEK

opens a file for processing,

closes a file after processing,

sets processing to the beginning of the specified member,

ends processing of a member,

releases a file to an unused state,

sets processing to the location specified for sequential
delivery of items,

alters the status of a member,

gets (retrieves) an item in a file,

replaces the last item retrieved in a file,

delivers items sequentially to a mass storage file,

inserts an item into a file,

deletes an item from a file, and

seeks a cylinder for subsequent input/output processing
of a file allocated to that cylinder.

Note that whenever the phrase "an exit is taken" is used in the subsequent descriptions of

,--,," the functions, the exits are optional. The only exception to this is that end-of-data exit must

3-5 #5-618

SECTION III. LOGICAL I/O C

be specified. When an optional exit is not specified for a particular function, the action either

continues under default conditions or.providesnotice to the operator.

Table 3-2. Action Macro Calls for Each File Type in Each Processing Mode

Processing
Action Macro Calls

Mode Sequential Partitioned Sequential Indexed Sequential Direct Access
File Organization File Organization File Organization File Organization

MSOPEN MSOPEN MSOPEN MSOPEN
MSCLOS MSCLOS MSCLOS MSCLOS
MSGET MSGET MSGET MSGET

Input/Output MSREP MSREP MSREP MSREP
Mode SETM MSINS MSINS

ENDM MSDEL MSDEL
MALTER SETL MSEEK

MSREL MSEEK

MSOPEN MSOPEN MSOPEN MSOPEN

Input-Only MSCLOS MSCLOS MSCLOS MSCLOS

Mode MSGET MSGET MSGET MSGET
SETM SETL
ENDM

MSOPEN MSOPEN
MSCLOS MSCLOS
MSPUT MSPUT

Output-On! y
SETM Not Applicable

Mode
ENDM
MALTER
MSREL

Opening Files

While the process of opening each of the four file types is similar, not all the steps per-

formed for one type are performed for another.

when opening multivolume files.

Similarly, additional steps are performed

OPENING SEQUENTIAL FILES

Sequential files are requested to be opened for processing in the mode specified in the

MSOPEN macro call. In executing the open function for sequential files, Logical I/O C performs

the following steps.

1. Logical I/O C attempts to locate the file requested in the MSOPEN macro call in
the name portion (*VOLNAMES*) of the volume directory. If the file name
cannot be located in *VOLNAMES* an exit is taken. A return to the open
function from the exit indicates that a new volume has been mounted and that
a new attempt to open the specified file is to be made.

2. Mter the file name is located in *VOLNAMES*, Logicall/O C verifies that
the file-volume sequence number is zero. If it is not, an exit is taken.

3 -6 #5-618

SECTION III. LOGICAL I/O C

The user can return to the open function from the exit requesting a new
attempt to open (implying that a new volume has been mounted) or return
to the open function from the exit requesting that the volume be accepted
regardless of its file-volume sequence number. (The option to accept the
volume regardless of its sequence number is not available in the output-only
mode.)

3. After verifying the file-volume sequence number, Logical I/O C locates the
file's description in *VOLDESCR*. If password checking for the file is speci
fied, the password for that file is compared to the user's password field
referred to by the file's communication area. If password checking for the
file is not specified, Logical I/O C verifies that the password field for the
file contains all blanks. If either password check fails, an exit is taken.
The only allowable return from an exit because of a failure of a password
check is for the user to attempt to reopen the file. The pas sword check
can fail for any of the following reasons:

a. 1£ the user specified password checking in the MeA macro call and
the file is not protected by a pas sword;

b. If the password for the file supplied by the user (via parameter
21 of the MCA macro call) is not identical to that for the file; or

c. If the user does not include a password in the MCA macro call
and the file is protected by a password.

4. When the password check is completed successfully, an exit is taken so the
user can examine *VOLDESCR*. A return to the open function from this exit
indicates either that the open function for this file is to continue or the file
is rejected by the user and that an attempt to open a new file is to be made.
If the open function for the original file is to continue and if the processing
mode specified for the file in the MSOPEN macro call is either input/ output
or output-only, *VOLDESCR* is written back onto the mass storage device
by Logical I/O C.

5. If the specified processing mode is input/ output or input-only, Logical I/O C
verifies (through the data status field in *VOLDESCR*) that the file volume
contains data. If the file volume does not contain data, an exit is taken.
The user can either issue a new macro call for a different function, or
the user can return to the open function from the exit requesting that a new
attempt to open be made (implying that a new volume has been mounted).

6. At this point, Logical I/O C checks the labeling information in *VOLDESCR*
and moves all information required by other Logical I/O C functions from
VOLDESCR into the file's communication area.

7. If the specified processing mode is output-only and if the item-handling
mode is specified as locate, Logical I/O C moves the address of the left
end of the first item location in the currenf buffer to the user-specified
field defining the next location into which an item is to be placed.

8. At this point, Logical I/O C sets the following indicators in the file's
communication area:

a. An indicator is set specifying whether or not this file volume is
the last file volume of the file (this information is contained in
the *VOLALLOC* entry for the file);

b. An indicator is set specifying that the file is opened; and
c. An indicator is set specifying the appropriate processing mode.

3 -7 #5-618

SECTION Ill. LOGICAL I/O C

OPENING PARTITIONED SEQUENTIAL FILES

Partitioned sequential files are requested to be opened for processing by the MSOPEN

macro call. Unlike opening a sequential file, the processing mode for the partitioned sequential

file is not specified until a SETM macro call is issued. In executing the open function for parti

tioned sequential files, Logical I/O C performs the following steps.

1. Logical I/O C attempts to locate the file requested in the MSOPEN macro call in
VOLNAMES. If the file name cannot be located, an exit is taken. A return

2.

to the open function from this exit implies that a new volume has been
mounted and a new attempt to open the file is to be made.

After the specified file name is located in *VOLNAMES*, Logical I/O C
locates the file's description in *VOLDESCR*. If password checking for
the file is specified, Logical I/O C performs the password check as
described for opening sequential files. If password checking is not
specified, Logical I/O C verifies that the password field for the file
contains all blanks. If either password check fails, an exit is taken
as described for opening a sequential file.

3. When the password check is completed successfully, an exit to the user
is taken so that the user can examine *VOLDESCR*. A return to the
open function from this exit indicates either that the open function for
this file is to continue or the file is rejected by the user and that an
attempt to open a new file is to be made. If the open function for the
original file is to r.ontinue and if the update action is specified in the
MSOPEN macro call, Logical I/O C writes *VOLDESCR* back onto the
mass storage device.

4. At this point, Logical I/O C checks the labeling information in
VOLDESCR and moves all information required by other Logical
I/O C functions from *VOLDESCR* into the file's communication
area. Logical I/O C then sets an indicator in the file's communi
cation area specifying that the file is opened.

OPENING AN INDEXED SEQUENTIAL FILE

Like sequential files, indexed sequential files are requested to be opened for processing

in the mode specified in the MSOPEN macro call. In executing the open function for indexed

sequential files, Logical I/O C performs the following steps.

1. Logical I/O C attempts to locate the file requested in the MSOPEN macro
call in the name portion of the volume directory. If the file name cannot
be located in *VOLNAMES*, an exit is taken. A return to the open function
from this exit implies that a new volume has been mounted and a new
attempt to open the specified file is to be made.

2. After the file name is located in *VOLNAMES*, Logical I/O C verifies
that the file-volume sequence number is one greater than the sequence
number Gf the last file volume (the first file-volume sequence number
is zero). If the file-volume sequence number is not one greater than
the last file-volume sequence number, an exit is taken. A return to
the open function from this exit causes Logical I/O C to try again to
open the file.

3. After the file-volume sequence number checking, Logical I/O C performs
the password check as described for sequential files.

3 -8 #5-618

SECTION III. LOGICAL I/O C

4. When the password check is successfully completed and if the volume
contains the first file volume being opened (file-volume sequence number
zero), an exit is taken so the user can examine the *VOLDESCR* entry
for the file. The user can return to the open function from this exit
specifying that this open function is to continue, or a return can be made
specifying that a new attempt to open the file is to be made.

5. If the open function is to continue, Logical I/O C moves all pertinent
data from the *VOLDESCR* entry for the file into the file's communi
cation area and updates the *VOLDESCR* modification number and date.

6. If the processing mode specified is input/ output, Logical I/O C writes
VOLDESCR back onto the mass storage device.

7. Next, Logical I/O C processes the *VOLALLOC* entry for the file.
In doing this, it moves the master / cylinder index and the general
overflow entries from *VOLALLOC* into the file's communication
area and the data units of allocation entries into the user provided
units of allocation table.

8. Logical I/O C then sets an indicator in the file's communication
area specifying the appropriate processing mode.

9. If processing is to be sequential from the beginning of the file and a
prime data unit of allocation has been processed, Logical I/O C
proceeds to step 10.

NOTE: If processing is not to be sequential from the beginning of the
file, Logical I/O C returns to step 1 and repeats the process
until all file volumes that contain data have been opened.
After all file volumes have been opened, Logical I/O C
proceeds to step 10.

10. Logical I/O C sets an indicator in the file's communication area speci
fying that the file has been opened in the appropriate processing mode.

11. If a resident cylinder index has been requested, Logical I/O C reads
the specified number of blocks of the cylinder index into the specified
area in main memory.

12. If the MSOPEN macro call specified that processing is to be sequential
from the beginning of the file, Logical I/O C issues a SETL macro call
for the beginning of the file.

13. Logical I/O C returns to the main line of the user's coding.

OPENING DIRECT ACCESS FILES

Like sequential and indexed sequential files, direct access files are requested to be

opened for processing in the mode specified in the MSOPEN macro call. In executing the

open function for direct access files, Logical I/O C performs the same first six steps as

performed for opening an indexed sequential file; it then performs the following steps.

1. Logical I/O C processes the *VOLALLOC* entry for the file. In
doing this, it checks each entry in *VOLALLOC* for the file and moves
each entry to the next available position in the user-supplied units of
allocation table. If Logical I/O C detects a discrepancy while pro
cessing *VOLALLOC*, an exit is taken. The only allowable return to
the open function from this exit is to try again to open the file.

3-9 #5-6.18

SECTION III. LOGICAL I/O C

2. Logical I/O C then sets an indicator in the file's communication area
specifying the appropriate processing mode.

3. If the file is being opened for sequential processing from its beginning.
Logical I/O C sets processing to the beginning of data and returns to
the user's main line coding.

NOTE: If the file is not being opened for sequential processing from its
beginning. Logical I/O C returns to step I and repeats the process
for each file volume until all file volumes have been opened.
Logical I/O C then sets processing to the beginning of data and
returns to the user's main line coding.

Closing Files

The process for closing sequential and partitioned sequential files is similar. and the

process of closing indexed sequential and direct access files is identical.

CLOSING SEQUENTIAL AND PARTITIONED SEQUENTIAL FILES

Sequential and partitioned sequential files are requested to be closed by the MSCLOS

macro call. In executing the close function for these files. Logical I/O C performs the

following steps.

NOTE: Steps I through 4 apply only to sequential files ..

1. If the file was processed in the output-only mode. Logical I/O Censures
that all buffers have been written onto the mass storage device and that
the item following the last item written is an end-of-data item. (End
of-data items are signified by OEODf in the first five locations of the
item.)

2. If the file was processed in the input/output mode. Logical I/O C
ensures that the current buffers have been written back onto the mass
storage device if an MSREP has been issued for an item in these
buffers.

3. If the file was processed in the input/output or output-only mode.
Logicall/O C moves the current item count into the file's *VOLDESCR*
item.

4. If the file was processed in the output-only mode. Logical I/O C
sets the data status indicator to 00 in the last file volume that
contains data.

5. Next. an exit is taken so the user can examine *VOLDESCR* for
the file. A normal return from the exit to the close function causes
Logical I/O C to write *VOLDESCR* back onto the mass storage device
if the file was proces s ed in the input/ output or output- onl y mode (or
update mode in partitioned sequential files).

CLOSING INDEXED SEQUENTIAL AND DIRECT ACCESS FILES

Indexed sequential and direct access files also are requested to be closed by the MSCLOS

macro call. The following steps are performed by Logical I/O C when executing the close

function for indexed sequential and direct access files.

3 -10 #5-618

"

..

SECTION III. LOGICAL I/O C

1. If the file was processed in the input/output mode and an MSREP,
MSINS, or MSDEL was issued for an item in the current buffers,
Logical I/O C writes those buffers back onto the mass storage device.

2. If the current file volume was processed sequentially from its be
ginning, Logical I/O C updates the item count in *VOLDESCR* by
adding the net change in items to the current file volume. If the file
was not processed sequentially from its beginning, Logical I/O C
updates the item count in *VOLDESCR* by adding the net change in
items since the file was opened to the last volume in the file.

3. If the file was processed sequentially from its beginning, an exit is
taken so the user can examine the current *VOLDESCR*. If the file
was not processed sequentially from its beginning, an exit is taken so
the user can examine the last *VOLDESCR* in the file. A normal
return from the exit to the close function causes Logical I/O C to
write *VOLDESCR* back onto the mass storage device if the file was
processed in the input/ output mode.

Retrieving Items in Files

The process of retrieving items in sequential and partitioned sequential files is

similar. The process of getting items in indexed sequential files and in direct access files is

significantly different.

RETRIEVING ITEMS IN SEQUENTIAL AND PARTITIONED SEQUENTIAL FILES

The request to retrieve an item in a sequential or partitioned sequential file is the

issuance of the MSGET macro call. Logical I/O C can perform the get function for sequential

and partitioned sequential files only when the file is being processed in either the input/output

mode or in the input-only mode. The process is the same for both file types in either mode,

except that when the file is processed in the input-only mode, step 2 does not apply. In

executing the get function for sequential and partitioned sequential files, Logical I/O C per

forms the following steps.

NOTE: A data block is read into memory only after the first MSGET is issued.

1. If the next sequential item is in the current buffer, Logical I/O C begins
to get the item at step 4; if not, it begins at step 2.

2. If an MSREP macro call has been issued for an item in the current buffer,
Logicall/O C writes the current buffer back onto the mass storage device.

3. Depending on the buffering method (single or double), Logical I/O C
causes the current buffer to contain the next sequential block from the
mass storage device.

4. If the next sequential item is an en.d-of-data item and if an indicator in
the file's communication area specifies that more data follows on
another volume, Logicall/O C sets processing to the next file volume.

5. If the next sequential item is an end-of-data item and if the current
file volume is the last one, an end-of-data exit to the user is taken to
indicate this. When this exit is taken by Logical I/O C, the user
cannot return to the get function. An MSCLOS (or ENDM if the file
is partitioned) must be the next action macro call issued for this file.

3-11 #5-6.]8

SECTION III. LOGICAL I/O C

6. If the next sequential item is not an end-of-data item and if "move
item handling" has been specified, Logical I/O C delivers the item
to the user-supplied work area. If "locate item delivery" has been
specified, Logical I/O C delivers the address of the leftmost
character of the item in the current buffer to the user -supplied
address field. After either of these deliveries has been made,
Logical I/O C returns to the user's main line coding, ensuring
that the mass storage address of the item is available to the user.

RETRIEVING ITEMS IN INDEXED SEQUENTIAL FILES

The macro call that is used to request the retrieval of an item in an indexed sequential

file is MSGET. Logical I/O C retrieves an item either sequentially or directly (randomly), as

directed by the MSGET macro call. The item retrieved is delivered to the user-supplied item

work area in the move-item-handling mode, and the address of the leftmost character of the

item is delivered to the user-supplied address storage area in the locate-item-handling mode.

If the user requests key verification and the locate-item-handling mode is being used,

Logical I/O C moves the item's key to the user-supplied key storage area so that, if the user

issues an MSREP macro call for the item, Logical I/O C can verify the item's key before

replacing the item in the string.

In executing the sequential get function for items in indexed sequential files, Logical

I/O C performs the following steps.

NOTES: 1. To perform the sequential get function, the user must have
previously issued a SETL macro call, or specified LIMVOL
in the MSOPEN macro call.

2. Step 2, below, applies only to input/output processing.

1. If the next sequential item is in the current buffer, Logical I/O C
delivers that item to the user and returns to the user's.main line
coding. If the file is being processed in the input/ output mode and if
the item-handling mode is locate, Logical I/ 0 C moves the item's
key to the user-supplied key storage area if the user requested key
verific ation.

2. If the current buffer is no longer required and if an MSREP or an
MSDEL has been issued for an item in that buffer, Logical I/O C
writes the block back onto mass storage.

3. If the last item delivered to the user was the final item on the
current file volume and if that file volume is not the last volume
of the file, Logical I/O C activates the next sequential file volume.

4. If there is no more data on the current file volume or in the general
overflow area, and if this is the last volume in the file, Logical I/O C
exits to the user indicating that the end of data has been reached.
The user cannot return to this get function when this exit is taken by
Logical I/O C.

5. If more data remains on the current file volume, Logical I/O C reads
the block containing the next required item into memory and delivers
the next sequential item to the user as in step 1.

3-12 #5-618

....

...

SECTION III. LOGICAL I/O C

In executing the random get function for items in indexed sequential files, Logical I/O C

performs the following steps.

NOTE: Step 1 applies only to input/output processing.

1. If an MSREP or an MSDEL has been issued for some previously retrieved
item, Logical I/O C ensures that the block containing that item has been
written back onto the mas s storage device.

2. If the last action macro call issued for this file was an MSEEK, Logical
I/O C compares the item key of the MSEEK with the item key of the MSGET.
If they are the same, Logical I/O C clears the seek indicator and proceeds
to step 8; otherwise, it proceeds to step 3.

3. If the cylinder index is resident, Logical I/O C omits steps 4 and 5.

4. Logical I/O C searches the master index for the first item whose key
value is greater than or equal to the desired item's key.

5. Logical I/O C then searches the cylinder index block determined in step 4
for the first item whose key is greater than or equal to the desired item's
key.

6. When there is a resident cylinder index, Logical I/O C searches it for the
desired item's key. If the key falls outside the limits of the resident cylinder
index, the master index is searched and the block containing the cylinder
index for the desired item's key is read into the last block area of the resi
dent cylinder index; then, the resident cylinder index is searched again for
the desired item's key.

7. Logical I/O C seeks the volume and cylinder located by the above steps.

8. The string index is searched from its beginning for the item whose key
is equal to or greater than the desired item's key.

9. The prime data area or the cylinder overflow area is searched for the
desired item. Logical I/O C will continue the overflow search into the
general overflow area if necessary.

10. The item is considered not located if:

a. An item with a key value greater than the desired item's key
value is located in any area,

b. An item status character of 41 or 42 is detected in an item
with an equal key value, or

c. The physical end of the general overflow area is detected .

11. When the desired item is located, Logical I/O C delivers it to the user
in either of the two item-handling modes. If key verification was specified
and the file was processed in the input/output mode using the locate-item
handling mode, Logical I/O C move s the item key into the user -supplied
key storage area. After the item is delivered to the user, Logical I/O C
returns to the user's main line coding ensuring that the current item's
mass storage address is available to the user in the file's communica-
tion area.

RETRIEVING ITEMS IN DIRECT ACCESS FILES

To retrieve an item in a direct access file, the user can supply the bucket address and the

item key, just the item key, just the bucket address, or neither the bucket address or item key.

The macro call used to request the retrieval of an item in a direct access file is MSGET. Table

3 -3 summarizes the MSGET macro functions for direct access files.

3 -13 #5-618

SECTION III. LOGICAL I/O C

NOTE: When an item is retrieved in a direct access file and delivered to
the user by Logical I/O C, Logical I/O C returns to the user's
main line coding ensuring that the item's mass storage address
is available to the user in the file's communication area.

In executing the get function when both the bucket address and the item key are supplied

in the MSGET macro call, Logical I/O C performs the following steps:

NOTE: Step 1 applies only to input/output processing.

1. If an MSREP, MSDEL, or MSINS has been issued for some item
previously retrieved or to be inserted, Logical I/O C ensures that
the block containing that item has been written back onto the mas s
storage device.

2. Logical I/O C searches each undeleted item position in the specified
bucket for the item with the specified key. When the cylinder over
flow area is entered, Logical I/O C sets an indicator in the file's
communication area specifying this. It sets another indicator
when the general overflow area is entered.

3. When the end of the overflow area(s) is detected or when an inactive
item position is encountered, the item is not located and an exit is
taken. When Logical I/O C takes this exit, the user cannot return
to this get function.

4. When the item is located, Logical I/O C delivers it to the user in
either the move or locate-item-handling mode.

In executing the get function when only the item key is supplied, Logical I/O C performs

the same steps as outlined when the bucket address and item key are specified, except that

Logical I/O C begins searching for the item at the next sequential item location in the

current bucket.

In executing the get function when only the bucket address is supplied, Logical I/O C

performs the following steps.

NOTE: Step 1 applies only to input/output processing.

1. If an MSREP, MSDEL, or MSINS has been issued for some item
previously retrieved or to be inserted, Logical I/O C ensures that
the block containing that item has been written back onto the mass
storage device.

2. Logical I/O C searches sequentially from the beginning of the
specified bucket for the next undeleted item, without regard for its
key.

3. The search is continued through the file in the following sequence.
a. The remaining buckets on the current cylinder are searched.
b. The current cylinder's overflow area is searched.
c. Steps a. and b. are repeated for all subsequent cylinders in

the current unit of allocation.
d. The general overflow area of the current unit of allocation is

searched.

3-14 #5-618

SECTION III. LOGICAL I/O C

e. Steps a., b., c., and d. are repeated for all subsequent units
of allocation on the current file volume.

f. When a file volume has been exhausted, Logical I/O C activates
a new file volume for sequential processing as in steps a., b.,
c., and d.

4. H an undeleted item location cannot be located by Logical I/O C, an
exit is taken.

5. When an undeleted item location is located, Logical I/O C delivers
the item and returns to the user's main line coding.

In executing the get function when neither the bucket address nor the item key is supplied

by the user, Logical I/O C searches as it does when only the bucket address is supplied, but
• it begins searching for the next sequential undeleted item with the next sequential item in the

current bucket.

Table 3-3. Summary of MSGET Macro Functions for Direct Access Files

BUCKET ADDRESS SPECIFIED YES YES 1------- - - -- --- -- - - -- - 1-----

ITEM KEY SPECIFIED YES NO

Start at beginning of this bucket X X

Start from current bucket
position

FUNCTIONS
Search for specified item key X

Search for next sequential
active item X

Continue search into over-

WHEN BUCKET
flow area(s} X

IS EXHAUSTED Continue search into next con-
tiguous area (bucket or overflow) X

NOTE: An MSGET with only a key specified may be executed following
an MSGET with a bucket and key specified or another MSGET
with only a key specified.

Replacing Items in Files

NO -----

YES

X

X

X

NO - - - -
NO

X

X

X

The process of replacing items in files is similar for sequential and partitioned sequential

files, but it is significantly different for indexed sequential and direct access files. In all cases

in which an item is replaced, the replaced item is the item last retrieved by Logical I/O C

through the MSGET function.

3 -15 #5-6.1 8

SECTION III. LOGICAL I/O C

REPLACING ITEMS IN SEQUENTIAL AND PARTITIONED SEQUENTIAL FILES

An item can only be replaced when the file is processed in the input/output mode. The

replace function is requested by the MSREP macro call. The following steps are performed by

Logical I/O C when executing the replace function for items in sequential and partitioned

sequential files.

1. Logical I/O C sets an indicator in the file's communication area
specifying that an MSREP has been issued for the item last retrieved
by the get function. This ensures that the current buffer is written
back onto the mass storage device after it is exhausted but before it is
overlaid by a new block.

2. If the move-item-handling mode is specified, Logical I/O C overlays the
item in the current buffer to which the last MSGET referred with the
item in the user-supplied item work area.

REPLACING ITEMS IN INDEXED SEQUENTIAL FILES

In an indexed sequential file, an item can be replaced only when the file is processed in

the input/ output mode. To execute the replace function for items in an indexed sequential

file, Logical I/O C performs the following steps.

1. If key verification was requested, Logical I/O C ensures that the key
of the last item retrieved is the same as that of the replacement item
as follows:
a. In the move-item-handling mode, Logical I/O C compares the

key of the item in the buffer with the key of the item in the user's
item work area; and

b. In the locate-item-handling mode, Logical I/O C compares the
key of the item in the buffer with the key in the user-supplied item
key storage area.

If either of these checks fails, an exit to the user is taken. When
Logical I/O C takes this exit, it does not expect a return to this
replace function.

2. If processing of the file is in the move-item-handling mode, Logical
I/O C moves the item from a user -supplied item storage area to its proper
place in the current buffer.

3. Logical I/O C then sets an indicator in the file's communication area
specifying that the current buffer must be written back onto the mass
storage device before it is overlaid in memory. Logical I/O C then
returns to the user'.s main line coding.

REPLACING ITEMS IN DIRECT ACCESS FILES

In a direct access file, items can only be replaced when the file is processed in the

input/ output mode. In executing the replace function for direct access files, Logical I/O C

performs the following steps.

1. Logical I/O C sets an indicator in the file's communication area that
an MSREP macro call has been issued for an item in the current block.
This ensures that the block will be written back onto the mass storage
device before it is overlaid in memory.

3 -16 #5-618

SECTION III. LOGICAL I/O C

2. H the move-item-handling mode is specified, Logical I/O C overlays
the item in the current buffer to which the last MSGET referred with
the item in the user-supplied item work area.

Putting Items to Sequential and Partitioned Sequential Files

The put function is initiated by the MSPUT macro call and can be used only when a se

quential file is being processed in the output-only mode. Note that when processing is in the

locate-item delivery mode, the MSOPEN or SETM macro call issued previously causes an initial

item delivery address to be placed in the user's linkage address field.

To perform the put function, Logical I/O C performs the following steps.

1. H the file is being processed in the move-item delivery mode, the user's
item is moved into the current buffer.

2. Logical I/O C then determines if there is room in the current buffer for
another item. H there is no room, Logical I/O C skips to step 4.

3. H the file is being processed in the locate-item delivery mode, the
address of the leftmost location of the next available item position is
moved to the user's address field. At this point, Logical I/O C
returns to the user's main line coding.

4. Logical I/O C determines if there is room in the file or the current
member for another block after the current block. H there is no room,
an exit to the user is made. Logical I/O C does not expect a return
to the put function if this exit is taken. The las t item for which the
user issued an MSPUT macro call is overlaid by an end-of-data item
when an MSCLOS or ENDM macro call is issued. (The last item for
which the user issued an MSPUT macro call will still exist in the
user's work area.) The next action issued for this file or member
must be an MSCLOS or an ENDM macro call.

5. H there is room for another block in the file or member after the
current block, the current block is written onto the mass storage
device, pointers are set to the new current buffer, and Logical
I/O C returns to step 3.

Action Macro Calls (for Partitioned Sequential Files Only)

SET PROCESSING TO BEGINNING OF SPECIFIED MEMBER (SETM)

The set member function is initiated by the SETM macro call. When this action is

performed, processing is set to the beginning of the member specified in the SETM macro

call in the processing mode designated.

When performing the set member function for a member that is to be processed in the

input-only mode, Logical I/O C performs the following steps.

1. Logical I/O C attempts to locate a member index entry for an undeleted
member whose name is the same as that specified. H no such name
exists, an exit to the user is made to indicate this condition. Logical
I/O C does not expect a return to the SETM macro routine if this exit
is taken; however, a new action can follow if this exit is taken.

3-17 #5-6l:8

SECTION III. LOGICAL I/O C

2. When the member index entry for the specified member is located, Logical
I/O C sets the address of the member's first item in the file's communi
cation area.

3. A processing mode indicator is then set in the file's communication area,
and Logical I/O C returns to the user's main line coding.

When the member is to be processed in the input/output mode, Logical I/O C performs the

set member function as described for the input-only mode, except that the processing mode

indicator is set to input/output processing in the file's communication area.

When the member is to be processed in the output-only mode, Logical I/O C performs the

following steps in executing the set member function.

1. Logical I/O C attempts to locate a member index entry for an undeleted
member whose name is the same as that specified. If this entry is found,
Logical I/O C skips to step 5.

2. If Logical I/O C cannot locate a member index entry for an undeleted
member whose name is the same as that specified, it verifies that there
is room in the member index and that there is data space for another
entry. If room is not available in either place, exits to the user are
available. If either exit is taken, the user cannot return to this set
member function, but he can issue a new action macro call.

3. If room exists for another entry, an indicator is set in the file's com
munication area to signify that a new member is being created.

4. Logical I/O C then sets the address of the first item of the unused area
into the file's communication area and performs step 8.

5. Logical I/O C checks the status of the member to see that it is available
for output-only processing. If the member is unavailable for output-only
processing, Logical I/O C exits to the user, allowing no return to this
set member function but allowing a new SETM or an MSCLOS macro call
to be issued.

6. If processing is in the locate item delivery mode, the address of the
leftmost end of the buffer area (into which the user's first item is to be
placed) is set into the user's address field.

7. The mass storage address of the member's first item is moved into the
file's communication area.

8. The processing mode indicator in the file's communication area is set
to indicate output-only processing, and Logical I/O C returns to the user's
main line coding.

END PROCESSING OF CURRENT MEMBER (ENDM)

The end-member processing function is initiated by the ENDM macro call. When per

forming the end-member processing function, Logical I/O C performs the series of steps

listed below.

1. If the current member was processed in the input/ output or output-only
mode, Logical I/O C ensures that all buffers have been retranscribed

3 -18 #5-618

..

2.

SECTION III. LOGICAL I/O C

to the mass storage device and, in the case of output-only processing,
that an end-of-data item has been generated.

If the current member was processed in the output-only .mode and if
it was just created (i. e., it is a new member of the file), Logical I/O
C generates a member index entry for the new member and decreases
the length of the unused area entry for the new member index. If
necessary, Logical I/O C also generates a new "end-of-data in the
member index" entry for the file.

3. Logical I/O C sets an indicator in the file's communication area,
indicating that no member is open for processing, and returns to the
user's main line coding.

ALTER STATUS OF MEMBER (MALTER)

The alter member function is initiated by the MALTER macro call to change the status of

a member to: (1) deleted, (2) make the member available for output-only processing. (3) make

the member unavailable for output-only processing, or (4) rename the member. Note that a

change in member status, a change in member name, or both actions can be specified. When the

alter member function is performed, Logical I/O C performs the following series of steps.

1. Logical I/O C attempts to locate the specified member name in the member
index. Deleted entries in the member index are not examined. If the mem
ber name cannot be located in the member index, Logical I/O C exits to the
user, indicating the reason for the exit. Logical I/O C does not expect a
return to this alter member function if this exit is taken.

2. After locating the member name in the member index, Logical I/O C alters
the member as specified by the user.

a. The member's status is changed to "available" for output-only
processing.

b. The member's status is changed to "unavailable" for output
only processing.

c. The member's status is changed to "deleted" after Logical I/O C
verifies that the member is available for output-only processing.
If the member is not available for output-only processing, Logical
I/O C exits to the user to indicate this condition and does not
change the status of the member to "deleted."

d. The member's name is changed to the new name specified in
the MALTER macro call.

RELEASE COMPLETE FILE TO UNUSED STATE (MSREL)

The release function is initiated by the MSREL macro call. When this function is per

formed, the specified partitioned sequential file is released so that no members exist and the

complete data area of the file is available for reuse. Note that the file must be opened before

it can be released and that, when the release function is performed, verification of the avail

ability status of currently active members is not made. In performing the release function,

Logical I/O C performs the following steps.

3 -19 #5-618

SECTION III. LOGICAL I/O C

1. The end-of-index entry in the member index is moved to the second
position in the index.

2. The unused area entry in the member index (the first entry in the index)
is set to point to the first data block in the file.

Inserting Items in Files

Items can be inserted in indexed sequential and direct access files. The insert function

is requested by the MSINS macro call.

INSER TING ITEMS IN INDEXED SEQUENTIAL FILES

NOTE: MSINS can only be used in the input/output mode.

To insert an item in an indexed sequential file, Logical I/O C performs the following steps.

1. If the MSREP or an MSDEL has been issued for some previously retrieved
item, Logical I/O C ensures that the block containing that item has been
written back onto the mass storage device. If an MSEEK was the last action
issued for this file, Logical I/O C verifies that the item key for this MSINS
is the same as that for the prior MSEEK and clears the Seek indicator.

2 • Us ing the master, cylinder, and string indexes, Logical I/O C searche s for
the item position into which the user's item should be inserted. (If part of
the cylinder index is resident in memory and the item key does not fall within
the value range of the resident portion, the appropriate block of the cylinder
index area for the user's item is then read into the last block position of the
resident cylinder index area.) If an item position cannot be found, an exit to
the user is available to indicate this. If Logical I/O C takes this exit, it does
not expect a return to this insert function.

3. If the located item position contains an active item whose key is
equal to the key of the user's item, Logical I/O C considers the
user's key to be a duplicate item. If this happens, an exit is avail
able to indicate this. If Logical I/O C takes this exit, it does not
expect a return to this insert function.

4. Logical I/O C inserts the user's item into the located item position,
saving the item originally at that position if necessary.

5. Logical I/O C displaces items as necessary to find an inactive or
deleted item position to allow for the extra item in the file. This
process of displacement may progress from the prime data area to
the cylinder overflow area and then to the general overflow area.
All items displaced are maintained in the proper ascending order
of item key. If the cylinder or general overflow area is used,
Logical I/O C sets indicators in the file's communication area to
specify this for later interrogation by the user. If the high key
value of a prime data area string is altered, Logical I/O C updates
the string index item of the string accordingly.

6. If the general overflow area is exhausted during the displacement
process, an exit is available to the user. The user's item has
been inserted into the file. but the last item in the general over
flow area has been displaced out of the file. The displaced item
is available to the user at the time of the exit. If Logical I/O C
takes this exit. it does not expect a return to this insert function.

3-20 #5-618

•

SECTION III. LOGICAL I/O C

7. An option is available providing two special exits to the user during exe
cution of the MSINS macro routine for an indexed sequential file. If
selected, these exits occur while processing each data block affected by
the insert. The first exit occurs prior to inserting or moving items in the
block, and the sec;ond occurs prior to writing the block back onto mass
storage after inserting and moving of items has been done.

INSERTING ITEMS IN DIRECT ACCESS FILES

The insert function is initiated by the MSINS macro call and can only be used with direct

access files being processed in the input/ output mode.

NOTES: 1. Regardless of the parameters of the MSINS macro instruction,
searching for an available item position is always from the
bucket to the cylinder overflow area (if any) to the general over
flow area (if any). When an item position is not available,
Logical I/O C exits to the user to indicate this condition. A
return to this insert function is not anticipated by Logical I/O
C if this exit is taken.

2. When an insert operation is performed, an item is always moved
from the user's work area into a buffer regardless of the speci
fied item~andling mode.

3. Duplicate item key checking is not done by the insert function
because the programmer may check for duplicate by issuing
an MSGET macro call before each MSINS macro call.

When the programmer specifies the bucket into which he wants to insert an item, Logical

I/O C performs the following steps.

1. If an MSREP, MSDEL, or MSINS has been issued for some
item previously retrieved or to be inserted, Logical I/O C
ensures that the block containing that item has been written
back onto the mass storage device.

2. Starting at the beginning of the specified bucket, Logical I/O C
searches for the first available item position. When the cylinder
overflow area is entered, an indicator is set in the file's com
munication area. Another indicator is set when the general
overflow area is entered.

3. When the first available item position is located, Logical I/O C
places the item into it.

When the programmer does not specify the bucket into which he wants to place an item,

Logical I/O C starts searching for an available item position, beginning with the current item

position in the bucket, and the search is continued as in steps 2 and 3 above.

Deleting Items from Files

Items can be deleted from indexed sequential and direct access files. The delete function

is requested by the MSDEL macro call.

3 -21 #5-p18

SECTION III. LOGICAL I/O C

To delete items from indexed sequential or direct access files, Logical I/O C sets to

"deleted" the status character of the item to which the last MSGET macro call referred. It also

sets an indicator in the file's communication area specifying that the current block is to be writ

ten back onto the mass storage device.

Seeking a Desired Cylinder

In processing a direct access or indexed sequential file, the read/write heads of a disk

device can be positioned to the cylinder containing desired data by use of the MSEEK macro rou

tine. A subsequent data transfer to or from that cylinder can be performed after other process

ing has occurred while the read/write heads were moving into position. Cylinder -to -cylinder

access time on one volume can thus be overlapped, for example, with data transfer activities on

other volumes.

The programmer supplies the bucket or item key in the MSEEK macro call, and Logical

I/O C initiates a seek for the appropriate cylinder on the appropriate volume.

Setting Processing to a Specified Location

The set processing function sets processing to the first item position in an indexed

sequential file whose key value is equal to or greater than a key value supplied by the user.

This function is requested by the SETL macro call. In executing the set processing function,

Logical I/O C performs the following steps.

1. H a delete or a replace function was performed for some previously retrieved
item, Logical I/O C ensures that the block containing the item has been
written back onto the mass storage device.

2. Logical I/O C then searches (as described for the random get function for
items in indexed sequential files) for the first item position equal to or
greater than that specified by the user. H Logical I/O C cannot locate an
item position, an exit is taken. When Logical I/O C takes this exit, it does
not expect a return to this SETL function.

3. Logical I/O C then sets indicators, addresses, and key values in the file's
communication area to refer to the next item in each data area.

4. When this is completed, Logical I/O C returns to the user's main line coding.

PROGRAM ORGANIZATION

As stated earlier in this section, the MIOC macro routine is a segmentable series of sub

routines (see page 3-2). All the routines that make up MIOC can be resident in memory at the

same time, or MIOC can be segmented so that certain infrequently used routines remain on

mass storage until required. When segmentation is specified by the programmer, assignment

of segment names and segment loading is handled automatically by MIOC.

3-22 #5-618

SECTION Ill. LOGICAL I/O C

NOTE: A program which calls a segmented MIOC must have a segment name
specified by a SEG statement.

When requested, the following routines of MIOC are resident at all times and occupy a non

overlayable portion of memory:

1. Common coding,

2. Physical I/O control,

3. Get,

4. Replace,

5. Delete, and

6. Put.

When the programmer specifies that MIOC is to be segmented, designation of the insert

routine as resident or nonresident is arbitrary, but the following routines are nonresident when

requested. These are brought into a common overlay area in memory (defined by MIOC) as each

is required. The common overlay area defined by :MIOC is reserved on the basis of the memory

requirement for the largest nonresident routine:

1. Open,

2. Set member,

3. End member,

4. Close,

5. Alter member,

6. Release, and

7. Set location.

NOTE: When segmentation is specified, the open function normally is brought
into the common overlay area in several segments. These are loaded
one after another as the function progresses. The programmer, how
ever, can request that the open function be brought into the common
overlay area as a single segment.

LANGUAGE ELEMENTS FOR LOGICAL I/O C

Each of the macro routines described previously can be included in an Easycoder source

language program simply by writing a macro call for each desired routine. At assembly time,

these macro routines for which macro calls are included in the source-language program are

specialized and included in the machine-executable output of the assembler. The macro routines

are specialized, i. e., they are converted from general to special routines which are tailored to

the particular use desired. This is accomplished by means of parameters included in or excluded

from the macro call. The specialized macro routines are included in the program at the point at

3-23 #5-6.1 8

SECTION III. LOGICAL I/O C

which the macro call was written. The macro calls described later in this paragraph constitute

the language elements of Logical I/O C.

The type, location, operation code, and operands fields of the Easycoder coding form are

significant when writing a macro call. A macro call is identified as such by the contents of the

type field (column 6 on the coding form). Whenever a single macro call is written on more than

one line of the coding form, all lines used for that call must contain the letter C in the type field,

except that the last line used must contain the letter L. In the case in which a single macro

call is contained entirely within one line, that line must contain the letter L in the type field.

The letter C in the type field signifies that a given line (even if it is the first line) of a macro

call is a continuation line. The letter L in the type field signifies that the line (even if it is the

only line) is the last line of a macro call.

The name of the macro routine that performs the desired function is written in the operation

code field (columns 15 through 20 on the coding form). This name must be written on the first

(or only) line of the macro call. The macro routines are stored in the library file according to

their names, and the name written in the operation code field is used to locate the macro routine

in the library. No line, except the first line of a macro call, may contain the macro routine name

in the operation code field.

The location field (columns 8 through 14 on the coding form) on the first line of the macro

call contains parameter 0 of that macro routine. The value of this parameter is defined by each

macro call. Note that parameter 0 of any macro call is the only parameter that need not be

followed by a comma.

The remaining parameter values for a given macro call are written in the operands field

(columns 21 through 62 on the coding form). A macro call may contain as many as 63 parameters.

All parameters except 0, i. e., parameters 1 through 63, are written in numeric order in the

operands field, starting at column 21. A parameter value may be up to 40 characters in length

and may be composed of any set of characters except the comma. The comma is used to termi-

nate each parameter and, therefore, cannot be a character in a parameter value. Each parame

ter written in the operands field must be terminated by a comma. If a parameter is to be omitted

from a macro call, its terminating comma must follow the terminating comma of the preceding

parameter. To illustrate this, the macro call for the get function (when used with direct access

files) can contain as many as three parameters in the operands field. That is, the programmer

can specify a file tag and a bucket address, a file tag and an item key, or both bucket address

and item key as well as the file tag. If the programmer intends to specify only the file tag and

the item key, he omits the bucket address (parameter 2) and includes its terminating comma,

as shown in Figure 3-1.
3-24 #5-618

SECTION III. LOGICAL I/O C

CARD a LOCATION
OPERATION OPERANDS NUMBER CODE

12S45. 7 • 1415
Z< " O21A. ."

I :
I I >
i I
I I (,
i I MSGET Fi r KEY
I I

I

i I

I I

10 !)

Figure 3 -1. Omission of Single Parameter from Macro Call

In Figure 3-1, the name of the macro routine which performs the get function is MSGET

and is written in the operation code field. Because this macro call only occupies one line on the

coding form, the type field contains an L, indicating that this is the last line of this macro call.

Parameter 0 of this macro call, normally written in the location field, is omitted. Parameter 1

has the value FI and identifies the file to which this get function is directed. Parameter Z, th«

bucket address, is omitted, but its terminating comma is inCluded. Parameter 3 has the value

lKEY which points to the location at which the identification field of the item is located. Note

that if the terminating comma of parameter Z were omitted, the assembler would interpret the

item key as being the bucket address.

When the macro call contains several parameters, as in the case of the MIOC macro call,

another method of omitting parameters can be used in conjunction with the method just described.

To illustrate this, the MIOC macro routine does not presently use parameters 5 through 9. The

programmer can write the macro call for MIOC as shown in Figure 3- 2.

CARD n LOCATION
OPERATION OPERANDS NUMBER COOE

I Z J • 15 • 7 • 1415 . 20 21 02~ • ."
I :
I I ~ ~E MIoe ~ 1 1
i I •. 0 l4\
! I

Figure 3-2. Omission of Consecutive Parameters from Macro Call

In Figure 3 -2, parameter 0 contains the value MINE which, at assembly time, is equated

with the lowest memory location that this MIOC routine occupies. Parameter 1 has the value $

which identifies this unique specialization of the MIOC routine. Parameter 2 has the value 1,

signifying that the program that contains this specialized MIOC routine will process sequential

files in the input/output mode. Parameter 3 is omitted, but its terminating comma is included.

The omission of parameter 3 actually indicates that this specialized MIOC routine does not pro

cess partitioned sequentialfiles. Parameter 4 has the value 1, indicating that this specialization

3-25 #5-618

SECTION III. LOGICAL I/O C

of the MIOC routine will process direct access files in the input/output mode. Notice that pa

rameter 4 is followed by a comma and that parameters 5 through 9 are omitted. These are

omitted by writing on the next line of the coding form (in the first two columns of the operation

code field) the number of the next parameter to be included and the value of that parameter,

starting in the first column of the operands field. Only a consecutive series of parameters can

be omitted in this manner. The programmer continues writing parameters consecutively in the

operands field, using as many additional lines as required, until all of the parameters of the

macro call have been accounted for. Notice in Figure 3-2 that the first line of the macro call

contains a C in the type field and that the last line contains an L in this same field.

Input/Output Control Macro Routine (MIOC)

One MIOC macro call is required for each program that uses the facilities of Logical I/O C.

When the programmer specializes more than one MIOC in a single program, each MIOC must

originate at the same memory location. By including more than one MIOC in a single program,

various file requirements can be handled. However, only one MIOC can exist in memory at any

given time. The method of achieving uniqueness between tags when more than one specialization

of MIOC is used in a single program is explained in Table 3-4 in the description of MIOC para

meter 1.

MIOC MACRO CALL

The following example illustrates the method of coding the MIOC macro call.

CARD LDCATION OP£IIATION OPERANDS NUMBER R COD£

12S.$' 7 • 1415 2 2'
I 1 L an.lt'ct(lCl. ~lOC parO.meTe r ~1p.Q.r.a.ltt4.T 4. r n
I I v

3-26 115-618

,.

00

" N
..0

" C1'
..0

\JV ,
N
-.I

=11=
\.TI
I
C1'
00

c

Number

00

01

02

03

Name

Base

Unique
character

Sequential
file
functions

Sequential
file
options

0: (,

(

Table 3 -4. Parameters of MIOC Macro Call

Value Function

Any tag Tag is equated with the lowest memory
location occupied by the MIOC macro
routine.

See A single character incorporated in each
"Comments" tag used by this specialization of MIOC.
column for Used to achieve tag uniqueness when
valid char- more than one specialization of MIOC
actersi see is being used in a single program and to
also Note 5. ensure that a user tag does not duplicate

any tag in MIOC.

~ Sequential files will not be processed
by this specialization of MIOC.

1 Input/output or both input-only and
input/output processing.

2 Output-only processing.

3 Input-only processing.

4 Input/output and output-only or all
three types of processing.

5 Input-only and output-only processing.

~ The sequential files to be processed
are not partitioned.

PARTITION At least one of the sequential files to
be processed is partitioned.

(

Comments

Optional.

Required for each MIOC macro
call. Valid characters are
shown below.

Key Punch Print Symbol

(+,8,5) 0/0 I
til

(+,8,6) •
(-,8,3) $

tz:I
(1 .,

(-,8,5) "
0

(0, 1) / z
(0,8,5) C R :::

Coding pertaining only to se-
quential files is eliminated. 5

9
(1

>
t"'

Code indicates type of sequential
file (including partitioned se-
quential) proce s sing. When the

.....
" 0
(1

parameter is not omitted, one
of these codes must be used.

Cannot be used when parameter
02 is blank..

-

I.>l ,
N
00

'*'
U1
I
0"-

00

Number

04

05

06

07

(

Name

Direct
access
functions

Direct
access
processing
mode

Indexed
sequential
file
functions

Indexed
sequential
processing
mode

Table 3-4 (cont). Parameters of MIOC Marco Call

Value Function Comments

!l Direct access files will not be Coding pertaining only to direct
processed by this specialization of access files is eliminated.
the MIOC macro routine.

1 Input / output or both input- only and Code indicates the t)Tpe of direct
(see note 2) input/output processing. access file processing. When the

2 Input-only processing.
parameter is not omitted, one of
these codes must be used.

!l Both sequential and random process- This parameter is valid only if
or ing of direct access files is required parameter 04 is not blank.
BOTH of this MIOC.

This specialization of MIOC only
The MSINS macro call cannot be
used and the MSGET macro calls

SEQUENTIAL requires sequential processing of
used cannot contain bucket address

direct access files.
or key values.

This specialization of MIOC only The MSINS macro call can be
RANDOM requires direct processing of direct used and the MSGET macro calls

access files. must specify at least a key va lue.

!l Indexed sequential files are not Coding pertaining to indexed
processed by this specialization of sequential files is eliminated.
this MIOC.

1 Input / output or both input / output and Code indicates the type of indexed
(see note 2) input-only. sequential file processing. When

2 . Input-only processing.
the parameter is not omitted, one
of these must be used.

!l Both sequential and random process- This parameter is valid only if
or ing of indexed sequential files is parameter 06 is not blank.
BOTH required of this MIOC.

This specialization of MIOC only The MSINS macro call cannot be
SEQUENTIAL requires sequential processing of used and the MSGET macro calls

indexed sequential files. used cannot contain key values.

This specialization of MIOC only The MSINS macro call can be used
RANDOM requires direct processing of and the MSGET macro calls must

indexed sequential files. contain a key value.

(
1 (

• ., •

(fl

M
()
~

o
z
.....,
......

s
o
()

>
t"'
...... --o
()

uo
I
IV
-.0

"*' \.TI
I
CI'

€Xl

(

Number

08

09

10

11

Name

Residence of
cylinder index

Seek indicator

Segmentation
(see note 3)

Insert
coding
(see note 2)

u ~.

(

Table 3 -4 (cont). Parameters of MIOC Macro Call

Value Function

II Cylinder index for an indexed sequential
file is not to be resident in main memory.

RESIDENT Cylinder index is to be at least partially
resident.

.6. Indicates the MSEEK action macro routine
will not be called.

1 Specifies that the MSEEK action macro
routine will be used only on a direct
access file.

2 Specifies that the MSEEK action macro
routine will be used only on an indexed
sequential file.

3 Specifies that the MSEEK action macro
routine may be used on both direct access
and indexed sequential file s .

.6. In this specialization, MIOC will not be
segmented.

X In this specialization, MIOC will be
segmented.

.6. The direct access and indexed sequen-
tial files processed by this specializa-
tion of MIOC do not require the insert
function coding.

RESIDENT Insert coding for the direct access and
indexed sequential files processed by
the MIOC will be resident.

SEGMENT Insert coding will be nonresident for
this specialization of MIOC.

<.

Comments

Must be blank if parameter 06
(above) is blank.

Must be blank if both parameters
04 and 06 (above) are blank.

Any letter (A-Z) can be used.
This letter is assigned as the
first character of each segment
generated by MIOC. MIOC as-
signs the second character.

Must be blank when parameter
04 and 06 are blank or 2.

Insert coding will be resident
when parameter lOis blank.

Insert coding will occupy the
common overlay area, when
applicable.

til
M
C) ..,
.... o z
p

t'" o
9
C)

>
t'" --o
C)

v.>
I

v.>
o

=II::
\.11
I
0-....
00

Number

lZ

13

14

15

16

17

/

\

Name

SETM-ENDM
overlay
structure

Direct
access
bucket
addressing

Multiple
MIOC
indicator

Open
Segmentation

Alter
member
coding
requirements

Release
member
coding
requirements

Table 3 -4 (cont). Parameters of MIOC Macro Call

Value Function

a If segmentation is specified, the SETM
and ENDM macro coding is segmented
so that each routine is a separate overlay.

COMBINE The SETM and ENDM macro routines
are brought into the common overlay
area together.

a Direct access bucket addresses are
or relative.

RELATIVE

ACTUAL Direct access bucket addresses are
actual.

BOTH Both relative and actual direct access
bucket addresses are used.

a This program has only this one
specialization of MIOC.

MULTIMIOCS This program has more than this one
specialization of MIOC.

a The open macro routine will be seg-
mented in a way that will require the
least amount of memory.

COMBINE The open macro routine will be a single
continuous segment in the common
overlay area.

a The coding for the alter member
function is required in this MIOC.

NOMALTER This MIOC does not require the coding
for the alter member function.

a The coding for the release member
function is required by this MIOC.

NORELEASE This MIOC does not require the coding
for the release member function.

(
, ~ /I ".

Comments

Parameter lZ must be blank if
parameter 3 is blank.

Addresses are specified in
binary.

If the program has more than one
MIOC specialization, each spec-
ialization must have its own
unique character and each must
originate at the same memory
location.

This parameter has no signifi-
cance if parameter 10 is blank
(a).

This parameter has no signifi-
cance when parameter 03 is blank.

This parameter has no signifi-
cance when parameter 03 is blank.

(

CIl
tz:I
()
1-3
1-4 o z
I:l .
t" o
63
()

>
t"
1-4
o
()

~
I
~

=11=
U'I
I

'"
00

(

Number

18

19
through

24

25

26
through

28

29

30

31

Name

Multiple
volume
coding
requirements

Key
ve rific ation
requirements

Addre s s mode

Operator
control file
device type

I! t t

(

Table 3 -4 (cont). Parameters of MIOC Macro Call

Value Function

~ This specialization of MIOC will not
or process multivolume files.

SINGLEVOL

MULTIVOL This specialization of MIOC will
process multivolume files.

Not Applicable

~ Key verification is not used on indexed
sequential files being processed by
this MIOC.

KEYVER Key verification is to be made on items
being replaced in indexed sequential
files being processed by this MIOC.

Not Applicable

3 or~ MIOC will be assembled in 3 -character
address mode.

4 MIOC will be assembled in 4-character
address mode.

A control panel is used by the operator

~ control file.

220 A Type 220 Console keyboard/type-
writer is used by the operator control
file.

Not Applicable

'I

(

Comments

If at least one file processed by
this MIOC is a multivolume file,
MULTIVOL must be specified.

These parameters are reserved
for the use of the operating
system.

The use of the key verification
option is recommended when
items are to be replaced in in-
dexed sequential files.

These parameters are reserved
for the use of the operating
system.

The 4-character address mode
Supervisor must be used at exe-
cution time.

This parameter is reserved for
the use of the operating system.

I
I

en
t>=1
C1 .,
.....
o z
S

t"" o
9
C1
>
t""
.....
o
C1

------------------ ---

Uol
I

c..>
N

'=I\::
\]1

I
0-.....
00

Number

32

33

34
through

45

46

(

Name

Buffer
modes

Item-
handling
mode

Special
insert
exits

Table 3 -4 (cont). Parameters of MIOC Macro Call

Value Function

I:l. File processing functions will utilize
or two buffers.

DOUBLE

SINGLE File processing functions will utilize
one buffer.

BOTH Both single and double buffering is
required for files processed by this
MIOC.

I:l. Items are to remain in input buffers
or for user processing. and the user

LOCATE will place items in output buffers.

Items are to be moved to or from the
MOVE input/output buffers from or to a user-

supplied item work area.

Files processed by this MIOC require
BOTH both the locate- and the move-item-

handling mode s •

Not Applicable

I:l. There are no special exits (as defined
below) taken during an insert to an
indexed sequential file.

SPEC-EXITS During an insert to an indexed sequential
file. the MSINS action mac ro routine
takes two exits to the user while pro-
cessing each data block. The first exit
occurs prior to inserting or moving items
within a block. The second exits occurs
prior to writing a block to mass storage
after the ins erting and moving of items
has been done.

(
• II, II li"

Comments

See note I at end of ta ble. Only
one buffer is used in processing
indexed sequential files.

Locate mode is more efficient
when items are not usually to be
moved from one area of memory
to another but will merely be in-
terrogated and/or updated.

These parameters are reserved
for use of the operating system.

The data exit (parameter 43 of
MCA) is used for these exits.

'(

I

!

.

til
t<l
()
~

o z
s
t"'

8
()
)
t"'
..... -.
o
()

00 -N
-.0 -0-
-.0

u.>
I
u.>
u.>

==11=
UI
I
0-

. :x;

(

Number

47
through

49

50

51
through

56

51

52

53

Name

Physical
I/O e
requirements

Physical I/O e
parameter set

Suffix

Peripheral
address
assignment

Write
ve rific ation

.. "
(

Table 3 -4 (cont). Parameters of MIOe Macro Call

Value Function

Not Applicable

A. This MIOe will call Physical I/O e
or for specialization on the basis of

CALL parameters 51 through 56.

The user has called the appropriate
MPIOe mac ro routine. and the pa-

PRESENT rameter values used to specialize it
are the same as the values of param-
eters 51 through 56.

(see below) These values are used when this MIOe
macro routine calls MPIOC. They are
the same as parameters 01 through 06
of MPIOe.

See param- A unique suffix for all tage in MPIOe
eter 01 for macro routine.
valid char-
acters; see
also Note 5.

A. Honeywell-recommended peripheral
address assignment for the mass
storage control (04 octal).

xx Peripheral address assignment to
(octal) which the mass storage control appli-

cable to this MIOe is attached.

A Automatic verification coding is not
included.

V Write verification is to be done on some
file being processed by this MIOe •

(

Comments

These parameters are reserved
for use of the operating system.

A Physical I/O e macro routine
(MPIOC) that this MIOe can use
must exist in the program.

The user is required to specify
either the parameter values he
has used in his MPIOe macro
call (when parameter 50 =
PRESENT). or the parameter
values he wants MIOe to use
(when parameter 50 = Aor
r.AT.T,)

Required. May be the same as
parameter 01 of any MIOe in the
program. Must be the same as
parameter 01 of the MPIOe that
will be in memory when this
MIOe is in memory.

I

Ul
t"l
C"l .,
..... o z
:::

t" o e
C"l
>
t"
.....
"-o
C"l

v.>
I
v.>

""

*' V1
I
a.....
00

Number

54

55

56

NOTES:

(

Table 3 -4 (cont). Parameters of MIOC Macro Call

Name Value Function Comments

~ PCU number and R/W channel will The value of PCU contained in
Control of be specialized at assembly time a communications area (MCA)
more than using parameter 52 and may not is ignored.
one PCU be changed without reassembling.

M PCU number and R/W channel will The value for PCU in MIOC pa-
be specialized from the current com- rameter 52 is ignored. This
munications area (MCA) at execution value allows one MIOC to use
time. more than one PCU.

RWC definition ~ Read/write channel automatically This parameter is meaningless
specialized at assembly time depending if parameter 54 = M.
on parameter 52. (When parameter 52
is blank or S 7, an octal 56 is generated.
When parameter 52 > 7, an octal 76 is
generated.)

xx Specifies read/write channel configuration Must correspond to PCU sector
(octal) to be used for all data transfers. Cannot specified by parameter 52 and

be changed without reassembly. Must must include read/write channel
correspond to PCU sector specified by 3 of that sector. (Correspondence
parameter 52 and must include read/write is to actual sector and not to
channel 3 of that sector. value of sector bits, which are

See note 4, below, for permissible char-
coded differently in RWC and

acter values.
PC U variants.)

MSEEK ~ The MSEEK action macro routine cannot
indicator be called by this specialization of MIOC.

SEEK The MSEEK action macro routine may be
called for an indexed sequential or direct
access file.

1. A buffer is a user -defined area which Logical I/O C uses for reading and writing blocks onto mass storage.
The user specification of two buffers for use by a single file sometimes increases the efficiency of file pro-
cessing routines. This increase in efficiency is dependent on the size of blocks, the amount of processing
that will take place for each item in the block, the hardware characteristics which either allow or disallow
a transfer of more than one block per disk revolution, and the type of I/O function which normally is requested
for this file.

((
II \I, !! 1;'

I

til
M
()
t-1 o z
s
t"'

8
C1
>
t"'
o
()

;: ,t p

('(;(

00 Table 3 -4 (cont). Parameters of MIOC Macro Call
N
~

~ I NOTES: When processing several files simultaneously, the user should specify separate buffers for each file.
~ (cont)

\oW
I

\oW
(]1

=#:
(]1 ,
0-.....

'00

2. If inserting is required, parameter 11 cannot be blank.

3. If MIOC is segmented, the program within which it is called must specify a segment name.

4. Permissible octal values for parameter 55 are follo,/s: 53, 54, 55, 56, (I/O sector 1); and 73, 74, 75,
and 76 (I/O sector 2). Selection of a value depends primarily on the options available with the user's
equipment configuration. For example, 53 and 73 are possible only for a type 259A Disk Pack Drive,
and 54 and 74 assign a channel capacity greater than necessary. The usual values are 56 and 76. Refer
ence should be made to the table in the user's Series 200 Programmers' Reference Manual for PDT I/O
Control Character C 1.

5. When specializing the MIOC macro instruction to function in a program that also contains IOCC (I/O
Combination C) routines, the programmer must not use the single character $ (i. e •• keypunch -. 8,3)
as the value for parameter 01 or 51. I CIl

t'1
()
1-3
a z
......
I=:

t""
a
Cl
()

>
t""
......
a
()

SECTION III. LOGICAL I/O C

PARAMETERS OF MIOC MACRO CALL

Table 3-4 lists the parameters of the MIOC macro call. Note that the function of most

MIOC parameters is to insert into or eliminate from MIOC certain subroutines. Thus, a given

specialization of MIOC makes it as small as possible. A summary of the parameters of the

MIOC macro call is provided in Table 3-5.

Table 3-5. Summary of MIOC Parameter Values

Number Name Value Function

00 Base Anytag Equated with MIOe lowest memory location.

01 Unique (print Tag which uniquely identifies MIOe. Must
character characters) be specified. (See Table 3-4, Note 5.)

%,0, $,
" /, or e

R
,

02 Sequential A, 1, 2, 3, Specifies how sequential files are to be
file 4, or 5 processed. When left blank, no sequen-
functions tial files are to be processed.

03 Sequential A or Specifies whether sequential files are
file PARTITION partitioned or not. When left blank, par-
options titioning option is not used.

04 Direct A, 1, or 2 Specifies how direct access files are to be
access processed. When left blank no direct
file access files are to be processed.
functions

05 Direct A, BOTH, Specifies the processing mode for direct
access SEQUENTIAL, or access files. When left blank, the file
processing RANDOM can be proces-sed either directly or
mode sequentiall y.

06 Indexed A, 1, or 2 Specifies how indexed sequential files are
sequential to be processed. When left blank, indexed
file sequential files are not processed.
functions

07 Indexed A, BOTH, Specifies the processing mode for indexed
sequential SEQUENTIAL, or sequential files. When left blank, the file
processing RANDOM can be processed in either mode.
modes

08 Residence of A or Specifies whether blocks of the cylinder
cylinder RESIDENT index for an indexed sequential file are to
index be resident in main memory.

09 Seek A, 1, 2, or 3 Specifies whether MSEEK action macro
indicator routine is to be calle d 0 r not, and whether

for direct access and/or indexed sequen-
tial files.

10 Segmentation A, or A Specifies whether or not MIOe will be
through Z segmented. When left blank, segmenta-

tion is not to be used.

8/29/69 3 -36 #5-618

I '"

~.

SECTION Ill. LOGICAL I/O C

Table 3-5 (cont). Sununa.ry of MIoe Param.eter Values

Num.ber Nam.e Value Function

11 Insert coding ~, RESIDENT, Specifies whether or not insert m.acro cod-
or SEGMENT ing is resident. When left blank there will

be no insert coding.

12 SETM-ENDM ~ or Specifies how SETM and ENDM m.acro
overlay COMBINE routines are brought into the com.m.on
structure overlay area. When left blank, both

functions are brought into the overlay
area individually.

13 Direct access ~, RELATIVE, Specifies how direct access bucket ad-
bucket ACTUAL, or dresses are supplied. When left blaDk,
addressing BOTH relative bucket addressing is used.

14 Multiple ~ or Specifies whether there is m.ore than one
MIOC MULTIMIOCS MIOC m.acro routine in the program..
indicator When left blank, only one MIOC m.acro

routine is in the program..

15 Open ~ or Specifies how the open m.acro coding is
segm.entation COMBINE brought into the com.m.on overlay area.

When left blank, optim.um. segm.entation
is achieved.

16 Alter m.em.ber ~ or NOMALTER Specifies whether the coding for the alter
coding m.em.ber function is used. When left
requirem.ent blank, the MALTER m.acro call can be

used.

17 Release ~ or NORELEASE Specifies whether the coding for the re-
m.em.ber lease m.em.ber function is used. When
coding left blank, the MSREL m.acro call can be
requirem.ent used.

18 Multiple ~, SINGLEVOL, Specifies whether m.uItivolum.e files are
volum.e or MULTIVOL processed by this MIOC. When left blank.
coding only single volum.e files are processed.
requirem.ent

25 Key ~ or KEYVER Specifies whether key verification in in-
verification dexed sequential files is required. When
requirem.ent left blank. key verification is not used.

29 Address ~. 3. or 4 Specifies whether MIOC is to be as-
m.ode sem.bled in 3 -character or 4-character

address m.ode. When left blank. 3-
character address m.ode is used.

30 Operator ~ or 220 Specifies whether a control panel or
control file Type 220 Console typewriter is used
device type by the operator.

32 Buffer ~. DOUBLE. Buffering m.odes to be used with this
m.odes SINGLE. or MIOC. When left blank. double buffer,.

BOTH ing is used.

33 Item.- ~. MOVE or Method of delivering item.s to the user
handling LOCATE. or to be used in this MIOC. When left
m.ode BOTH blank. the locate m.ode is used.

3-37 #5-618

I

SECTION III. LOGICAL I/O C

Table 3 -5 (cont). Summary of MIOC Parameter Values

Number Name Value Function

46 Special insert ~ or Specifie s whether or not the set of two
exits SPEC-EXITS special exits will be taken during pro-

cessing of each data block by the
MSINS macro routine when called for
an indexed sequential file.

50 Physical I/O C ~, CALL, or Specifies how the appropriate MPIOC
requirements PRESENT macro is called or specialized. When

left blank, MIOC calls MPIOC.

51 Suffix See parameter Identifie s the MPIOC tag. Must be
01 specified.

52 Peripheral ~, xx (octal) When left blank, 04 (octal) is used.
address
assignment

53 Write verifica- ~ or V Specifies whether write verification is
tion required. When left blank, write verifi-

cation is not required.

54 Control of more ~ or M Specifies how the address of the periph-
than one periph- eral control unit is specialized. When
eral address as- left blank, only one control unit is used.
signment

55 RWC definition ~ or xx (octal) Specifies read/write channel when param-
eter 54 =~ • Cannot be changed without
reassembly.

56 MSEEK ~ or SEEK Specifies whether or not the MSEEK
indicator action macro routine may be called.

57 LOKDEV ~ or LOKDEV Specifies whether or not the LOKDEV
action may be called.

File Description Macro Routine (MCA)

One file description (MCA) macro call is required for each file to be processed by

MIOC. The MCA macro call automatically generates a Physical l/OC file description macro

call (MPCA). The communication area set up by MPCA has the same file tag that is specified

in parameter 00 of the MCA macro call. (Physical I/O C is described in Appendix D of this

manual.) The programmer can interrogate certain fields of the communication area set up by

MPCA, but he should never alter the contents of these fields, since they are used by Logical

I/O C.

All volumes of one file must be included in the same device class. The device classes

follow.

Class Device Type

A 258, 259, 273, 259A, 2S9B
B 155
C 261, 262

-

1/05/70 3-38 #5-618

' ..

SECTION III. LOGICAL I/o C

MCA MACRO CALL

The following coded example illustrates the method of writing the MCA macro call.

CARD
LOCATION

OPEIIATlON OPERANDS NUMBER coot:

IZI.'. 1 • 1415 ZOZ.
I l 1+0.0. lMeA ''-ell'" .<M .' ... - """"\II.TIL \"\
I w

The parameters required for MCA and their standard values are listed in Table 3-6. A

summary of the MCA parameter values is provided in Table 3-7.

IC

8/29/69 3-38.1 #5-618

Num.ber

00

01

02

03
through

09

10

11

12

Name

File tag

Unique MIOC
character

Volume
address

I/O buffer
address

Alternate
buffer

Item
delivery
mode

SECTION III. LOGICAL I/O C

Table 3-6. Parameters of MCA Macro Call

Value

One, two,
or three
characters

See parame
ter 01 of
MIOC for
possible
values.

Tag

Not
applicable

Tag

Tag

l1 or
LOCATE

MOVE

Function

Used to achieve unique
identification of the
communication area
for this file.

Associates this commu
nication area with the
appropriate MIOC.

Specifies the direct
address of the leftmost
character of a user
supplied table which
contains the device
addresses of the vol
um.es containing the
file.

Specifies the address of
the leftmost character
of a user-supplied
buffer to be used for
data transfers.

This file is processed
in the single buffer
mode.

The address of a sec
ond user-supplied
buffer.

The address of the
item in the buffer is
delivered to the user.

Hems are delivered
from/to the buffer tot
from the user-supplied
work area.

3 -39

Comments

Required. The
programmer uses
this tag in action
macro calls when
referring to this
file.

Required. Must
be the same as
parameter Olaf
same MIOC call
in this program.

See Note 1 at end
of table for the
format of the user
supplied table.

These parameters
are reserved for
the use of the
operating system.

See Note 2 at end
of table for the
format of the user
supplied buffer.

If this parameter
is assigned a value,
double buffering is
used. See Note 2
at end of table for
the format of the
buffer. Must be
blank for indexed
sequential files.

Optional. When
left blank, the
locate- item- deliv
ery mode is used.

#5-61~

Number

13

14

15

16

17

SECTION III. LOGICAL I/O C

Table 3-6 (cont). Parameters of MCA Macro Call

Name

Item linkage

Insert item
linkage

Insert item
work area

Second
insert
item
work
area

Units of
allocation

Value

Tag

Tag

Tag

Tag

Function

Specifies the direct
addres s of the right
end of a user-supplied
address storage area
(i. e., of an index reg
ister or a DSA).

No inserting will be
done.

Specifies the direct
address of the right end
of user-supplied address
storage area that points
to the leftmost character
of a user-supplied work
area.

Comments

Required. See
Note 3 at end of
table.

Applies only to
direct access and
indexed sequential
file processing.
See Note 4 at end
of table.

Items will not be inserted See Note 8 at the
into indexed sequential
files.

Points to the leftmost
character of an item
storage area reserved
by the user.

Items will not be inserted
into indexed sequential
files.

Points to the leftmost
character of a second
item storage area
reserved by the user.

Specifies that this file has
one data unit of allocation.
Not valid for indexed se-

end of this table.

See Note 8 at the
end of this table.

Optional, except for
indexed sequential

I-____ -H-_________ I-'-______ t-_q.:.,u_e_n_t_i_a_l_f_i_l_e_s_. ______ 4 files. When left

18 Direct access
bucket ad
dressing mode

Tag

~ or
RELATIVE

ACTUAL

3-40

Specifies the direct address blank, Logical I/O
of the left end of a user -sup- C generates a single
plied table into which the field table. See Note
units of allocation for this 5 at end of table for
file are placed when this file the format of the
is opened. Mandatory for user -supplied units
indexed sequential files. of allocation table.

Buckets are relatively
addressed in binary for
this file.

The actual key in binary
is supplied for buckets in
this file.

Optional. When
left blank, the
relative bucket
addressing mode
is assumed.

#5-618

SECTION III. LOGICAL I/O C

Table 3-6 (cont). Parameters of MCA Macro Call

~., Number Name Value Function Comments

19 Not Applicable This parameter is
reserved for the
use of the operating
system.

20 File name Up to 10 Specifies the file Required. Must
characters name. be the same as

the file name
stored in the
volume directory.

21 Password A The file is not Optional. !fa
protected bya password is speci-
password. fied, the field

Tag Specifies the address of
containing the
password must be

the right end of a user-
word marked at

supplied field into which
the leftmost

the user has placed the
location.

password for the file.

The password sup-

plied for the file
must be exactly the
same as that as-
signed to the file
when it was allo-
cated.

22 These parameters
through Not Applicable are reserved for

24 the use of the
operating system.

A Key verification is not

,;
required for indexed
sequential files.

Specifies a direct Parameter 12
address referencing must be LOCA TE.

Key Tag the rightmost charac- Key storage area
25 verification ter of a user-provided must be the length

requirements key storage area. of an item key and
must-be word-
marked in its left-
most location.

KEYVER Key verification is re- Parameter 12 must
quired every time the be MOVE.
replace function is
requested.

26 Sequential A Specifies that indexed See Note 9 at the
key work sequential files will not end of this table.
area be proces sed sequen-

tially.

3 -41 #5-6,18

SECTION III. LOGICAL I/O C

Table 3 -6 (cont). Parameters of MCA Macro Call

Number Name Value Function Comments ~

26 Sequential Tag Points to the direct ad- Tag is the direct

I (cont) keywork dress of the rightmost address of the right
area character of a user- side of the key

supplied area for the storage area.
storage of item keys
from each current data
are a of the file.

27 Resident ~ Specifies that the cylin-
cylinder der index of an indexed
index area sequential file is not res-

ident in main memory.

Tag This tag defines the left- No punctuation is
most location of the resi- allowed in this area,
dent cylinder index area since it is for I/O
reserved by the user. use only.
The size of the area is
that required for the num-
ber of blocks specified
by MCA parameter 28,
plus three characters.

28 Size of ~ Specifies that the cylin-
resident der index is not resi-
cylinder dent.
index area

n (decimal n specifies the number ~

integer) of blocks of the cylinder
index that are to be
resident.

29 MSEEK ~ The MSEEK mac ro rou- This parameter
key work tine is not to be called for must not be blank
area an indexed sequential file. if the MSEEK rou-

Tag This tag specifies the
tine is to be called
for an indexed se-

direct address of the
quential file.

rightmost location of
the MSEEK key work
area. -
This area is generated The MSEEK key
by the user for storage work area must
of one item key when the have a word mark
MSEEK macro routine on the leftmost
is called for an indexed location. The size
sequential file. The con- of the area is that
tents of the area are of one item key.
compared with the item
key of a subsequent
MSGET routine, to
verify that both routines
refer to the same item.

.........---~

8/29/69 3-42 #5-618

SECTION Ill. LOGICAL I/O C

Table 3 -6 {cont}. Parameters of MCA Macro Call

Number Name Value Function Comments

30 Physical Serves as the suffix Required. Must be
I/O C character for the the same as the
suffix MPIOC macro call used unique character

for this MIOC. specified in param-
eter 51 of the MIOC
macro call with
which this MCA is
associated.

31 Protection a Permits no writing. Optional. When

Specifie s the protection
left blank, the file

xx
is protected from

{octal} to be observed for this
file.

any writing {see
Note 6 at end of
table}.

02 = Permit data
write.

06 = Permit A-
file write.

12 = Permit B-
file write.

16 = Permit A-
and B-file
write.

00 = Permit no
write.

32 Verification a V erific ation is not Optional. When
requirements required for this file. left blank, auto-

VERIFY All output data trans-
matic verification

fers for this file are
is not done.

automatically verified.

33 These parameters
through Not Applicable are reserved for

39 the use of the
operating system.

40 Volume Tag See Note 7 at end of Reason for exit:
directory table. This exit is

l. Exit from open
exit available whenever the

information to be con-
function for

veyed pertains to the
user interro-
gation and al-

volume directory.
teration of
VOLDESCR.

2. Exit from close
function for
user interroga-
tion and altera-
tion of
VOLDESCR.

3 -43 #5-p18

SECTION lll. LOGICAL I/O C

Table 3 -6 (cont). Parameters of MCA Macro Call

Number Name Value Function Comments

40 Volume 3. Unable to 10-
(cont) directory cate specified

exit file.

4. Password
check failure.

s. Password
checking not
specified in
MCA, but pass-
word exists for
the file.

6. User's unit of
allocation table
has overflowed.

7. Invalid format in

VOLALLOC.

8. Open found a
file volume
whose sequence
number is not
one greater
than the last.

9. Exit from open
to user when the
device address
table is not long
enough for the
required file
volumes in the
file.

10. The current
file volume
being processed
as input / output
does not contain
data.

II. A new file vol-
ume has to be
opened, and no
entrie s remain
in the device
address table.

NOTE: For cases
1 and 2,
APD pOints
to the left
end of the
VOLDESCR
item.

3-44 #5-618

SECTION III. LOGICAL I/O C

Table 3 -6 (cont). Parameters of MCA Macro Call

Number Name Value Function Comments

41 Index exit Tag See Note 7 at end of Reason for exit:
table. This exit is avail-

1. The set mem-
able whenever the in-
formation to be conveyed

ber function is
unable to locate

is pertinent to a particu-
the member.

lar file's member index.
2. The alte r func-

tion is unable
to loc ate the
member.

3. No room in in-
dex for the set
member func-
tion to create
another mem-
ber.

:: 4. The member is
una vaila ble to
the set member
function for
output-only pro
cessing.

5. The member is
unavailable to
the alter func-
tion for deletion

42 Not Applicable This parameter is
reserved for the
use of the operating
system.

43 Data exit Tag See Note 7 at end of Reason for exit:
table. This exit is

1. End-of-data
taken whenever the in-
formation to be conveyed

item detected

pertains to the file's
on an input

data.
function.

2. There is no
, room to output

the last item
requested by
the put function.

3. No data blocks
remain for the
creation of a
new member.

4. Unable to locate
an item key in
an attempt to
get an item.

3-45 #5-Q18

SECTION Ill. LOGICAL I/O C

Table 3 -6 (cont). Parameters of MCA Macro Call

Number Name Value Function Comments

43 Data exit 5. Unable to locate
(cont) an available

item position
while attempt-
ing to insert.

6. An invalid di-
rect access
bucket address
has been spec-
ified.

7. Indexed sequen-
tial ins e rt has
inserted an item
and finds that
all the overflow
areas are full.

S. Indexed sequen-
tial key verifi-
cation failed
while replac ing
an item.

9. Indexed sequen-
tial insert dis-
covers a dupli-
cate item key.

10. Set of two spe-
cial exits has
been requested
during indexed
sequential in-
serts by par am. -
eter 46 of
MIOC.

44 Device exit Tag See Note 7 at end of A list of causes
table. This exit is for this exit is
taken whenever the contained in Table
information to be con- 3-14.
veyed is pertinent to
the mass storage device
c.urrently being used
for this file.

3-46 #5-61S

NOTES: 1.

SECTION III. LOGICAL I/O C

Table 3 -6 (cont). Parameters of MCA Macro Call

The format of the user-supplied table that contains the device address of
the voluITles containing the file must be constructed as follows.

a. There must be as ITlany entries in the table as there are
devices associated with the file.

b. Each entry ITlust be three characters long and be word
ITlarked at its leftITlost location.

c. There ITlust be a record ITlark one character location
to the right of the last entry.

d. The forITlat of each entry in the table is "ppddOO" (octal), where:

pp ::; address of peripheral control unit and
dd = device nUITlber.

2. The forITlat of the user-supplied input/output buffer is as follows;

a. The buffer ITlust be as long as a block of inforITlation.

b. There ITlust be three record-ITlarked character locations to
the right of the buffer. No other record ITlarks ITlay appear
in the buffer.

c. IteITl ITlarks ITlay be set only within the current iteITl of a
buffer and only when the locate ITlode is being used. They
ITlust be cleared before Logical I/O C is reentered.

d. Any punctuation on the rightmost data character in the buffer

e.

ITlay be cleared by Logical I/O C. If the user requires punctuation
in this field, it is his responsibility to restore it.

Word ITlarks ITlay not exist in a key field in a buffer except for
the leftITlost position of a direct access key field at the tiITle Logical
I/O C is entered. Word ITlarks ITlay not exist in the buffer for an
indexed sequential file at the tiITle Logical I/O C is entered.

f. Punctuation cannot exist in a buffer used for partitioned sequential
processing for the set ITleITlber, end ITleITlber, alter ITleITlber, or
release ITleITlber function.

3. In the ITlove-iteITl-handling ITlode, the address storage area points to the left
ITlost character of a user-supplied work area where Logical I/O C places and
retrieves iteITls. This work area ITlust be the length of one item. and cannot
contain iteITl ITlarks at the tiITle Logical I/O C is entered. If key verification
of replaced items on indexed sequential files is to be perforITled, a word
mark can be set at the leftmost character of the key area and nowhere else.
In the locate-item-handling mode, the address storage area locates for the
user the leftmost character of the current item position in the current buffer.

4. The work area to which the address storage area points ITlust be the length
of one iteITl; the work area cannot contain iteITl marks at the tiITle Logical
I/O C is entered. An item to be inserted must be placed in the work area
by the user. The value of parameter 14 (to which this note refers) may be
the same as the value of parameter 13.

5. The format of the user -supplied unit of allocation table is as follows.

a. There must be at least as many fields in this table as the
maximuITl number of units of allocation for the file.

3-47 #5-618

I

NOTES:
(cont).

6.

b.

SECTION III. LOGICAL I/O C

Table 3 -6 (cont). Parameters of MCA Macro Call

Each field in the table must be eight characters long and
must contain a word mark in its leftmost location.

c. There must be a record mark in the character location
immediately to the right of the last field in the table.

Possible values for parameter 31 are as follows.

a. 02 = permit data write,

b. 06 = permit A-file write,

c. 12 = permit B-file write,

d. 16 = permit A- and B-file write, and

e. 00 = permit no write.

These possible values are specified in octal, as shown. Recall that the
control unit protection switches must be set to agree with the value chosen.
For a further description of file protection. see Appendix F of this manual.

7. This note applies to parameters 40. 41, 43, and 44. These parameters
constitute the four major exit categories. The user is required to inter
rogate a code to determine the exact cause of any given exit. This code
is set into a I-character DCW instruction that the user is required to
generate at one memory location less than the entrance point of each exit
routine. Before returning from the user's exit routine, the programmer
sets up another code in the same DCW location that indicates the desired
action. The tag, which the programmer specifies for these exits, points
to a user-supplied routine that must: (1) save the return address, (2)
interrogate a code for the cause of the exit. (3) take appropriate action.
(4) set up a return code, and (5) return to MIOC (when applicable). When
the programmer does not accommodate a particular exit, MIOC uses a
standard value to continue (if possible) or notifies the operator. depending
on the meaning of the exit.

At the time the exit is taken, the MCA field named "APD" points to data
pertinent to the exit (see Tables 3-9, 3-10, 3-11, and 3-12).

8. When items are being inserted into indexed sequential files. two item
storage work areas are required. Parameter 15 points to the first area.
Since this area is specifically for the use of Logical I/O C, punctuation
cannot be present in this area whenever Logical I/O C is entered. Punctu
ation does not exist in the area upon the normal return to the user's coding
from Logical I/O C. The tag of parameter 16 may point to an identical area,
or it may point to the same area that parameter 14 points to. If it does point
to the same area that parameter 14 points to, however, that area must not
contain punctuation when inserting is being done; when Logical I/O C re
turns to the user's coding, the item in the work area is not preserved.

9. The user -supplied item key storage area must have the following format.
a. For files with cylinder overflow, three fields are required.

Each field must be the length of an item key. and each field
must contain a word mark in its leftmost location;

b. Or. for files without cylinder overflow. two fields are required.
These fields must be the same length as an item key and must
be word-marked in their leftmost location.

3-48 #5-618

SECTION III. LOGICAL I/O C

Table 3-7. Summary of MCA Parameter Values

Number Name Value Function

00 File prefix One, two, or Used to achieve unique identification of
three characters this MCA communication area.

01 Unique MIOC See parameter Associates this communication area with
character 01 of MIOe for the appropriate MIOC.

possible values

02 Volume Tag Specifies the device address of the volumes
address containing the file.

10 I/O buffer Tag Specifies the address of the user-supplied
address input/output buffer.

11 Alternate a or tag When left blank, the file is processed in
buffer the single buffer mode. The tag specifies

the address of the user-supplied input/
output buffer.

12 Itern:-delivery a, LOCATE, Specifies the item delivery mode. When
mode or MOVE left blank, the locate mode is used.

13 Item linkage Tag Specifies the address of a user-supplied
address storage.area.

14 Insert item a or tag When left blank, no inserting is done.
linkage The tag specifies the address of a storage

area that points to the insert item.

15 Insert item a or tag When left blank, items are not inserted
work area into indexed sequential files. Tag points

to the leftmost character of an item
storage area.

16 Second a or tag When left blank, items are not inserted
insert item into indexed sequential files. Tag points
work area to the leftmost character of the second

item storage area.

17 Units of a or tag When left blank, the file has only one unit

allocation of allocation, except for indexed sequen-
tial files. The tag specifies the address
of the user-supplied units of allocation
table.

18 Direct ac- a, RELATIVE, Specifies the mode of addressing for
cess bucket or ACTUAL direct access file. When left blank, the

addressing relative address mode is used.
Inode

20 File naIne Up to ten Specifies the file naIne.
characters

21 Password a or tag When left blank, Logical I/O C checks for
a blank password field in *VOLDESCR*.
The tag specifies the address of the pass-
word the user is supplying for the pass-
word check.

3-49 #5-618

SECTION III. LOGICAL I/O C

Table 3 -7 (cont). Summary of MCA Parameter Value s

Number Name Value Function

25 Key verifica- tJ.. , KEYVER, Specifies whether or not key verification
tion require- or tag is used.
ments

26 Sequential key tJ.. or tag Specifies whether or not indexed sequen-
work area tial files are processed sequentially.

27 Resident cyl- tJ.. or tag Specifies whether or not the cylinder in-
inder index dex for an indexed sequential file is resi-

area dent in main memory. If resident, the
tag defines the leftmost location of the
cylinder index area.

28 Resident cyl- nor tJ.. Specifies number of blocks of the cylinder
inder index index that are resident. "n" equals any
area size number desired, expressed as a decimal

integer. Blank if the cylinder index is
not resident.

29 MSEEK key tJ.. or tag Specifies whether or not the MSEEK ac-
work area tion macro routine will be called for an

indexed sequential file. The tag defines
the rightmost location of a user -generated

- area for storage of one item key.

30 Physical I/O x Serves as the suffix character for MPIOC
C suffix macro call used for this MIOC.

31 Protection tJ.., 00, 02, 06, Specifies the protection to be used for
12, or 16, this file. When left blank, 00 is used.
(octal)

32 Ve rific ation tJ..or VERIFY Specifies whether or not output data trans-
requirements fers for this file will be verified. When

left blank, verification is not done.

40 Volume Tag or tJ.. Specifies the address of a user-supplied
directory exit routine. When left blank, this exit
exit is not taken.

41 Index exit Tag or tJ.. Specifie s the address of a user -supplied
exit routine. When left blank, this exit
is not taken.

43 Data exit Tag or tJ.. Specifies the address of a user -supplied
exit routine. When left blank, this exit is
not taken.

44 Device exit Tag or tJ.. Specifie s the address of a user -supplied
exit routine. When left blank, this exit
is not taken.

Communication Area Service Macro Routines (MLCA and MUCA)

There are two communication area service macro routines: MLCA alters the contents of

certain fields of the communication area, and MUCA moves the values of certain fields to the

userls own storage area.

3-50 #5-618

SECTION III. LOGICAL I/O C

MASS STORAGE LOAD COMMUNICATION AREA MACRO CALL (MLCA)

The MLCA :macro call provides the progra:m:mer with the capability of updating the contents

of certain fields in the co:m:munication area. To alter the contents of a particular field, the

progra:m:mer :must associate the field's :mne:monic designator with a :main :me:mory address. A

:mne:monic designator is a tag which Logical I/O C appends to the co:m:munication area tag that

the progra:m:mer specified as para:meter 00 of thi s file's MCA call. The :main :me:mory addre s s

is the address of the value to be placed in the co:m:munication area field. The MLCA :macro rou

tine :moves the user's field to the associated field in the co:m:munication area. As :many of these

pairs of :mne:monic designators and :main :me:mory addresses as are required can be specified in

I

a single MLCA :macro call. The following exa:mple illustrates the coding of the MLCA :macro call.

CARD
LOCATION

OPERATION OPERANDS NUMBER COOE

12545. 1 • 1415 2021 eo
I C CHANGE IMLCA Hi C,HGVfR. VE'R. MVP~T. PR.T

I IZ~RE:R.IZ Eel: ~UF PSL
i i NEWNAM .F rD..
I I

In this example, para:meter 01 (FL1) is a file prefix and is identical with para:meter 00 of

the MCA :macro call which generates this particular co:mmunication area. Para:meters 02, 04,

06, 08, and 10 indicate the addresses of :main :memory locations that contain infor:mation to be

placed in the communication area fields identified by the :mne:monic designators VER, PRT, ECT,

PBL, and FID. A complete list of the mne:monic designators is given in Table 3 -8.

Parameters 02 through 63 of the MLCA :macro call are treated in pairs. The first unit of

the pair is the main :me:mory addres s containing the value to be placed in the co:m:munication area,

and the second unit of the pair is the :mnemonic designator of the co:m:munication area field to be

updated. The first omitted (blank) main :memory address ter:minates the MLCA function. The

order in which the pairs are specified is not significant unless one field is to overlie another.

MASS STORAGE UNLOAD COMMUNICATION AREA MACRO CALL (MUCA)

The MUCA :macro call provides the progra:m:mer with the ability to access the contents of

certain fields in the co:m:munication area. The use of this :macro call corresponds to that of the

MLCA, except that the transfer of infor:mation is fro:m the co:m:munication area to :main :me:mory.

The following exa:mple illustrates the :method of coding the MUCA :macro call.

3-51 #5-618

10

1

I

SECTION III. LOGICAL I/O C

:~ n LOCATION
OPERATION OPERANDS CODE

11'451 1 • 141~ 20 1eo
I : L UNLOAD. MVCA FU LstADR .Inc
I

I
i I
I I
I I

I I
I I

i I

I I
I i
I I

COMMUNICA TION AREA FIELD DESIGNA TORS

Table 3-S lists the communication area fields that can be altered or interrogated by the

MLCA and MUCA macro calls, respectively. These fields are identified by the mnemonic

designator that the programmer specifies in the macro call.

Each alteration or interrogation of a field in the communication area is performed by an

Extended Move (EXM) instruction, moving from right to left (data bits only). The move is

stopped by an A -field word mark. Thus, in the case of MLCA, the user's word mark terminates

the move; in the case of MUCA, the word mark in the communication area field terminates the

move. Caution must be used in setting up the field in main memory and in using address arith

metic on the mnemonic designators.

For certain fields, either the MLCA or the MUCA macro call cannot be used. This

restriction is indicated in Table 3 -S.

Table 3 -S. Mnemonic Designators for Communication Area Fields

Mnemonic
Field Name Designators Contents

Current address CAD CAD is an S-character field in the format
DPCCTTRR. It is the actual address being used for
the current data transfer operation. The MLCA
macro call cannot be used for this field.

Protection PRT PR T is a single -character field (not word marked)
that reflects the protection the programmer requested
through parameter 31 of the MCA macro call. The
programmer can alter this field with an MLCA (using
octal values as shown for parameter 31 in Table
3 -6), since it is the programmer's word mark that
terminates the move. The MUCA macro call can-
not be used for this field.

Error count ECT ECT is a I-character field that shows the cumulative
number of rereads and rewrites that have been neces-
sary for the file.

3-52 #5-61S

SECTION III. LOGICAL I/O C

Table 3 -8 (cont). Mnemonic Designators for Communication Area Fields

Mnemonic
Field Name Designators Contents

Read/write RWC If parameter 54 of MIOC specifies more than one
channel control unit (i. e., contains M), then RWC is a 1-

character DCW which defines the read/write channel
to be used by Physical I/O C for subsequent opera-
tions. The read/write channel can be altered only
when the peripheral control unit number differs from
that used in a preceding operation. If parameter 54
of MIOC specifies one control unit (i. e. , is blank),
then RWC cannot be used.

Current peripheral PBL PBL is a DSA referring to the left end of the pro-
buffer grammerls buffer which most recently has had a

data transfer issued to or from it. This field can-.. not be altered after the file is opened •

Current buffer CBL CBL is a DSA that points to the left end of the pro-
grammerls buffer that is most recently receiving
items or delivering items to the programmer. When
single buffering is specified, this field must be the
same as PBL. The field cannot be altered after the
file is opened.

Address of APD Any time an exit is taken that allows the programmer
pertinent data to interrogate data retrieved by Logical I/O C, the

DSA designated by APD points to that data. Only
the MUCA macro call may be issued for this field.

Next user WCF Whenever a user exit is taken, WCF (a DSA) points
instruction to the return address in the userls code from the

last action call issued. The MLCA macro call can-
not be used for this field.

File FlO FID is a 10 -character field containing the file name
identification that the user specified as para{lleter 20 of the MCA

macro call.

Write verify VER The I-character field VER indicates whether verifi-
indicator cation is required for the file. An octal 40 indicates

that verification is required. An octal 00 indicates
that no verification is required. This field may be
altered at any time.

Bucket address- BKA BKA is a I-character field which, when equal to octal
ing mode 40, indicates that bucket addresses are actual. When

this field is equal to octal 00, it indicates that bucket
addre s se s are relative.

Overflow OVF The I-character field OVF indicates whether an in-
indicator dexed sequential or a direct access random function

has overflowed into either the cylinder or the general
overflow areas. A bit is set each time such a sit-
uation occurs. It is always reset to zero at the
beginning of any direct access function. The values
of this field (in octal) are as follows:

3 -53 #5-618

SECTION III. LOGICAL I/O C

Table 3 -8 (cont). Mnemonic Designators for Communication Area Fields

Mnemonic
Field Name Designators Contents

Overflow 00 = no overflow,
Indicator (cont) 40 = cylinder overflow,

20 = general overflow, and
60 = both cylinder and general overflow.

Current item RIC RIC is a 10-character field that shows the address
address of the last item retrieved by the user. The format

of the address is DPCCTTRRII (see note).

Relative volume RVL RVL is a I-character field that contains the relative
number volume number of the volume currently being

processed.
NOTE: D = device number.

P = pack number.
CCTTRR = mass storage record address for the first record of the item's block, a

track-linking record which points to the first record of the item's block,
or the first record of a partial portion of the cylinder previous to the
cylinder containing the item's block.

II = relative item position within the block.

If the block resides on a substitute track, CCTT contains the address of the substi-
tute track when one of the following conditions exists:

1. When sequential processing is being performed on any file type, and the block
is not the first block on the substitute track; or,

2. When direct-access processing is being performed, and the block is not the
first block on the substitute track, and is not the first block in a bucket,
prime data string, or cylinder overflow area.

Action Macro Calls

An action macro call is a request from the user for a particular input/output function. The

call is placed in line in the user's coding whenever he desires that function. The coding gener

ated from such a call specifies the communication area (MCA) applicable to the call, designates

the operation of the requested function, and conveys any additional information that the function

may need (e. g., the addresses of the bucket and item key in direct access files).

The following list defines terms frequently used in describing the action calls. The

action macro calls are summarized in Tables 3-2 and 3-9.

1. Location field tag. Whenever the user specifies a tag as parameter 00
of an action macro call, that tag will be equated to the operation code of
the first generated instruction of the action macro routine. This feature
is provided so that the user may branch directly to the coding generated
by an action macro call.

2. File tag. The file tag is a 1-, 2-, or 3-character tag for the file to
which the action is directed. This tag must be the same as parameter
00 of the appropriate MCA macro call.

3. Bucket tag. The bucket tag is the address of the right end of a user
supplied field containing a bucket address. The format of this field is
defined on page 3-71.

3-54 #5-618

..

4.

5.

6.

SECTION III. LOGICAL I/O C

Ker; tag. The key tag is the address of the right end of a user-supplied
fie d containing an item key. The format of this field is defined on pages
3-72 and 3-73.

Member-name tag. The member-name tag is the address of the right
end of a user-supplied l4-character field containing the name of the
desired member. This field must be word-marked at its leftmost
location.

New-name ta*. The new-name tag is the address of the right end of a
user-supplie 14-character field containing the new name for the member.
This field must be word-marked at its leftmost location.

The file tag applies to every action macro call and is either the first or only parameter of

each call. The bucket tags apply only to some action macro routines that can process direct

access files. The key tags apply only to some action macro routines that can process indexed

sequential and direct access files. The member name and new name tags apply only to some

action macro calls that pertain to partitioned sequential files.

OPEN (MSOPEN)

The MSOPEN macro call is used to open a file for processing. MSOPEN is coded as

illustrated in the following example.

CARD I~II LOCATION
OPERATION. OPERANDS NUMBER CODE

, 2] 4 5: • 7 • 1415 2021
I 1 II anl(;t"oQ ~~OPEN Ir.1 e. - toa IN/OUT L,1r.\VOL
I

I
1/ 1/ IN

,/

i I OUT ,
I I 1I1)1'\AT.E

1 !l
I I
I I

10

When opening a sequential file, IN/OUT, IN, or OUT must be specified. When

opening a partitioned sequential file, UPDATE must be specified if processing of members is

to be done in the input/output or output-only mode. Blank (~) must be specified if processing of

all members is to be done in the input-only mode. When opening a direct access or indexed

sequential file, either I N!OUT or IN must be specified. To open an indexed sequential or

direct access file for sequential processing from its beginning, LIMVOL may be specified. I
The following examples illustrate the MSOPEN macro call coding for opening each type of file.

EXAMPLE 1: Opening a sequential file for input-only processing. In this
example, the file tag is the 3 -character value of parameter
01, i. e., IMl. Parameter 02 has the value IN. Note the Lin
column 6.

CARD 1111 LOCATION
OPERATION OPERANDS NUMBER CODE

I Z J • I • 7 • 1415 2021
, I L IMSOPEN IM1 .IN

I I

8/29/69 3-55

.IC

#5-618

I

SECTION III. LOGICAL I/O C

EXAMPLE 2: Opening a partitioned sequential file in which processing of all
members will be in the input-only mode. In this example, the
value of parameter 01 is the single character 1. Parameter 02
is blank.

CARD
LOCATION NUMBER ~

I 2 :s .. 5 , 7 •

I
I I

OPERATION OPERANDS COOE

1415 2021
M:'OPENI

In this example, if any member of the partitioned sequential
file was to be processed in the input/output mode or output
only mode, then UPDATE would have to be the value of
parameter 02.

EXAMPLE 3: Opening a direct access file for processing the input/output
mode. In this example, the file tag is the 2-character value
of parameter 01, i. e., AA. Parameter 02 has the value IN /OUT.

CARD LOCATION
OPERATION OPERANDS NUMBER ~ COOE

12345' 7 • 1415 2021 ...
I i L IM~OPEN AA IN/OUT

EXAMPLE 4: To open a multivolume indexed sequential or direct access file
for sequential processing from its beginning, the open macro
call is coded as follows. The value of parameter 03, LIMVOL,
specifies the minimum number of file volumes to be opened
initially. Note that if the file is indexed sequential, the file
volume or volumes containing the mas ter / cylinder index and
the general overflow must always be online. Subsequent file
volumes are opened as they are encountered.

CARD
LOCATION OPERATION OPERANDS NUMBER ~ CODE

eo

eo

1214" 7 • 14" 2021 eo
I : iMSOP.EN FL1 , N./.OUT: L I.M~OL

CLOSE (MSCLOS)

The MSCLOS macro call is used to close all types of files. MSCLOS is coded as

illus trated in the following example.

CARD ~ LOCATION
OPERATION OPERANDS NUMBER COOE

I 2 3 4 5 • 7 • 1415 2021
I IMSCL~ PDQ.

I

In this example, it can be seen that the MSCLOS macro call requires only the file-tag

parameter. Note that when the file being processed is a partitioned sequential file, the

MSCLOS macro call must be preceded by the ENDM macro call when a SETM macro call has

been previously issued for· a member of the file.

GET (MSGET)

eo

The MSGET macro call is used to retrieve items from the file being processed. MSGET

is coded as illustrated in the following example.

3-56 #5-618

".

I

•

•
1

I

•

SECTION III. LOGICAL I/O C

CARD
~ IDeATION

OPERATION OPERANDS NUMBER CODE

1254" 1 • 1415 • ••,
I L M~ET i I ~-t"Qq .. b, u J .. ,.~ -:T.Q.Q /(4..\1 _ T".a.a
I I

v~

1....I£,d· -r,,~
.,.

i I ~."-LV-~"''''
I I NEXT .. 1

: ! ,k.a.V-T,QQ

I I IA u

! I

In processing sequential files, only the file tag can be used. In processing direct access

files, any of the values shown (except the last two) for parameters 02 and 03 may be used. The

bucket tag value can be either relative or direct. Notice that when only a key tag is specified

for direct access files, the value of parameter 02 must be blank, and its terminating comma

must be present. The value NEXT must be specified for direct access files when neither a

bucket tag nor a key tag is supplied. In processing indexed sequential files sequentially, only

the file tag can be used. For random processing of indexed sequential files, the key tag must be

specified as parameter 02. For a description of the searching sequence for the desired item in

a direct access file, refer to page 3-13.

CARD
NUMBER

I Z :s .. s
I
I I

CARD
NUMBER

I Z S .. S

I
I I

CARD
NUMBER

I ~ 3 .. 5

I

I

EXAMPLE 1: To get an item in a sequential file, or sequentially in an indexed
sequential file, the MSGET macro call requires only the file tag.
In this illustration the value of the file tag is XYZ , .

'I IDeATION
OPERATION

OPERANDS CODE

• 1 • 1415 2021
IMS<3ET X'<7

EXAMPLE 2: To get an item in a direct access file, a value for parameter 01
and for parameter 02 is required. The value of parameter 02
can, of course, be blank; but if it is blank, a value of parameter
03 is required. To illustrate this, the fc>llowing coding shows
the file tag as MOD, the bucket-tag value as unspecified, and
the key tag value as IKEY, which is the address of the right-
most location of the field containing the item key.

!!II IDeATION OPERATION OPERANDS CODE
• 7 • 1415 >OZI
'L IM~ET MOD A I KEY

EXAMPLE 3: To get the next sequential item in the bucket currently being
processed, the programmer codes the MSGET macro call with
only the value of the file tag specified for parameter Oland
with NEXT as the value of parameter 02. In this illustration,
the file-tag value is WED .

'I IDeATION
OPERATION OPERANDS CODE

• 7 • 1415 >OZ.
L IMS~ET !wED !oJ EXT

EXAMPLE 4: To randomly get an item in an indexed sequential file, the pro
grammer codes the MSGET macro call with the file tag speci
fied in parameter 01 and the key tag specified in parameter 02,
as shown below. In this example, the file tag is FLI and the
key tag is MYITEM.

3-57

•

.,

J
I

l

#5-618

SECTION III. LOGICAL I/O C

CARD y
LOCATION I OPERATION OPERANDS NUMBER ~ COOE

1214'. 1 • 141$ 2021 00

I I~<;'GET I"'L1.MVITEM
I I

REPLACE (MSREP)

The MSREP macro call is used to replace that last item retrived from a file. MSREP is

coded as illustrated in the following example.

CARD IIII LOCATION
OPERATION OPERANDS NUMBER COOE

I z 1 .. S • 7 • 14" 2021 00

I : IMSREP VAR
I

I

In the coded example of the MSREP macro call above. it can be seen that the call requires

only the file,tag parameter. This is shown as UAR in the example.

INSER T (MSINS)

The MSINS macro call is used to insert items into a direct access or indexed sequential

file. MSINS cannot be used with sequential files. l The insert macro call is coded as shown in

the following two examples. Example 1 is for direct access files. and example 2 is for indexed

sequential files.

CARD
LOCATION

OPERATION OPERANDS NUMBER U COOE
I 2 :s .. 5 I 1 • 1415 2 21 00

I : IMSINS 1+ i \ t. - tQq . Cbuc.k.d -TOlL}
I I • 'tA o.f'

"

CARD y
LOCATION

OPERATION OPERANDS NUMBER U COOE

I 2 1 .. 5 6 1 • '41' 2021 00

I : I~S'NS l/'ii4-:T.Q,Q, ,"'~.v-t".a,Q
I

I
U "

MSINS requires the file tag; the bucket tag can be either specified or unspecified. For a

description of the inserting process for direct access files. refer to "Inserting Items in Direct

Access Files" in this section. The following examples show both methods of coding this macro call

for direct access files. In each example. the same file tag (LOT) is used. In the first example.

the bucket tag is specified as BT AG; and. in the second example. it is unspecified.

CARD ~I~ LOCATION
OPERATION OPERANDS NUMBER COOE

I z 1 .. 5 • 1 • '415 202, 00

I I : IL IMSIN.S OT, BTAG .
I

I

CARD 1~li LOCATION
OPERATION OPERANDS NUMBER COOE

I z 1 .. , • 1 • 14" 2021 00

I IMSINS LOT.A
I

1 , _______ ~
Parameter 11 of MIOC must be specified as SEGMENT or RESIDENT if the insert call is to be
issued.

3-58 #5-618

I

I

I

SECTION III. LOGICAL I/O C

The following example shows the MSINS macro call coded for indexed sequential files.

In this example, the file tag is specified as F LX and the key tag as IKEY.

CARO I~I~ LOCATION 1 OPERATION OPERANDS NUMBER CODE

I 2 3 4 $ • 7 • 1415 2021 00

I L IMS\N~ Fl~ , KEY

DELETE (MSDEL)

The MSDEL macro call is used to delete 'the last item retrieved from a direct access or

indexed sequential file. MSDEL cannot be used with sequential file organization. The MSDEL

macro call is coded as shown in the following example. For this macro call, only the file tag

is required; in the example, it is shown as AB.

CARD vi! LOCATION
OPERATION

OPERANDS NUMBER K
CODE

I 2 3 4 5 • 7 • 1415
20 "

.... 00

I L M~~EL lAB
I I

PUT (MSPUT)

The MSPUT macro call is used to deliver items s~quentially to the file. This macro call

can be used only with the sequential file organization. MSPUT is coded as shown in the following

example. For this macro call, only the file tag is required; in the example, it is shown as X.

CARD vl~ LOCATION
OPERATION

OPERANDS NUMBER ~ CODE

I 2 :5 4 5 • 7 • 1415 2021 .. 63 00

I L IMSPUT Ix
I

SET MEMBER (SETM)

The SETM macro call is used to begin processing of the member specified in the macro

call. SETM can be used only with partitioned sequential file organization; it is coded as shown

in the following example.

CARD
LOCATION

OPERATION
OPERANDS NUMBER ~ CODE

I 2 :5 4 5 6 7 • 1415 2021 00

I : L SETM I'-"il ~- t:o.o.ln4.mb.z. .. -not'l'lO.-'t"OQ I.N/OUT
I I 1/

1/ ,~ IN ,
i I OUT
I I

SETM requires the file tag, the member name tag, and the processing mode parameter.

The following example illustrates the codjng of the SETM macro call.

3-59 #5-618

CARD
NUMBER

I IS" 5

I I
I I

SECTION III. LOGICAL I/O C

EXAMPLE 1: In this example. the member to be opened for processing is
tagged MEMTAG and the processing mode is to be the input/
output mode.

IJ LOCATION
OPERATION OPERANDS CODE

••• .41' 20
I~ET.~ IA&e ,M.EMTA.~ .1 N/o,u.T

END MEMBER (ENDM)

,"

The ENDM macro call is used to stop processing of the current member. ENDM applies

only to partitioned sequential files and is coded as shown in the following example. For this

macro call. only the file tag is required.

CARD
LOCATION

OPERATION OPERANDS NUMBER R COO!

12S4,6 •• 1415
20 "

.... ..
I L ENOM ile-tQa
I I 0

ALTER MEMBER (MALTER)

The MALTER macro call is used to change the specified member of a partitioned sequential

file. as directed by the parameters of the macro call. MALTER can be used only with partitioned

sequential files and is coded as shown in the following example.

CARD
1III LOCATION

OPERATION
OPERANDS NUMBER COOE

I Z J ... 5 ••• 1415 2021
1 I L It.\ALTER Irj I ~-:ta.a._nw.mb4.r -namQ,-t'Qa ' 'AVA I L n(.w-nam let - t.Q.Q.

I I u " UNAVAIL 7,.
w

i. i DELETE
I I I

MALTER requires the file tag, the member name tag, a change in member status or a

change in member name. A change in member status, a change in member name, or both

changes can be specified. The following examples illustrate the coding of the MALTER macro

call.

EXAMPLE 1: In this example. the member's status is changed from "available
for output processing" to "unavailable for output processing."
The member name tag is EFG. and the file tag is HIJ.

3-60 #5-618

SECTION III. LOGICAL I/O C

CARO OP£RATION
NUMBER n LOCATION COOE OPERANDS

I 2 , .. 5 • 1 • 141' 2021
I : L t-\AlT£R HIJ EF6 UNAVAI L
I

I
i I
I I

I

I I

I I I. I I
I I .. I I .. I I

"
I I .. I

II
I

11 I
II I
It I I

CARO
NUMBER

I 2:) .. 5

I

I I

CARD
NUMBER
12)456

I L
I I

i I
I I

I I I I

I

I I I

I I I

1

J I I 1 1 I 1 I

1

I I I I I L i

I I I I I 1 1

~.
I I

I I I I J. 1 I

I I 1

I I

I I I I I I I I

I I 1 I I 1 1 I I

EXAMPLE 2: In this example. the member's status is changed to "available
for output only processing." and its name is changed to the
contents of a field tagged NEW that contains the new member
name. The file tag for this file is KLM. and the member
name tag is NOP.

n LOCATION
OPERATION

OPERANDS COOE
• 1 • '4" 2021
IL MALTER KLM N.OPAVAI L NE:W.

EXAMPLE 3: In this example. the old member is deleted. The
field containing the new member name is tagged NEW.
file tag is RST. and the member name tag is UVW.

Ii LOCATION
OPERATION OPERANDS COOE

1 • 1415 2021
MAL TER IR~T UVW.Nf.W

RELEASE (MSREL)

.10

I

1

1

I

.-~.--'-

10

10

The MSREL macro call is used to restore the complete area occupied by a partitioned

sequential file to an unused status. MSREL can be used only with partitioned sequential files

and is coded as shown in the following example.

CARD
Ii LOCATION

OPE~ATION
OPERANDS NUMBER COOE

I 2 5 .. 5 • 1 • 141' 2021 10

I L MbREL /" II ~-ta.Q.
I

I \I

*

8/29/69 3-61 #5-618

SECTION III. LOGICAL I/O C

SET LOCATION (SETL)

The SETL macro call is used to start processing of an indexed sequential file at a

specified location. The location is specified by the value of parameter 02. When this macro

call is used, the file is processed sequentially from the location specified. SETL can only be

used with indexed sequential files and is coded as shown in the following example.

.-
CARD OPERATION

NUMBER ~
LOCATION COOE OPERANDS

12)45. 7 • 1415 2021 00

I s'ET.L C i I ~ -:t,~.., ,k.~y-1":Q.a
I " ...

SEEK (MSEEK)

The MSEEK macro call is used to position the read/write heads of a disk device on a spec

ified cylinder of that device. The Seek function does not cause the disk control to become busy.

A Seek may be performed for one disk device while the disk control is busy with data transfer

or other activities of another disk device connected to it. Whenever the user issues an MSEEK

macro cal1, a return is made to the main line of his coding while the Seek function is being exe

cuted. If a subsequent MSGET macro call is issued for the same cylinder, the read/write heads

will be correctly positioned. Efficient use of the MSEEK macro call can significantly improve

access time; for example, the Seek time required for execution of an MSGET macro routine can

be considerably reduced or eliminated.

The MSEEK macro call can be in either of two formats as shown in the following. The

first is for a direct access file; the second is for an indexed sequential file.

CARD y
LOCATION I OPERATION OPERANDS NUMBER R CODE K

I 2 3 4 ~ 6 7 • 14 I~ 2021 6263 80

I I
1- IMSEEK I~ilt-tao b",.:.kd -too

I
I I '" ...

CARD tli LOCATION
OPERATION

OPERANDS NUMBER K
CODE

, 2 3 4 5 6 7 • 1415 2021 6263 80

I L iMSEE: " If i I ,,- :ta,a., k.~v-tQ.a, ~~_J.

I
I - V

---"_L..

I I I
I I , I I I I I I

I I

i I

I I
I I

~

I I I ~ __ L....L _L.....J..

I I
~

Table 3-9 is a summary of act'ion macro call coding.

3-62

SECTION III. LOGICAL I/O C

Table 3-9. Surrunary of Action Macro Call Coding

Corrunand ParaIlleter 01 ParaIlleter 02 ParaIlleter 03 ParaIlleter 04 Notes

MSOPEN file -tag
IN/OUT 1,3
IN 1
OUT 2
UPDATE 2
~ 2

LIMVOL 7

MSCLOS file -tag

MSGET file-tag
bucket-tag key-tag 4
bucket-tag ~ 4
~ key-tag 4
NEXT 4,5
key-tag 8
~ 8,9,10

MSREP file -tag

MSINS file -tag
bucket-tag 4
~ 4
key-tag 8

MSDEL file -tag

MSPUT file-tag

SETL file-tag
key-tag

MSEEK file-tag
bucket-tag 4
key-tag 8

SETM file-tag
IlleIllber -naIlle-
tag IN/OUT

IN
OUT

ENDM file -tag

MALTER file-tag
IlleIllbe r -naIlle-
tag AVAIL 6

UNAVAIL 6
DELETE 6

new -naIlle - 6
tag

MSREL file -tag

3-63 #5-618

NOTES: 1.

SECTION III. LOGICAL I/O C

Table 3-9 (cont). Summary of Action Macro Call Coding

Either IN/OUT, IN, or OUT must be specified when opening a sequential
file.

2. UPDATE must be specified when opening a partitioned sequential file if
processing of members will be input/output or output-only. BLANK must
be specified if processing of all members will be input-only.

3. Either IN/OUT or IN must be specified when opening a direct access or
indexed sequential file.

4. Valid only for a direct access file.

5. NEXT is required for a direct access file when neither bucket nor item
key is specified.

6. Either a change in status (parameter 03) or a change in name (parameter 04)
must be specified. Both parameters 03 and 04 may be used.

7. Applies only to direct access and indexed sequential files. Open function
will open the minimum number of volumes to allow sequential processing
of the file from its beginning.

8. Valid only for indexed sequential files.

9. Required for sequential files.

10. Required for sequential get function in indexed sequential files.

PROGRAMMER'S PREPARATION INFORMATION FOR LOGICAL I/O C

The following paragraphs contain general and detailed information to assist the programmer

in using Logical I/O C. The subjects covered in these paragraphs are: Logical I/O C memory

requirements, program organization, read/write channel utilization, address mode, index

registers, direct access addressing, direct access item key specification, and exit and halt

codes.

Logical I/O C Memory Requirements

Depending on the number and nature of the functions required, the minimum memory

requirement for Logical I/O C is 3,500 characters. This figure assumes that MIOC is seg

mented and that the memory locations required for Physical I/O C are included.

Program Organization

The routines making up Logical I/O C are designed to take a minimum number of memory

locations in any given situation. This is accomplished first by generating only the required

coding for processing a given program's files, and, secondly, by segmenting the coding for

3-64 #5-618

SECTION III. LOGICAL I/O C

those functions that are required infrequently during program execution. Thus, while the coding

~ to open or close a file is required in any given program, this coding in a segmented program is

loaded into memory only when the programmer issues an action macro call for one of these func

tions. A multiphase program can further reduce the input/output memory -requirements by

specializing separate MIOCs with different processing capabilities for each phase. In multi

phase programs, tag uniqueness is ensured, since a unique character for all tags of each MIOC

is specified by the programmer. The unique tag capability allows any other macro routine in

the operating system to be specialized into the same program. Each MIOC called into a given

program must originate at the same memory location if they process a common MCA table.

MIOC SEGMENT A TION

If the programs incorporating Logical I/O C are to be loaded from mass storage or tape,

it is generally advantageous to use the segmentation option. If the programs are to be loaded

from a card deck, it is suggested that the segmentation option not be used without first carefully

reading the following paragraphs. Segmentation is accomplished by assigning any letter of the

alphabet as the parameter 10 value of the MIOC macro call.

When segmentation is desired, the program using Logical I/O C must specify segment names

to Mass Storage Easycoder Assembler C. Then, during assembly of the segment that contains

the MIOC macro call, Logical I/O C takes control of assembly segmentation until all the coding

for the requested resident and nonresident functions has been generated. The coding for the

resident functions is generated in the same segment of the program that contains the MIOC

macro call. The coding for each nonresident function requested is generated in separate seg

ments. Of this nonresident coding, the first segment is x 1, where x is the letter assigned as the

parameter 10 value of the MIOC macro call. The second segment may be x2, the third x3, etc.,

until all the nonresident function coding is generated. The last segment generated, always xZ,

consists of any coding supplied by the programmer that follows the call for MIOC in the segment

that contained the MIOC macro call. Segment xZ appears, regardless of whether coding supplied

by the programmer followed the MIOC macro call in its respective segment. This means that if

the segment containing the MIOC macro call contains coding after the MIOC call, this coding is

assembled in a segment different than the original. For the names of MIOC segments and their

respective positions on a binary run file, refer to Table 3 -10.

If the call to the Supervisor to load the segment containing MIOC is made in the normal

start mode, loading proceeds up to the end of the resident MIOC coding. At that point, there is

an Execute statement generated at assembly time by MIOC. This statement causes control to be

returned to a MIOC subroutine that requests the Supervisor to load the last MIOC segment, xZ,

without altering any communication area fields other than the segment name field. When the

SECTION III. LOGICAL I/O C

Supervisor completes this loading, control is returned to the location specified in the program

mer's Execute (or END) statement for the segment containing the macro call for MIOC. Note

that, in this case, the programmer cannot assume that his original segment name will be

preserved in the Supervisor's communication area.

When the call to the Supervisor to load the segment containing the MIOC macro call is

made in the return or special start mode, coding following the MIOC call is not loaded. When

coding does follow the MIOC call in the segment containing the MIOC call, it is the programmer's

responsibility to load that coding. This is accomplished by a request to load segment xZ.

For a description of the Supervisor's normal, return, and special starting modes, refer

to the ITlanual, Mod I (MSR) Supervisor (Order No. 616).

Figure 3-3 illustrates the principles of prograITl segITlent loading by the Supervisor. In

the norITlal starting ITlode, segITlent 01 would be loaded, followed by segITlent BZ. In the special

or return starting ITlode, only segITlent 01 would be loaded. Note that B is assuITled to be the

value assigned to paraITleter 10 of the MIOC ITlacro call and that the prograITlITler-originated

segment containing the MIOC ITlacro call is defined as segITlent 01.

Table 3-10. MIOC SegITlentation

If ParaITleter 10 IITlplies SegITlentation,
(PI0 = x), the function: Is Contained Within These SegITlent NaITles When:

Open ParaITleter 15 = Il ParaITleter 15 = COMBINE

VOLNAMES and VOLDESCR
Xl Xl

Processing
VOLALLOC processing X2
Direct access precalculations X3 - oITlitted when paraITleter 4 = Il
Indexed sequential precalcula- X4 - oITlitted when paraITleter 6 = Il

tions X5 - oITlitted when paraITleter 6 = Il
COITlITlon subroutines X7

Included only when partitioned sequential files exist

ParaITleter 12 = ParaITleter 12 = COMBINE

Set ITleITlber XC XC
End ITleITlber XS

Included only for sequential processing of indexed
Set location sequential files

XE

Included only if segITlentation of insert coding is
Insert specified (i. e. , paraITleter II = segment)

XG

3-66 #5-618

I

SECTION III. LOGICAL I/O C

Table 3- 10 (cont). MIOC Segmentation

If Parameter 10 Implies Segmentation,
(PIO = x), the function: Is Contained Within These Segment Names When:

Swap Included only if multivolume files exist (i. e.,
parameter 18 = MULTIVOL)

Common subroutines XM
Close volume processing XN
Open volume processing {XO

XP

Included only when partitioned sequential files exist
MALTER XU
Release XV

Close XY

Remaining user coding XZ

NOTE: Segments are found in alphanumeric order on a binary run file.

MIOC RESTRICTIONS

To accomplish segment loading, MIOC must utilize certain fields of the Supervisor's

communication area and make certain assumptions about other fields.

The following fields of the Supervisor's communication area are altered during the loading

of nonresident functions. These fields are restored to their original values, however, as soon

as a particular loading sequence is completed.

1. Segment name field:

2. Location 152 (octal):

3. Start mode fie ld:

4. Search mode field:

The segment name field (locations 112 and 113 octal)
are altered to contain the segment name of the cur
ently needed segment.

Location 152 octal is altered, on the basis of the last
requested nonresident function, to ensure that searching
for the next requested nonresident function is performed
most efficiently. This is done to ensure compatibility
with the Mod 1 (TR) Operating System.

The start mode field (location 160 octal) is altered to
the return start mode.

When the program's search mode includes visibility,
Logical I/O C always searches by program and seg
ment name and by visibility. When visibility is not
included, Logical I/O C always searches by program
and segment name. This is accomplished by preserv
ing the leftmost bit of the search mode field (location
157 octal) and altering the five rightmost bits to indi
cate 20 (octal).

Certain assumptions are made by Logical I/O C concerning the contents of other fields of

,,-----,. the Supervisor's communication area. These assumptions are included in the following list.

3-67 #5-618

SECTION Ill. LOGICAL I/O C

PROGRAMMER
ORIGINATED
SEGMENT (IN
CLUDING MIOC
RESIDENT CODING)

Segment 01

OPEN
SEGMENT

Segment Bl

• • •

CLOSE
SEGMENT

Segment BY

REMAINDER
OF

PROGRAMMER'S
SEGMENT 01

Segment BZ

Figure 3- 3. Program Segment Loading

3-68

Nonresident

Segments

#5-618

•

•

..

SECTION III. LOGICAL I/O C

1. Search mode field:

2. Program name field:

The assumption is made that the search mode field
(location 157 octal) contains a value other than 01
(visibility and relative position).

Any time a nonresident function is requested,
Logical I/O C assumes that the program name
field (locations 104 through III octal) contains the
program name that contains the current MIOC
macro call.

PHYSICAL I/O C RELATIONSHIPS WITH MIOC

MIOC does not issue PDT or PCB instructions. Rather, it interfaces with the Phys

ical I/O C program (MPIOC) which does issue such instructions. Normally, the program-

mer requests that MIOC call and utilize MPIOC. This request is made through parameter 50 of

the MIOC macro call. When the programmer wants .MIOC to call MPIOC, he must specify, via

parameters 51 through 54 of MIOC, the specialization of MPIOC that he wants. In some cases,

however, the programmer may want to call MPIOC himself. In this case, he assigns the value

"PRESENT" to parameter 50 of MIOC; he must also specify parameters 51 through 54.

When parameter 52 is equal to or less than 07, a 56 is generated. When parameter 52

is greater than 07, a 76 is generated. This ensures that all channels for the appropriate I/O

sector are used. Note that when a Type 257A Control is used, a 53 is generated.

PHYSICAL I/O C RELATIONSHIPS WITH MCA

The programmer is required to have one MCA for every file he intends to process in a

given program. Each MCA macro automatically generates a Physical I/O C communication area

macro call (MPCA). The programmer may desire to interrogate some of the fields in the MPCA;

he does this by writing an MUCA macro call. Because the MCA macro routine uses the MPCA

exclusively, the programmer should never attempt to alter the contents of any of its fields

(other than those listed in Table 3-7.)

Address Mode

The address mode for all Logical I/O C macros must be the same. Also, each time the

programmer enters Logical I/O C through a macro call or Logical I/O C returns to the program

mer (normally through an exit) from a macro routine, the address mode must be the same as

that of the macro calls. Furthermore, the address mode of an MPIOC that has been called by

the user must be the same as that of any Logical I/O macros associated with that MPIOC.

Index Registers

MIOC, together with MPIOC, uses and restores index registers X3, X4, X5, and X6.

These registers are restored to their original values whenever a return from Logical I/O C is

3-69 #5-6H3

SECTION III. LOGICAL I/O C

made to the user's coding. It does not matter whether the coding is in the main line of the pro

gram or in an exit routine. Index registers X3 and X4 are restored at the last possible moment

before the return is made. Hence, they should not be used as a linkage parameter (parameters

13 and 14 of MCA) to MCA. Index registers X5 and X6 can be used as linkage parameters, how~

ever, since they are restored earlier.

Index registers are saved and restored with MCW's. The MCW is performed between

respective registers and the DSA fields in MIOC. The length of the DSA fields is consistent

with the current addressing mode. MIOC sets its own index register values with LCA instruc

tions. Because of this, the programmer should always punctuate the registers in the normal

manner, viz., word marks should be placed in locations 10, 14, 18, and 22 in the 3-character

addressing mode and in locations 9, 13, 17, and 21 in the 4-character addressing mode. The

permanence of any other punctuation cannot be guaranteed.

Read/Write Channel Utilization

Two data transfer rates are applicable to mass storage devices. When Type 258, 259, or

273 Disk Pack Drives and Type 261 or Type 262 Disk Files are used, data transfer rates accom

plished by interlocking at least 1-1/2 channels (such as lA and 3 or 4A and 6) are required.

I When Types 155, 259A, or 259B Disk Pack Drives are used, a single interlocked channel suffices.

In the absence of any other directive, Logical I/O C utilizes channels 2 and 3 or channels

5 and 6 (depending upon the I/O sector) when operating with Type 258, 259, or 273 Disk Pack

I Drives; alternatively, it utilizes channel 3 or 6 when operating with Types 155, 259A, or 259B

Disk Pack Drives.

The user can change this assumption by setting parameter 54 of the MIOC macro call to

M and by specifying RWC as the communication area field designator in an MLCA macro call

(see Table 3~8). This action should be performed prior to opening the file. The RWC value

entered by means of the MLCA macro call must include channel 3 (for I/O sector 0) or channel

6 (for I/O sector 1). Permissible RWC values are shown as follows.

I/O Sector 0 I/O Sector 1

53 73
54 74
55 75
56 76

Direct Access Addressing

Direct access bucket addresses can be relative or actual. A relative bucket address is one in

which the address is the same as its ordinal numeric position from the beginning of the file. In

1/05/70 3-70 #5-618

•

SECTION III. LOGICAL I/O C

this case, the first bucket in the file is numbered 0000 (in a 4-character binary field) and each fol

lowing bucket increments this number by a binary one. An actual bucket address is one that is the

exact mass storage address of the first record of the bucket. When actual bucket addresses are

used in processing a multivolume direct acces s file, all volumes ofthe file must be mounted on the

same peripheral control unit. When a bucket address is not included in an actionmacro call, the

address ofthe bucket used in the last action macro call (either explicitly or implicitly) is used again.

The programmer must generate a field in which bucket addresses are stored. Bucket

addresses are then delivered to Logical I/O C from this field, whose rightmost location is speci

fied by parameter 02 of the action macro call. This field can have either of the following octal

formats.

1. Relative address field:

2. Actual address field:

Item Key Specification

This field must have four character positions, and the
leftmost of these must be word-marked. This field
contains the exact sequence number of the bucket
within the file. The sequence number of the bucket
is binary.

This field must have eight character positions, and
the leftmost of these must be word-marked. This
field contains the address of the first record in the
desired bucket. The record address is in the form
DPCCTTRR,

D =
P =
CC =

device number,
0,
cylinder number,

TT = track number, and
RR = record number.

NOTE: If the actual address is obtained from the RIC
field of the MCA communication area following
execution of the GET function, the actual
address may be invalid if the block is on a
substitute track. (See page 3-54.) This re
sults in the normal action taken for an invalid
bucket address.

For the get macro routine to retrieve an item, the item must contain an identifying key.

This key is specified by the programmer. The length and location within the item are specified

when the direct access file is allocated. This information is placed in the file description por

tion (*VOLDESCR*) of the volume directory. When an open function is issued, Logical I/O C

retrieves these fields from *VOLDESCR*.

DIRECT ACCESS

The address of the rightmost location of a field that contains the desired key value is

specified by parameter 03 of the get action macro call. When items are to be retrieved by

searching for the correct item key, parameter 03 of the get action macro call must be specified.

The field that contains the key value is set up by the programmer and must contain a word ma,rk

in its leftmost location. The corresponding key field within the item in the buffer cannot contain

a word mark; yet, if desired, the leftmost character of the item key field may contain a word

3-71. #5-618

I

SECTION III. LOGICAL I/O C

mark. The word mark set up by the programmer in the key-value field terminates the operation

when. the key-value field and the item key field are compared.

INDEXED SEQUENTIAL

In indexed sequential processing, when an item key is specified in an action macro call,

the address of the rightmost location is specified by parameter 02. The field that contains the

key value set up by the programmer must contain a word mark in its leftmost location. Word

marks cannot exist in the buffer at the time an action macro is executed. The word mark set

up by the programmer in the key-value field terminates the operation when the key-value field

and the item key field are compared.

Exits and Halts

There are four exits associated with MCA. They are summarized in tabular form in

Tables 3-11 through 3-14. Each exit pertains to a specific area of Logical I/O C processing.

These exits are specified in parameters 40, 41, 43, and 44 of MCA as follows:

1. Parameter 40 - volume directory exit,
2. Parameter 41 - index exit,
3. Parameter 43 - data exit, and
4. Parameter 44 - device exit.

As explained in Note 7 of Table 3-5, four exits are associated with Logical I/O C. Each

of these exits relates to a specific area of Logical I/O C processing. Since an exit may be taken

for one of a variety of reasons, a code is provided in a single user-provided character one

memory location less than the user's entrance point for each exit routine. The user may

interrogate this code for equality to a subset of the total number of values possible for a given

exit. When an equality does not exist, i. e., when the user has no interest in acting upon the

particular situation indicated by the current code, the user may return to Logical I/O C with a

request that it handle the situation as it normally would, had the exit not been specified. Namely,

it can continue processing in some cases, or it can notify the operator (either through a control

panel or console) of the condition and allow him to take appropriate action. When an equality

does exist (i. e., a situation exists for which the user has provided a programmed solution), he

returns to Logical I/O C with a request that it proceed in a particular direction. The user makes

return requests by placing a return code in the same user-provided location, as described above.

Sometimes an exit is taken because of a situation which causes Logical I/O C to anticipate no return.

For example, suppose that a programmer wants to specify a device exit (parameter 44 of

MCA) only to reattempt to correct read and write errors. The exit code for the read error is

06; the exit code for the write error is 10 (an unsuccessful write verification). The programmer

can specify one of three return codes to Logical I/O C. A return code of 21 means that Logical

I/O C is to automatically reattempt to correct the error. A return code of 52 means that

Logical I/O C is to ignore the error and continue processing, if possible. A return code of 40

means halt. The following coding illustrates the example described above.

3-72 #5-618

SECTION III. LOGICAL 1/0 C

N:RII 1 LOCATION
OPERATION OPERANDS CODE

125.5. 7 • 1415 . .. ".3 ..
I

'"
CALL rro MeA

I FLi IMeA 1 .. 121., ... ti2 ,,0.3 ...
i i L 4. ... DfX I To
1 I~ USER leXIT RO lIT I Nt:
11 [II
I 11* WHEN ITHI& IZO '-'TINE I~ ENTE~ED. THE. FOLLOWIN~ ocw WILL

1 ~"'T ~IN THE EXIT CODE.
I I
1 I WI-IEJoo. RETUR ~ TO "HE. I/O I~ MADE' TI:IE SAME DCW WILL

10 I : ~ONr F\.IN A <: lODE SPECIF"lING ~HE D£:'&I~EO ACTION.
I i i .. i i

II 1 I DCI IOCW ~1Sti.
" ! I OEJ(.IT ~ IMVRT iii SAVE RETURN
• i I CE /ZOErz. .~I .~6 ~eADErt2oR
II 1 CE WTER DCI 1~ WIi!ITf EriiWR

7 I I ~w 1.f1C4.4li.DCl JiAVE Jlo MESSAGE
II ! AMVRT Is. 0
• i i I2.DER IEQU IIr

20 I I IWTE.12. M,CW 1i1C21 Del REQUEST ~.riiEMP:r
• : 1 Is. MVRT-LA .LA I~ 'HE L.E.NGTH 01= AN APO ~£ss
2 I I NOP
3 I I

Table 3-11. Exit and Return Codes for Volume Directory Exits

Exit Return Return Code
Code Reason for Exit Code MeaninQ'

01 The volume directory description 10 Continue processing.
(*VOLDESCR*) for the file in the first
file volume opened has been read into 21 Reopen the file.
memory by the open function and can
now be interrogated. APD points to
the left end of the entry.

03 The file name cannot be located in 40 Halt or typewriter message.
* *VOLNAMES* by the open function. 21 Reopen the file volume.

04 The units-of-allocation table set up by 40 Halt or typewriter message.
* the programmer is not large enough to

hold all the units of allocation for this file. 21 Reopen the file volume.

05 A discrepancy exists in ~'VOLALLOC* 40 Halt or typewriter message.
* for this file. 21 Reopen the file volume.

11 At the end of file or file-volume pro-
* cessing (after the close function reads

VOLDESCR in memory and before it 10 Continue processing.
writes it back onto mass storage),
VOLDESCR can be interrogated. APD
points to the left end of the entry.

13 The open function is attempting to process a 40 Halt or typewriter message.
* file volume whose sequence number is not

one greater than the last file volume pro- 21 Reopen the file volume.
cessed. or one whose sequence number is
not zero during the 0 pen function for the
first file volume of a direct access or

'3 -7'3 . #5-618

SECTION III. LOGICAL I/O C

Table 3-11 (cont). Exit and Return Codes for Volume Directory Exits

Exit Return Return Code
Code Reason for Exit Code Meaning

13 indexed sequential file. The open
* function cannot continue until the volume

(cont) sequence number is corrected.

14 When this file was allocated, a password 40 Halt or typewriter message.
* was specified. This password provided

by this program is not correct.
21 Reopen the file volume.

21 The *VOLDESCR':' entry for a file vol- 10 Continue processing.
ume (other than the first of a multi-

21 Reopen the file volume. volume file) has been read into memory
by the open function and can be inter- 42 Halt or typewriter message;
rogated. APD points to the left end of a new file volume is open.
the entry.

23 The open function is attempting to open 40 Halt or typewriter message.
* a file that does not have a legitimate

Mod 1 (MSR) file organization. 21 Reopen the file volume.

24 When this file was allocated, a password 40 Halt or typewriter message.
was specified and there is no password

21 Reopen the file volume.
check requested in the MCA for this file.

33 A file is being opened, and the open 40 Halt or typewriter message.
function has reached the end of the device

21 Reopen the file.
table without being able to open all the
required file volumes of the file.

34 A new file volume for a multivolume file 40 Halt or typewriter message.
** needs to be opened, and no more entries

11 Continue processing.
remain in the device address table. The
number of additional volumes to be mounted
should equal the number of entries in the
device address table or those remaining
in the file before continuation is requested.
Not included in this comparison are those
devices reserved for the indexed sequential
master/cylinder index and general overflow
volumes. --,

~

43 A sequential file is being opened for input- 40 Halt or typewriter message.
only or input/output processing, and its

21 Reopen the file. sequential number is not zero.
52 Continue processing if pro-

cessing was to begin on other
than the first volume.

53 The open function is processing a file 40 Halt or typewriter message.
* volume as an input-only or input/output

file whose data status indicator speci- 21 Reopen the file volume.

fie s that the re is no data on the file
volume.

NOTES: * Logical I/O C executes a swap function between file volumes which operates
similarly to a close function followed by an open function. This function applies
only to sequential processing of all file types. Exit codes shown with "~,,, con-
tain the phrase "open function" or "close function" to refer to an action result-
ing from the MSOPEN or MSCLOS macro calls or to the analogous swapping
function. The swapping function is internal to Logical I/O C.

** Exit codes shown with "~'*" apply only to the swapping function.

3-74 #5-618

SECTION III. LOGICAL I/O C

Table 3 -12. Exit and Return Codes for Member Index Exits

Exit Return Return Code
Code Reason for Exit Code Meaning

03 The set member function (SETM) cannot 40 Halt or typewriter message.
locate the specified member in the member
index. No Issue new action, e.g., SETM

return to another member.

13 The alter member function (MALTER) cannot 40 Halt or typewriter message.
locate the specified member in this file.

No Issue new action, e. g., SETM
return to another member.

04 The set member function (SETM) has been 40 Halt or typewriter message.
requested to create a new member, but there
is no room in the member index for another No Issue new action, e. g. , SETM
entry. eturn to another member.

14 The set member function (SETM) has been 40 Halt or typewriter message.
requested to set the processing mode of an
existing member to the output-only mode, but No Issue new action, e. g., SETM

;;; the status of the member makes it unavailable return to another member.
for output-only processing.

24 The alter member function (MALTER) has been 40 Halt or typewriter message.
requested to delete a member whose status

No Issue new action, SETM
makes it unavailable for output-only processing e. g.,

return to another member.

Table 3-13. Exit and Return Codes for Data Exits

Exit Return Return Code
Code Reason for Exit Code Meaning

01 The MSGET macro call has been issued, and 40 Halt or typewriter message.
an end of file condition has been detected.

No Issue new action to continue
return processing.

11 The MSPUT macro call has been issued, and 40 Halt or typewriter message.
there is no more room in the file for another

No Issue new action to continue
item.

return processing.

12 The buffer contains a data block which will 10 Continue proc e s sing.
be altered during processing by the MSINS
macro routine. (This is the first of two exits
specifically requested by parameter 46 of
MIOC to be taken during processing of each
data block of an indexed sequential file in-
sert.)

22 The buffer contains a data block which has 10 Continue proce s sing.
been altered by the MSINS routine and will
be written back into an indexed sequential
file when processing continues. (This is
the second of two special exits. See above.)

34 The SETM macro routine has been requested 40 Halt or typewriter message.
to create a new member, and there is no roorr

No Issue new action to continue
in the file (no data blocks remain in the

return processing.
unused area) for a new member.

3-75 #5-618

Exit
Code

03

13

04

23

14

24

iNOTE:

Exit
Code

SECTION III. LOGICAL I/O C

Table 3 -13 (cont). Exit and Return Codes for Data Exits

Return Return Code
Reason for Exit Code Meaning

The MSGET macro routine cannot locate the 40 Halt or typewriter message.
spec ified item key.

No Is sue new action to continue
return processing.

The MSINS macro routine cannot locate an 40 Halt or typewriter message.
available item position. The insert item

No Is sue new action to continue
has not been placed in the file.

return processing.

An invalid bucket address has been specified 40 Halt or typewriter mes sage.
to the current direct access function.

No Issue new action to continue
return processing.

An item has been inserted in an indexed 40 Halt or typewriter message.
sequential file, and all the overflow areas
are full. Consequently, the last item No Issue new action to continue
previously in the general overflow area return processing.
has been shifted off the file. APD points
to the left end of this item.

Key verification has failed while replacing 40 Halt or typewriter message.
an item in an indexed sequential file.

No Issue new action to continue
return processing.

A duplicate item key has been detected 40 Halt or typewriter message.
while inserting an item into an indexed
sequential file. No Issue new action to continue

return processing.

The data exit must be specified, unless Logical I/O C never reaches a situation
described as a reason for exit, i. e., a situation in the "Reason for Exit" column
above.

Table 3-14. Exit and Return Codes for Device Exits

Reason for-Exit

01 Device inoperable.

02 Protection violation.

03 Device error (after five attempts to reposition the device).

04 Possible device failure.

05 The addressed record cannot be located (after five attempts).

06 Uncorrectable read error. The data, however, has been transferred
erroneously after ten attempts.

07 Uncorrectable read error. The data, however, has not been transferred
after ten attempts. (The header may contain a read error.)

10 Uncorrectable write error. The last write could not be verified after
ten attempts.

11 A track-linking record has been read into memory.

12 The attempt to link to the next track in this file has not been completed
after ten attempts.

3-76 #5-618

..

..

SECTION III. LOGICAL I/O C

The following return codes are applicable to all device error exits.

21 - Reattempt the operation that caused this error.

52 - Ignore the error and continue processing if possible.

40 - Halt or typewriter message.

OPERA TING PROCEDURES FOR LOGICAL I/O C

To communicate with the operator, Logical I/O C (1) halts with the B-address and A-

address registers displaying error information as described below or (2) pauses with messages

at the console typewriter.

Control Panel Operating Procedures

At the control panel, whenever Logical I/O C halts, the B-address register contains a

code describing generally what problem has occurred. For example, a code of 0401d (where d =

the device number) indicates that the problem is related to the open or close function. The

operator will often be able to locate and correct the error condition with no need for more

information than is contained in the B-address register. However, when he does need more

information, the operator can consult the A-address register. This register is set to the

beginning of a communication area containing the following fields:

1. Response field

2. Specific code field

3. File name field

4. Relative volume
number field

5. Volume name field

6. Peripheral address
assignment field

7. Device number field

8. Pack number field

9. Mass storage ad-
dress

A I-character field into which the operator is asked to key
a code indicating to Logical I/O C which action it is to take.

A I-character field containing, at the time of the halt, a code
indicating the exact nature of the problem for which the halt
occurred. Values for this code are found in Table 3-15.

A 10-character field that contains the name of the file being
processed when the error occurred.

A I-character field containing the relative volume number.
The first volume is relative volume zero.

A 6-character field containing the name of the next file-volume.

A I-character field specifying (in octal) the control unit currently
active for the file named in the file name field.

A I-character field specifying (in octal) the file I s current
device nurn.ber.

A I-character field specifying (in octal) the file I s current
pack number.

A 6-character field specifying, in binary, the mass storage
address (CCTTRR), for device error only.

Specific control panel halt code s for Logical I/O C -are listed in Table 3 -15.

3-77 #5-618

B-Address
Register

Value

0401d

SECTION III. LOGICAL I/O C

Table 3-15. Halt Codes for Logical I/O C

Specific
Code

03

04

14

21

23

24

05

13

33

34

Condition

There is a discrepancy
in the volume directory
which the open function
cannot correct; or the
Swap function has fin
ished processing a vol
ume or all volumes in a
device table.

The specified file has
not been found.

There are more units of
allocation for the current
file than the program
provides for in the units
of allocation table.

A password check, re
quested by the program,
has failed.

A new file volume is
being opened. The pro
cessing of the previous
volume is complete.

The open function is at
tempting to open a file
that does not have a legi
timate Mod 1 (MSR)
file organization.

A password exists on
the specified file and
password checking has
not been requested by
the program.

An uncorrectable condi
tion has arisen in the
units of allocation por
tion of the volume
directory.

The open function has
encountered a file vol
ume whose sequence
number is not one great
er than the last.

The open function has
reached the end of the
device address table
without opening all of
the required file
volumes.

A new file volume is re
quired to be opened, and
no entries remain in the
device addre s stable.

3-78

Operator Action

Inspect device and when possible
correct the problem. Usually,
the wrong volume will be
mounted.

To reopen the file-volume or, in
the case of specific codes 21 and
34, to continue processing, enter
an octal 27 (G) into the response
field (location specified by the A
address register) and press RUN.

To exit to the Supervisor's
emergency return address,
enter an octal 25 (E) into the
response field and press RUN.

#5-618

~. ,

B-Address
Register
Value

0401d
(cont)

0410d

0430d

SECTION III. LOGICAL I/O C

Table 3-15 (cont). Halt Codes for Logical I/O C

Specific
Code

43

Condition

The open function is opening a
sequential file, and the volume
sequence number is not zero.

53 The open function is proce s sing

03

a file volume as input-only or as
input/output, and the file's data
status character indicates that no
data exists on the file-volume.

An uncorrectable condition has
arisen during processing of a
member index which precludes
any further processing.

The set member function is un
able to locate the requested
member.

13 The alter member function cannot
locate the requested member.

04 There is no space available for
the creating of a new member
index entry in the member index.

14 The set member function has been
requested to process in the
output-only mode a member whose
status is unavailable for output
only processing.

24 The alter member function has
been requested to delete a
member that is unavailable for
output-only proce s sing.

01

An uncorrectable condition has
arisen within the data portion of
a file or member.

End of data has been reached on
an input file.

11 There is no space in a sequential
output file for another item.

3-79

Operator Action

No corrective action is possible.
To exit to the Supervisor's
emergency exit address, enter
an octal 25 (E) into the response
field (location specified by the
A-address register) and press
RUN.

No corrective action is possible.
To exit to the Supervisor's
emergency exit address, enter
an octal 25 (E) into the response
field (location specified by the
A-address register) and press
RUN.

#5-618

B-Address
Register
Value

0430d
(cont)

0440d

Oppxd

SECTION III. LOGICAL I/O C

Table 3-15 (cont). Halt Codes for Logical I/O C

Specific
Code

34

03

13

04

Condition

The set member function has
been requested to create a new
member. There is no space re
maining in the file's unused area.

The get function cannot locate an
item with a specified key.

The insert function is not able to
locate an available item position.

An invalid bucket addre s s has
been specified for a direct access
function.

Z3 Indexed sequential insert has
inserted an item and found all
overflow areas to be full.

14 Indexed sequential key verifica
tion failed while replacing an
item.

Z4 Indexed sequential insert has
discovered a duplicate item key
while inserting an item.

05

For specif
ic halt
codes, see
following
B-address
register
values.

An action macro call has been
is sued for a function whose coding
was not requested for this
Logical I/O C specialization.

An error condition (x) has arisen
on device (d) of the mass storage
control (pp); pp is less than 40
(octal).

3-80

Operator Action

No corrective action is possible.
To exit to the Supervisor's
emergency exit address, enter
an octal Z5 (E) into the response
field (location spe~ified by the
A-address register) and press
RUN.

Inspect the device and control
unit and, when possible, correct
the problem. Choose one of the
following corrective actions.

To reattempt automatic correc
tion of the problem, enter an
octal Z7 (G) into the response
field (location specified by the
A-address register) and press
RUN.

*5-618

.-.-/.

B-Address
Register
Value

Oppxd
(cont)

OppOd

Oppld

Opp2d

8/29/69

SECTION III. LOGICAL I/O C

Table 3-15 (cont). Halt Codes for Logical I/O C

Specific
Code

01

02

06

07

12

04

10

Condition

The specified device is not
available.

Device is inoperable.

Protection violation.

An uncorrectable read error has
been encountered.

The read error is in the data
portion of a record. Data trans
fer has been completed.

The read error might be in the
header portion of the record.
Data transfer is not completed.

The read error is in a track
linking record.

An uncorrectable write error
has occurred.

Pos sible device failure
(format write).

A write verification error has
occurred (see Note 1).

3-81

Operator Action

Key an octal 21 (A) into the
response field and press RUN
to ignore the problem and con
tinue processing. This action
is not recommended.

Key an octal 25 (E) into the
response field and press RUN
to exit to the Supervisor's
emergency return exit (location
213 octal).

Verify that the device is powered
up and protection switches on
the control unit are set properly.

For possible operator actions,
see Oppxd above.

For possible operator actions,
see Oppxd above.

For possible operator actions,
see Oppxd above.

#5-618

I

SECTION Ill. LOGICAL I/O C

Table 3-15 (cont). Halt Codes for Logical I/O C

B-Address
Register

Value
Specific

Code Condition Operator Action

Opp4d A positioning or addressing
error has occurred.

For possible operator actions,
see Oppxd above.

03 Device error (unable to position
to the requested cylinder).

05 The addressed record cannot be
located. Five attempts have
been made.

Opp7d Miscellaneous condition. For possible operator actions,
see Oppxd above.

11 Possible device failure.

1 The following two conditions apply to write errors during the allocate function of
File Support C.

a. If *BADTRACKS and ~~VOLSPARES files have not been created
on the volume and a defective track is encountered (write error),
the following message appears on the printer: CYLINDER nnn
TRACK nnn ERROR (nnn is a decimal value). The file must be
reallocated around the defective track. If *BADTRACKS and
*VOLSPARES files are later added to the volume, a substitute
track can then be established for the defective track.

b. If *BADTRACKS and *VOLSPARES files have been created on the
volume and an unusable track is encountered (write error), the
following message appears on the printer: CYLINDER nnn TRACK
nnn UNUSABLE. An unusable track (a very unlikely possibility)
has a bad surface and not even one bad-track track-linking record
can be read from it. The file must be reallocated around the
unusable track. Track substitution is not possible.

Console Typewriter Operating Procedures

When a console typewriter message indicates an error or requests operator action, the

operator performs the following steps:

1. Read the typeout. (To repeat the message, press the space bar twice.)
If necessary, consult the manual for possible action.

2. Perform the desired corrective action.

3. Type the appropriate I-character response (G, E, etc.).

4.

8/z~/69

If the typein is correct, press the space bar to continue. If incorrect,
type any other character and return to step 3.

3-82 #5-618

SECTION lli. LOGICAL I/O C

The first line of messages issued by Logical I/O C is divided into two categories:

peripheral device condition messages and file I/O condition messages.

The first line of a file I/O condition message has the following format.

pp d FILE file -name description

The first line of the peripheral device condition is:

pp d description

pp d

file name is

gives the peripheral control unit (pp) and device number
(d) of the peripheral device upon which the condition
exists. The value of pp is less than 40 (octal).

the 10-character name of the file upon which the con
dition occurred.

description is a message describing the error condition (see Table 3-16).

The second line of all messages has the format:

8/29/69

c file -name v volume p d m a

c is a I-character code indicating the exact nature of the
problem (the specific code).

3-82.1 '5-618

1

I
I
1

I

I

~ 1

1

1

1

1

1

1

1

r--

~

,-

SECTION III. LOGICAL I/O C

file-naIne is the 10-character MIne of the file containing the error.

v

voluIne

p

d

a

is the relative nUInber of the voluIne. The first voluIne is
considered relative O.

is the 6-character naIne of the next file volUIne.

is the nUInber of the control unit containing the device upon
which the condition exists.

is the device nUInber of the current file.

is the nUInber of the current disk pack.

is the Inass storage address (in binary).

The error code and all succeeding inforInation is typed out on the console as a supple

mentary list if the console typewriter is being used.

Character-field
Number of Characters Location (left) Explanation

1 A

1 A+l

10 A + 2

1 A + 12

6 A+13

1 A + 19

1 A + 20

1 A + 21

6 A + 22

Response character.

Error code (applied to Inass storage periph
eral device or file condition).

Mass storage file naIne.

Relative voluIne nUInber of the Inass storage
file.

VoluIne name.

Mass storage peripheral control unit address.

Mass storage device address.

Mass storage pack number.

Mass storage address in binary (CCTTRR),
for device error only.

The descriptive Inessages possible and the specific codes are given in Table 3-16 •

•
Table 3-16. Console Typewriter Pause Codes and Messages for Logical I/O C

Descriptive Spec ific Code Operator
Message (Alphanumeric) Condition Action

There is a discrepancy in Inspect device and when
the voluIne directory possible correct the prob-
which the open function leIn. Usually, the wrong
cannot correct, or the volUIne is Inounted.
swap function has finished To reopen the file volUIne
processing a volUIne or or, in the case of specific
all volUInes in the device codes 21 and 34, to con-
table. tinue processing, type G

and confirIn.

To exit to the Supervisor's
eInergency return address,
type E and confirIn.

FILE NOT FOUND 3 The specified file has not
been found.

3-83 '5-618

SECTION III. LOGICAL I/O C

Table 3-16 (cont). Console Typewriter Pause Codes and Messages for Logical I/O C

Descriptive Specific Code Operator
Message (Alphanumeric) Condition Action

U -A TABLE TOO SMALL 4 There are more units of
allocation for the current
file than the program
provides for in the units
of allocation table.

ERRORIN*VOLALLOC* 5 An uncorrectable condi-
tion has arisen in the units
of allocation portion of
the volume directory.

VOLUME SEQUENCE = The open function has en-
NUMBER ERROR countered a file-volume

whose sequence number
is not one greater than
the last.

PASSWORD ERROR : A password check, re-
quested by the program,
has failed.

DISMOUNT PREVIOUS A new file -volume is
VOLUME A being opened. The pro-

cessing of the previous
volume is complete.

PASSWORD ERROR D A password exists on the
specified file and pass-
word checking has not
been requested by the
program.

DEVICE TABLE The open function has
TOO SMALL • . reached the end of the

device table without
opening all of the re-
quired file-volumes.

MOUNT NEXT) A new file-volume is re-
VOLUMES quired to be opened and

no entries remain in the
device address table.

VOLUME SEQUENCE L The open function is
NUMBER ERROR opening a sequential file

and the volume sequence
number is not zero.

NO DA TA ON FILE- $ The open function is pro-
VOLUME cessing a file-volume as

input-only or as input/
output, and the file's data
status character indicates
that no data exists on the
file -volume.

3-84 #5-618

SECTION III. LOGICAL I/O C

Table 3-16 (cont). Console Typewriter Pause Codes and Messages for Logical I/O C

Descriptive Spec ific Code Operator
Message (Alphanumeric) Condition Action

An uncorrectable condi- No corrective action is
tion has arisen during possible. Type E and con
processing of a member firm to exit to the Super-
index which precludes visor's emergency return
any further processing. address.

MEMBER NOT FOUND 3 The set member function
is unable to locate the
requested member.

MEMBER INDEX FULL 4 There is no space avail-
able for the creation of
a new member index
entry in the member
index.

MEMBER NOT FOUND = The alter member func-
tion cannot locate the
requested member.

MEMBER CANNOT BE : The set member func-
OUTPUT ONLY tion has been requested

to process in the output-
only mode a member
whose status is unavail-
able for output-only
processing.

MEMBER CANNOT BE D The alter member func-
DELETED tion has been requested

to delete a member that
is unavailable for output-
only processing.

An uncorrectable condi- No corrective action is
tion has arisen within possible. Type E to exit
the data portion of a file to the Supervisor's emer-
or member. gency return address.

;; END FILE (INPUT) 1 End of data has been
reached on an input file.

ITEM NOT FOUND 3 The get function cannot
locate an item with a
specified key.

INVALID BUCKET 4 An invalid bucket address
has been specified for a
direct access item.

END FILE (OUTPUT) 9 There is no space in a
sequential output file
for another item.

NO SPACE TO INSER T ::: The insert item is not
ITEM able to locate an avail-

able item position.

3-85 #5-618

SECTION III. LOGICAL I/O C

Table 3-16 (cont). Console Typewriter Pause Codes and Messages for Logical I/O C

Descriptive Specific Code J Operator
Message Alphanumeric) Condition Action

KEY VERIFICA TION : ~dexed sequential key
FAILURE rverification failed while

replacing an item.

NO SPACE FOR MOVED C Indexed sequential insert
ITEM has inserted an item and

ound all overflow areas
o be full.

DUPLICA TE ITEM D Indexed sequential insert
has discovered a duplicate
°tem key while inserting
an item.

NO SPACE FOR NEW) The set member function
MEMBER has been requested to

create a new member.
There is no space re-
maining in the file's un-
used area.

INVALID ACTION 5 An action macro call has No corrective action is
been issued for a function possible. Type E to exit
whose coding was not re- to the Supervisor's emer-
quested for this Logical gency return address.
/0 C specialization.

An error condition has Inspect the device and con-
arisen on device (d) of trol unit and, when possi-
he mass storage control ble, correct the problem.

(pp); pp is less than 40 Choose one of the following
(octal). corrective actions.

To reattempt automatic
correction of the problem,
type G.

To continue processing
and to ignore the problem
type A. This action is not
recommended.

To exit to the Supervisor's
emergency return address,
type E.

INOPERABLE 1 lDevice is inoperable.

INOPERABLE 2 IProtection violation.

READ ERROR 6 ~ read error has oc-
~urred in the data
~ortion of a record.
lData transfer has
~een completed.

3-86 #5-618

. .

.. ~

;;

SECTION Ill. LOGICAL I/O C

Table 3-16 (cont). Console Typewriter Pause Codes and Messages for Logical I/O C

Descriptive Specific Code Operator
Message (Alphanumeric) Condition Action

READ ERROR 7 A read error has occurred
which is probably in the
header portion of a record.
Data transfer has not been
com.pleted.

READ ERROR
,

A read error has occurred
in a track linking record.

WRITE ERROR 4 A possible device failure
has occurred (form.at
write) •

WRITE ERROR 8 A write verification error
has occurred (see Note 1).

POSITIONING ERROR 3 A device error has occurred
(unable to position the
requested cylinder).

POSITIONING ERROR 5 The addressed record can-
not be located. Five at-
tem.pts have been m.ade.

MISCELLANEOUS 9 Possible device failure.

I The following two conditions apply to write errors during the allocate function of
File Support C.

8/29/69

a. If *BADTRACKS and *VOLSPARES files have not been created
on the volum.e and a defective track is encountered (write
error). the following m.essage appears on the printer:

b.

CYLINDER nnn TRACK nnn ERROR (nnn is a decim.al value).
The file m.ust be reallocated around the defective track. If
*BADTRACKS and *VOLSPARES files are later added to the
volum.e. a substitute track can then be established for the de
fective track.

If ~cBADTRACKS and *VOLSPARES files have been created on
the volum.e and an unusable track is enco~red (write error).
the following m.essage appears on the printer: CYLINDER
nnn TRACK nnn UNUSABLE. An unusable track (a very un
likely possibility) has a bad surface and not even one bad-track
linking record can be read from. it. The file m.ust be reallocated
around the unusable track. Track substitution is not possible.

3-87 #5-618

1

1

1

1

•
1 -......,..;

1

1

1

1

1

1

1

1

1
'"

1

1

1

1

---./
1

1

1

1
],.

1

1
.,.,

1

1

1

1

1

1

1

1
-.~

1

1

1

SECTION IV

FILE SUPPORT C

GENERAL DESCRIPTION OF FILE SUPPORT C

File Support C is a set of routines that perform frequently desired functions on files

resident on mass storage. The functions performed by the File Support C routines are:

1. Allocation of files on mass storage volumes.,

2. Deallocation of files resident on mass storage volumes,

3. Loading files onto mass storage volumes,

4. Unloading files from mass storage volumes, and

5. Mapping the contents of the volume directory.

The allocate function is used by the programmer to assign a file to specified areas of one

or more volumes and to update each volume directory accordingly. This function also formats

and initializes a newly allocated file automatically. The deallocate function removes all volume

directory entries for a file. This makes all areas used by this file available for future alloca

tion. The load function is used by the programmer to load a mass storage file from cards, tape,

or another mass storage file. The unload function is used to unload a file from mass storage

onto cards, tape, printer, or another mass storage file. The map function is used by the pro

grammer to obtain printed listings based on the contents of a volume directory. The informa

tion can be listed either on an online printer or on a print-image tape.

NOTE: When loading or unloading one mass storage file to another, the files must
be of the same organization, with the following exceptions: the input can be
a sequential file and the output can be an indexed sequential file, or the input
can be a sequential file and the output can be a direct access file.

All File Support C routines are automatically specialized at execution time. The special

ization is based on parameters supplied by the programmer in the job control statements.

Therefore, it is not necessary for the programmer to perform an assembly operation to special-

ize these routines.

FOREGROUND/BACKGROUND PROCESSING OF FILE SUPPORT C

All File Support C processing functions can be used as background programs in a multi

programming foreground/background environment, except for the allocate function, which is in

compatible with interruption by the foreground program.

4-1 #5-618

SECTION IV. FILE SUPPOR T C

FUNCTIONS OF FILE SUPPORT C

Allocate ",-,,:

The allocate function is used to assign a file to one or m.ore specified areas of m.ass

storage. Every file to be stored on m.ass storage m.ust be allocated before it can be used. The

allocate function checks the areas of each volum.e specified for the file to ensure that no other file

occupies any of the specified area. The allocate function also updates the volum.e directory of

each volum.e being used to include entries for the new file. All tracks for this file are form.atted

to the requested record size and are initialized according to the requirem.ents of the file

organization.

Deallocate

The deallocate function is used to free allocated areas on one or m.ore volum.es so that

other files can be allocated to these areas. Before a file is deallocated, checks are m.ade on the

volum.e nam.e, the file expiration date, and the password for the file. This is done to ensure that

a file which has not expired or which is protected by a password is not rem.oved from. its vol

um.e(s) inadvertently. Directory item. space freed by deallocation will be utilized for subsequent

allocation.

Load

The load function is used to load data onto a mass storage file from punched cards, mag

netic tape, or another mass storage file. All standard fixed-length card and tape formats can

be used with the load function. Multireel magnetic tape files and multivolume mass storage

files can be handled.

Unload

The unload function is used to unload data from a mass storage file onto punched cards,

magnetic tape, printer, or another mass storage file. Multireel magnetic tape files and multi

volume mass storage files can be handled.

The map function is used to extract selected inform.ation about the files on a volume. This

function can be used to produce a description of all or only specified files on a volum.e, a descrip

tion of expired files, or a map of the unassigned tracks on a volum.e. The inform.ation is taken

from the contents of the volume directory and is listed on a printer or on a print-im.age tape.

Samples of printer listings produced by the map function are shown below.

MAP DESCRIPTION OF A FILE

A description of a file's structure (and other selected inform.ation) can be listed.

scription of one or more specified files or of all files on a volum.e can be produced.

4-2

A de-

#5-618

SECTION IV. FILE SUPPORT C

COMPLETf LISTING FOR VOLUME VOlONE SERIAL NUMBER vOlONE

FILE NAME: DIRACC1

FILE TYPE: DIRECT ACCESS

PASSWCRD: NO

CYLINCER OVERFLOW:

GENERAL OVERfLOW: YES

ACTIVE ITEMS: 0

KEY PCSITION: 36

BADTR.ACKS: NONE

1 TRACKS

ITEM SIZE: 120

RECORD SIZE: 250

ITEMS PER BLOCK:

RECORDS PER BLOCK:

RECORDS PER TRACK:

KEY lENGTH: 5

BLOCKS PER BUCKET:

UNITS OF ALLOCATION

FROM

C CYLINDER TRACK

1ST DATA UNIT 6 o

FILE CONTINUES ON VOLUME VOL TWO

2

15

4

CYLINDER

15

CREATION DATE:

CREATION NUMBER: 000

MCDIFICATION D.ATE: 00 000

MCDIFICATION N~~BER: 000

EXPIRATION DATE: 00 000

TO

TRACK

9

FILE-VOLUME SEQUENCE NUMBER: a

COMPLETE LISTING FOR VOLUME VOlONE SERIAL NUMBER VOLONE

FILE NAME: SEQFIl2

FILE TYPE: SEQUENTIAL

PA·SSWCRD: NO

CYLINCER OVERFLOW:

GENERAL OVERFLOW: NO

ACTIVE ITEMS: 0

BLOCKS IN FILE-VOLUME:

BADTRACKS: NONE

o TRACKS

180

1ST DATA UNIT

2ND DATA UNIT

ITEM SIZE: 250

RECORD SIZE: 250

ITEMS PER BLOCK:

RECORDS PER BLOCK:

RECORDS PER TRACK:

UNITS OF ALLOCATION

CYLINDER

170

170

FROM

TRACK

o

3

FILE CONTINLES ON VOLU~E VOL TWO

4-3

15

CYLINDER

171

171

CREATION DATE:

CREATION NUMBER: 000

MCDIFICATION D.ATE: 00 000

MCDIFICATION N~~BER: 000

EXPIRATION DATE: 00 000

TO

TRACK

2

5

FILE-VOLUME SEQUENCE NUMBER: a

#5-618

SECTION IV. FILE SUPPORT C

COMPLETE lISTING FOR VOLUME VOlONE SERIAL NUMBER VOL ONE

FILE TYPE: INDEXED SEQUENTIAL

PASSWCRD: NO

CYlINCER OVERFLOW: 1 TRACKS

GENERAL OVE~FlOW: YES

ACTIVE ITEMS: a

KEY PCSITION: 55

BADTRACKS: NONE

1ST DATA UNIT

FILE NAMl: INDSEQl

ITEM SIZE: 100

RECORD SIZE: 500

ITEMS PER BLOCK: 10

RECORDS PER BlOCK: 2

RECORDS PER TRACK: 8

KEY lENGTH: 5

BLOCKS PER STRING: 2

UNITS OF AllOCATION INDEX AREA

FROM

CYLINDER TRACK CYLINDER

22 o 23

CREATION DATE:

CREATION NUMBER: 000

MCDIFICATION DATE: 00 000

MCDIFICATION NL~BER: 000

EXPIRATION DATE: 00 000

BLOCKS IN MASTER INDEX:

TO

TRACK

o

UNITS OF AllOCATION GENERAL OVERFLOW AREA

24

25

o

a

24

55

9

9

FILE CONTINLES ON VOLUME VOlTWO FILE-VOLUME SEQUlNCE NUMBER: a

COMPLETE lISTING FOR VOLUME VOlONE SERIAL NUMBER VOlONE

FILE NAMl: PARTSEO

FILE TYPE: PARTITIONED SEQUENTIAL

PASSWCRD: NO

CYLINDER OVERFLOW: a TRACKS

GENERAL OVERFLOW: NO

ACTIVE ITEMS: a

BLOCKS IN FILE-VOLUME: 900

BADTRACKS: NONE

1ST DATA UNIT

ITEM SIZE: 250

RECORD SIZE: 250

ITlMS PER BLOCK:

RECORDS PER BLOCK:

RECORDS PER TRACK:

1

15

BLOCKS IN MEMBER INDEX:

UNITS OF ALLOCATION

FROM

CYLINDER TRACK

16 a

4-4

CYLINDER

21

CREATION DATE:

CREATION NUMBER: 000

MCDIFICATION DATE: 00 000

MCDIFICATION NLMBER: 000

EXPIRATION DATE: 00 000

TO

TRACK

9

#5-618

1

SECTION IV. FILE SUPPOR T C

~

UNASSIGNED TRACKS FOR VOLUME: VOlONE

CYLINDERS PER VClUME: 203

TRACKS ~ER CYLINDER: 10

X=USEC O=UNUSED

TRACKS

0 C 0 0 0 0 0 0 0 0 0 0 0 0
0 c 0 0 0 0 0 0 0 0 0 0 0 0
0 C 1 1 2 2 3 3 4 4 5 5 6 6
0 5 0 5 0 5 0 5 0 5 0 5 0 5

CYl.
0000 XXXXXCOOOO .. 1 XXXXX)(XXXX

2 XXXXX)(XXXX
3 XXXXXXXXXX
4 XXXXX)(XXXX

0005 XXXXXXXXXX
6 XXXXXXXXXX
7 XXXXXXXXXX
8 XXXXXXXXXX
9 XXXXXXXXXX

0010 XXXXXXXXXX
11 XXXXXXXXXX
12 XXXXXAXXXX
13 XXXXXXXXXX
14 XXXXXXXXXX

'--"" 0015 XXXXXXXXXX
16 XXXXXXXXXX
17 XXXXXXXXXX
18 XXXXXXXXXX
19 XXXXXXXXXX

0020 XXXXXXXXXX
21 XXXXXXXXXX
22 XOOOOOOOOO
23 XOOOOOOOOO

",'"
24 XXXXX)(XXXX

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 C 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 2 2 3 3 4 4 5 5 6 6
0 5 0 5 0 5 0 5 0 5 0 5 0 5

.

NOTE: The map function produces as many pages as necessary to show unassigned tracks on
all the cylinders on the volume. For purposes of brevity, only one such page is re-
produced here.

4-5 #5-618

SECTION IV. FILE SUPPOR T C

MAP EXPIRED FILES

A description of all files that have expired, as indicated by their expiration dates, can be

produced. To do this, the programmer requests a listing of all files whose expiration date is

earlier than or the same as the Supervisor's current date or any specified date.

MAP UNUSED AREAS

A map of all unused areas on a mass storage volume can be produced. This map can be

used to locate available areas for subsequent allocation of files.

CONSIDERA TIONS

There are a number of considerations in using the File Support C routines within the Data

Management Subsystem of the Mod 1 (MSR) Operating System. These considerations are dis

cussed in the following paragraphs.

Number of Functions Performed

The number of different functions that can be performed in one execution of File Support

C is limited by the amount of memory available. This is because all job control statements for

an execution of File Support C are read initially, and the specified parameters are stored in

memory. The number of functions which can be performed can be increased if additional main

memory is available.

Only one allocate function can be requested in a single execution of File Support C, and

only one file can be requested for allocation. Thus, for example, to allocate three files requires

three separate executions of File Support C.

Block and Record Sizes Within 12K Memory

The maximum block and record sizes for files being processed in a single function are

limited by the amount of main memory available. The following paragraphs are a guide to these

maximum values for allocate and load/unload functions.

The figures given below are approximate and subject to change. They are based on the

assumptions that only one function is being performed for a single execution of File Support C

and that the number of parameters specified in the job control statements is minimal. The main

memory size is assumed to be 12,288 characters. Additional memory can be used to increase

the values shown below.

The maximum record size that can be formatted by the File Support C allocate function is

1,000 characters. If a partitioned sequential file is being allocated and members are declared,

the maximum block size that can be handled is 1,400 characters.

4-6 #5 -618

-.;

SECTION IV. FILE SUPPOR T C

Memory is used by the load/unload function for mass storage blocks, or card or tape

records, for item work areas, for item key areas, and for an own-code routine. The steps

listed below indicate the block and record sizes that can be handled by the load/unload function.

1. For each item in the following list, add the number of characters
specified if the condition is met (each item is independent of the
previous item, and the memory required is additive).

2.

a. Add one buffer (the size of a block plus three characters) for
each file on mass storage.

b. Add an additional buffer (the size of one block plus three
characters) if the file organization is indexed sequential
and the output file is on mass storage.

c. Add one buffer (the size of a tape record plus one character)
if one file is on magnetic tape.

d. If the file is not an output direct acces.s file, add 50 characters;
if it is, add an area whose length, in characters, is equal to 8
times the total number of units of allocation in the file.

e. If one file is on punched cards and the item size for that file is
greater than 80 characters, add one buffer whose size is a
multiple of 80 and which is large enough to contain the item.

f. If the file organization is direct access, add one buffer (the
size of the item of that file).

g. Add the size of the own-code routine. An own-code routine is
required only if the output file is on mas s storage and the file
organization is direct access.

h. If the file organization is indexed sequential and if the input file
is on mass storage, add an area the size of three item keys.

If the above total is less than the value shown in Table 4-1, the load/unload
operation can be performed in 12K of memory. If the total is greater than
the value shown in Table 4-1, the block or record sizes must be reduced,
additional main memory must be available, or the size of the own-coding
routine must be reduced.

Table 4-1. Available Memory per I/O Media for 12K Configuration

A vailable Memory

Indexed Sequential Other File
I/O Media File Organization Organization

Magnetic tape to/from mass storage 1100 1200

Punched cards to/from mass storage 1100 1400

Mass storage to mass storage 1000 2100

Mass storage to printer 1800 800

NOTE: If the equipment configuration includes 16K memory with console
typewriter, add 1000 characters to each of the above values.

4-7 #5 -618

SECTION IV. FILE SUPPORT C

JOB CONTROL LANGUAGE FOR FILE SUPPOR T C

The information below stresses the common job control language and its operation for File

Support C. First, the Execute statement is described. Next, a single operation and a sequence

of operations are described. A complete description of the job control language for each function

of File Support C is included in the appropriate subsequent paragraph of this section.

NOTE: All numeric values are decimal unless otherwise noted.

Execute Statement

To perform a disk-resident File Support C function, the programmer must submit an

Execute statement. This statement must be the first statement in the job control file for the

particular File Support C run. The format of this statement is illustrated in Figure 4-1. Rules

for loading from tape can be found in this section under "Operating Procedures for File Support C.

CARD Itl! LOCATION
OP£RATION

OPERANDS NUMBER CODE

I Z S .. 5 • 1 • 141' 2021 .. "'- JII.
I : EX I*FILEsuP

Figure 4-1. Format of File Support C Execute Statement

When a File Support C job is to be performed, the parameter of the Execute statement is

~'FILESUP. This is the program segment name used for File Support C. Like all parameters

in the operating system's job control language, this parameter must have a terminating comma.

The Execute statement is followed by one or more Function statements in the job control file

which name the functions to be performed.

Job Control for a Single Operation

To request a single operation (or function), the programm~r must submit at least two job

control statements. Job control statements are submitted through the job control file. which

must be in a card reader.

The job control statements which the programmer must supply are the Execute statement

(just described), a Function statement. and any other statement required for that function. The

Function statement names the operation to be performed.

There must be a single indication of the end of job control statements per execution of

File Support C. This indication is an E in the mark field (column 7 of the Easycoder Coding

Form). and it must be on or immediately following the last line that contains job control state

ment information.

4-8 *5 -618

SECTION IV. FILE SUPPOR T C

Suppose the desired operation is to obtain a description based on the contents of the volume

directory for all the files stored on the volume. The job control statements required for opera

tion are coded as shown in the following example. In this example, it is assumed that the resi

dence file is on the volume being mapped (pcu 04, device 0).

CAIIO LOCATION
OPERATIOII OPERANDS NUMBER c:oo£

12S4S1 7 • 1415 2CZt ~

I : IE.,X ~F' LE~up
I I FUNC.T MAP DeseR

Job Control for a Sequence of Operations

A sequence of operations can be executed by submitting Execute and Function statements

for each operation desired, as just described. However, a sequence of operations can also be

performed by submitting a single Execute statement and several Function statements. The

operations are performed in the sequence in which the Function statements are submitted and,

for certain functions, other job control statements are required.

The indication of the end of job control statements (the E in column 7) for a sequence of

operations must be on or immediately follow the last line containing job control statement infor

mation. If the E is on any line preceding the last line, then the sequence of operations stops at

that line.

Suppose the desired sequence of operations is to allocate a new sequential file and to de

scribe all files on that volume. The minimum job control statements required for this sequence

of operations are coded as illustrated in the following example.

PROtII..EII PROGftAMIIER OIlTE lIME OF

:IER I~II LOCATION
OPERATIOII

OPERANDS c:oo£

12345. 7 • " . . m " "IG . 00

I I 10 I,1tFI Lf.SUP
I F.UNCT I~LlOC.ATE O.MJ" a H 01"\. 1

1 i F.ILE t(ANE = FllEA.A .ORG" SEQ,
I I IUNIT5 "AM£=VOlA
i I FROM·.(1(~ ,t.) ,TO=.(l't ,.9.L.
I I E F.UNCT MAP DESeR .. o p.c;rat ion 2.

T T
i I

ALLOCA TE FUNCTION

The allocate function is used to assign a file to specified areas on a mass storage volume

or volumes. Every file to be stored on mass storage must be allocated before it can be referred

to by any program. The allocate function checks the volume directory of each volume specified

for the file to ensure that the file name is unique and that no conflicting units of allocation exist

on the volume; it also updates the volume directory of each volume to include information about

the new HM. All tracks of the new file are formatted to the specified record size. If a track is

4-9 #5 -618

10

I

12 .. I. I.
•
7

•
•
0

I

2

• ..
to

Z7

•
•
0

I

SECTION IV. FILE SUPPORT C

encountered which cannot be successfully formatted, its cylinder and track address is listed on

the printer, prior to a halt or console message.

All volumes of a multivolume file must belong to the same device class, and their devices

must have the same data transfer rate.

To allocate a file, the programmer must supply, as a minimum, the name of the file, the

file's organization, the volume name, and the units of allocation for each volume of the file.

Job Control Language for Allocate Function

The allocate function is requested by a Function statement whose first parameter is

ALLOCATE. The Function statement is followed by File, Size, Units, Member, File list, and

Day statements. When used, these statements must be submitted in that order after the ,¥unction

statement. Figure 4-2 shows all the job control statements that can be used in the allocation of

N:R!t If LOCATION
OPERATION OPERANDS CODE

12S456 7 • • 415 2 21 eo
I : !E;X *.FI LESUP I? .. _ •• : __ .J.

T I ALLOe-ATE ,~ire.d. ' .
FUNCT : ..

1 i FILE "'AME~-:Ci I D ·OomD. R"""Lkp.J ••
I I O~(!,,, SEQ .20ruJir~.
i I PAIi:T > ••
I I DIll.
'1 , Nb
i I t;F.NOV' (NO .1 Ol1tional. [)'u:,w.
I , '''ESP A. .. " '" 01 ,I
T KE.Y·(,po. i t i on l4.nathJ 12,,11., C i~t ~ (11\cI~¢.d~.
i i PW s t>a~ SWord IJ oPllot'lol.
i i E}(P ·..,.vdclci ODtiol1a\.
I I PROT~J(I, 1. ,oirtionol.

'1 f ~{HO ,
i I PEVA'D.'T'I'(pc.u dri va,) . .. 01)"1:01"\01. '5u, not~. '1
I i Is. I 7.E ~E.C ... r,¢.co;d~- ~I <Looth ,~Si7;(., ;to1"q,h1<tn1"
I I ITEM,dt4..m- \<L"'''~.h i~ ol)tion bl.

I !ZJLOCK: ;t 4..11'1.& - pl.r - block
i T l!>UCKE," bl o.ck;4-~,4.r - bu.ckd" OirdA u~~.onlv.
I i \ NDEx'- b' oc-,k.s. - 'I n· " ndu P~~iti0n' 61. S~Q... on(y ..
i I C~Lov=numher-o£,-~r.a~k~ .n. A. 1:>1"10 1.S.,onl". I

I' STR I N.G: b I oe"-c.-1ca..r - ... 1";r',,,,,,, .lho:lc."4Ld. s. La. _I",
I I U.N IT5> IwAMl=~."ol vm.4~ ncaftw. 0 2eo..oitoed

IJ OVE.RFLOW
, I Mc..1 ND~ sor. F.2.nL",,7e f\.TO. (e t)' MCINDtX QI'

i I P.\I e.12~.L()W.(, FIZ.OM.,(c. .+"i T.O:(. e t.)'\ rQ.Q.u'II"", b ... i.S.
i i FR.O-Ua c f" TOde t\ ... At \e.,t 0 Ine p~ir r"",il'..t
I I IM.E.M"E,~ NAUe. : .111 4.mbQ, no , Ol1tioY\Ol.~ I\-caTQ..",~t , . PQ;;r;t;on~

I 1 LE.Na.TH = ... ' hA .. - ,...,t. b I,.",l., ~u~tlq onl",.
1 i IF'.ILE L\ ~T ~V.A"'b,.(.c>,u' t_t._h_+. O~" .. ",I '"

I iDAY wAd'::! .o~'tI'O n.;J j.;t:., t. ~ , I I I I , -'--"-'
R.1 U ,.::;;I. i i ~

NOTE: Ellipses onJines 17 and 28 (•• •) indicate that the
keyword and its values can be specified more than once.

Figure 4-2. Job Control Statements for Allocation of Files

4-10 #5 -618

-'

SECTION IV. FILE SUPPORT C

files. Each statement and its parameters are described in subsequent paragraphs. Note that no

single file requires all the statements shown. Default values should be studied before deciding if

a parameter can be omitted. A review of the newly allocated file using the description option of

the map function is advisable prior to loading that file.

If the file organization is direct access or indexed sequential, the position and length of the

item key must be specified. The number of characters per record, characters per item, and

items per block may be specified, although default values of 250 characters per record, 250

characters per item, and I item per block are used if these' parameters are omitted. (The Size

statement itself can be omitted if default values can be assumed for all parameters.)

The volume name and unit(s) of allocation for each volume of the file must be specified.

For an indexed sequential file, the units of allocation for the master I cylinder index and for the

general overflow area must be specified, in that order. For all file organizations, at least one

data unit of allocation and one volume name must be specified. The FROM parameter specifies

the mass storage address of the beginning of the unit of allocation, and the TO parameter speci

fies the mass storage address of the end of the unit of allocation. The c stands for a cylinder

number and the t stands for a track number.

Additional parameters can be used to specify such information as the size of the cylinder

• overflow area (direct access or indexed sequential files), password protection, file protection,

expiration date, record size, bucket size (direct access files), string size (indexed sequential .
files), member index length (partitioned sequential files), additional Units statements (for multi

volume files), additional data units of allocation, members to be named and allocated within a

partitioned sequential file, the creation date, and the general overflow option for direct access

files.

EXECUTE STATEMENT

The Execute statement with the program segment name *FILESUP directs the Supervisor

to load File Support C. The format of the Execute statement follows.

CARlI II LOCATION
OPERATION OPERANDS NUMBER COD£

I 2 S 4 S • 1 • 1415 2021 .. ~ ..
I : IE.~ i*FILE.SuP
J I

4-11 #5 -618

SECTION IV. FILE SUPPORT C

FUNCTION STATEMENT

The Function statement specifies to File Support C what function to perform. This state

ment is required. Only one allocate function is permitted per execution of File Support C. To

perform the allocate function, the statement must be coded in the following format.

CARD
T ~ LOCATION

OPERATION OPERANDS NUMBER CODE

123456 7 • 1415 2021 10

I FUNCT ~LL OCAT~
I

FILE STATEMENT

The file which is being allocated is identified by the File statement. This statement is re

quired. Only one File statement is permitted per allocate function.

File-Name Parameter

The file-name parameter specifies the name of the file being allocated. The format of

this parameter is as follows.

NAME=file-name,

This parameter is required. The file name specified as the value of this parameter can

be up to 10 characters long. When it is less than 10 characters, trailing spaces are automat

ically added. A file name can consist of the letters A through Z, the digits 0 through 9, and

space; the space cannot be the first character of the name. The special character * (asterisk)

is used as the first character of the names of systems files only.

File-Organization Parameter

The file-organization parameter specifies the type of file organization of the file being

allocated. The format of this parameter is as follows.

ORG = 1 SEQ ! PART •
DIR
IND

The parameter is required. The value chosen for this parameter will have the significance

described below.

SEQ =

PART =

DIR =

IND =

A sequential file is being allocated.

A partitioned sequential file is being allocated.

A direct access file is being allocated

An indexed sequential file is being allocated.

4-12 #5 -618

~.,

SECTION IV. FILE SUPPORT C

General Overflow Parameter

The general overflow parameter specifies whether or not the direct access file being

allocated will have a general overflow area. The format of this parameter is as follows.

GENOV= ~NO l •
lYES{

This parameter is optional and applies only to direct access files. When a value for this

parameter is not specified. the allocate function assumes a value of YES (the file will have a

general overflow area). The value chosen for this parameter has the significance described

below.

NO = The file will not contain a general overflow area.

YES = The file will contain a general overflow area consisting of all
the assigned tracks of the last cylinder of each unit of allocation.

Item Key Parameter

The item key parameter is used to specify the length and position of the item key. The

format of this parameter is as follows.

I KEY=(POSition.length).\

This parameter is relevant only for direct access and indexed sequential files, and it is required

for such files. The position element of the parameter indicates the position in each item of the

left end of the key field. The leftmost character of the item is position one. The length ele

ment of the parameter indicates the length in characters of the key field.

Password Parameter

The password parameter specifies the password required for all subsequent access to

the file being allocated. The format of this parameter is as follows.

t pw=password·1

This parameter is optional. When a password is not specified for the file being allocated,

no password protection is assigned to the file. The password specified for the file can be up to

eight characters long. If the password is not eight characters, trailing spaces are added auto

matically. The first character of the password cannot be space (d).

4-13 #5 -618

SECTION IV. FILE SUPPORT C

File Expiration Date Parameter

The file expiration date parameter specifies the year and day the user expects the file being

allocated to expire. The format of this parameter is as follows.

EXP=yyddd,

This parameter is optional. When an expiration date for the file is not assigned, the

allocate function uses the date 00000 in the volume directory entry for the file. The yy portion

of the date represents the last two digits of the year of expiration and the ddd portion represents

the number of the day. For example, the date 15 December 1967 is represented as 67349

because the year is 1967 and the fifteenth of December is the three hundred and forty-ninth day

of the year.

Protection Status Parameter

The protection status parameter specifies the type of write protection to be assigned to the

file being allocated. The format of this parameter is as follows.

This parameter is optional. When this parameter is omitted from the File statement, the

allocate function assumes a value of NO (write protection is not being assigned to the file being

allocated). The value chosen for this parameter has the significance described below.

B = The file is assigned B-file wri te protection.

NO = Write protection is not assigned to the file.

NOTE: A-file write protection cannot be specified during allocation. It
can be specified, however, for load and unload functions, since
it may be necessary to load and unload system files (e. g. ,
*BADTRACKS).

Appendix F of this manual contains a complete description of write protection.

Device-Address Parameter

The device-address parameter is used to specify the peripheral address assignment of the

control unit and the drive number of the device(s) containing the volume(s) on which the file is

being allocated. This parameter can be specified as many times as required for a multivolume

file. Each Units statement specifies one volume of the file. When this parameter is specified,

it must follow all other parameters of the File statement. The format of this parameter is as

follows.

4-14 #5-618

SECTION IV. FILE SUPPORT C

I DEVADD=(pcu, drive),.

When specifying values for this parameter, the peripheral address assignment is written

as two octal digits. The high-order bit is not significant. The drive number is written as one

octal digit. This parameter is optional. When a device address is not specified, the allocate

function assumes that the peripheral address assignment is 04 and that the drive number is O.

When specifying a multivolume file for allocation, multiple device address parameters

can be used. When more volumes than device addresses are specified, the addresses are used

cyclically. (See example on page 4-Z3.)

To summarize the File statement, the file name and file organization parameters are

required. The remaining parameters are optional except that the item key parameter is required

for direct access and indexed sequential files. If the programmer omits the optional parameters,

the allocate function assumes that no password is assigned to the file, the expiration protection

is not required, write protection is not required, the device address is 04, 0 for all volumes of

the file, and that there is to be a general overflow cylinder for each unit of allocation if the file

is direct access.

SIZE STATEMENT

The Size statement is used by the programmer to specify the sizes of various parameters

of the file being allocated.

Record Length Parameter

The record length parameter specifies the number of characters in each record of the file

being allocated. The format of this parameter is as follows.

REC = record-length,1

When this parameter is not specified, the allocate function assumes that the size of each

record in the file is Z50 characters. The number of characters must not exceed 4095.

Item Length Parameter

The item length parameter specifies the number of characters in each item. The format

of this parameter is as follows.

ITEM = item -length,1

4-15 #5-618

SECTION IV. FILE SUPPORT C

When this parameter is not specified, the allocate function assumes that the size of each

item in the file is the same as the record size. A status character is added onto each item in

direct access and indexed sequential files and must be included when specifying the value of

this parameter. This parameter value must not exceed 4095.

Block Size Parameter

The block size parameter specifies the number of items in each block in the file being

allocated. The format of this parameter is as follows.

IBLOCK = items-per-block,1

When this parameter is not specified, the allocate function assumes that the block size is

equal to the number of whole items that will fit into one record. If the record size is smaller

than the item size, then the block size is one item per block (and two or more records compose

a single block). 3

NOTE: The record length is the prime determinant of assumed values of item
and/or block size. Appendix C can be useful in determining proper
record and block sizes.

Bucket-Size Parameter

The bucket size parameter applies only to direct access files and is used to specify the

number of blocks per bucket. When this parameter is not specified, the allocate function assumes

that there is one block per bucket in the file being allocated. The forrnat of this parameter is as

follows.

I BUCKET=blocks-per-bucket,

Index-Size Parameter

The index-size parameter is used to specify the number of blocks in the member index of

a partitioned sequential file. When this parameter is not specified, the allocate function assumes

that there is one block in the member index. The format of this parameter is as follows, and its

value establishes the maximum number of active member names that can be contained in the in-

dex (see Appendix B).

I INDEX=blocks-in-index,

Cylinder Overflow Size Parameter

The cylinder overflow size parameter is used to specify the number of tracks in the cylinder

overflow area for direct access or indexed sequential files. When this parameter is not specified,

4-16 #5-618

.;

SECTION !V. FILE SUPPORT C

the allocate function assumes that the file being allocated has no cylinder overflow area. The

format of this parameter is as follows.

I CYLOV=number-of-tracks,

Strin~Size Parameter

The string-size parameter is used to specify the number of data blocks per string for an

indexed sequential file. It is not relevant for other file organizations.

ISTRING=blocks-per-string, I
If this parameter is not specified, the as sumed value is one.

UNITS STATEMENT

One Units statement specifies the units of allocation for one volume of the file. There must

be exactly one Units statement for each volume of the file. There may be up to eight volumes.

Each Units statement specifies the units of allocation on that volume. There must be exactly

one pair of from and to parameters for each unit of allocation. There may be up to 6 units of

allocation on each volume and up to 16 total units of allocation for a multivolume file.

For a sequential or direct access file, there must be at least one Units statement with at

least one pair of FROM and TO parameters. For an indexed sequential file, there must be at

least one Units statement and at least three units of allocation; these are the index unit, the

overflow unit, and at least one data unit. For a partitioned sequential file, there must not be

more than one Units statement •

Volume-Name Parameter

The volume-name parameter must be the first parameter; it is used to specify the name

of the volume to which the Units statement applies. The format of this parameter is as follows.

I NAME=volume-name,

The volume name specified is checked against the volume name of the volume mounted at

the relevant device address. The volume-name parameter must be specified for each volume on

which the file is to be allocated.

4-17 #5-618

SECTION IV. FILE SUPPORT C

Master/Cylinder Index Parameter

The master / cylinder index parameter specifies the unit of allocation for the index area of

an indexed sequential file. It is not relevant for any other file organization. The index area

includes both the master index and the cylinder index.

The first unit of allocation specified for the indexed sequential file must be the index area,

as specified by the master/ cylinder index parameter. The format of this parameter is as follows.

MCINDEX=(FROM=(c, t), TO=(c, t)),

The FROM parameter specifies the low cylinder (c) and track (t) addresses of the unit of

allocation. It must be followed immediately by a TO parameter, which specifies the high cyl

inder and track addresses of the same unit of allocation. Both cylinders and tracks are num

bered starting at zero. The cylinder address specified by the FROM parameter must be less

than or equal to the cylinder address of the corresponding TO parameter. The track address of

the FROM parameter must be less than or equal to the track address of the corresponding TO

parameter.

The TO parameter specifies the high cylinder and track addresses of the unit of allocation.

It is paired with the immediately preceding FROM parameter.

Overflow Parameter

The second unit of allocation specified for an indexed sequential file must be the general

overflow area, specified by the overflow parameter.

The overflow parameter specifies the unit of allocation for the general overflow area of

an indexed sequential file. It is not relevant to any other file organization. The format of this

parameter is as follows.

OVERFLOW=(FROM=(c, t), TO=(c, t)),

The FROM and TO parameters for the overflow area are specified as described for the

master/cylinder index parameter.

NOTE: The units of allocation for the master/cylinder index and general
overflow can be any width (tracks per cylinder), but no unit of
allocation may begin on the cylinder on which the previous unit of
allocation for that file ended.

4-18 #5-618

SECTION IV. FILE SUPPORT C

Data Unit of Allocation

A data unit of allocation is specified by a pair of FROM and TO parameters. At least one

data Wlit of allocation must be specified for all file organizations. If a file is assigned more

than one unit of allocation, the number of tracks per cylinder in all data units of allocation for

the file must be the same.

FROM Parameter

The FROM parameter is used to specify the low cylinder and track numbers of the Wlit of

allocation. The format of this parameter is as follows.

I FROM=(c, t),

The FROM parameter must be followed immediately by a TO parameter which specifies the

high cylinder and track numbers of the unit of allocation. The cylinder number of the FROM parameter

must D:>t exceed the cylinder number ofthe TOparameter. The same is true for the track numbers.

TO Parameter

The TO parameter is paired with the iznznediately preceding FROM parameter and is used

to specify the high cylinder and track numbers of the Wlit of allocation. The format of this pa

rameter is as follows.

I TO=(c, t),

All cylinder and track values specified must be consistent with the device type of the current

mass storage volume.

MEMBER STATEMENT

The Member statement is used to reserve space in a partitioned sequential file for a

specific member. When space is being reserved for members, there must be one Member

statement for each member to be entered. The use of this statement is optional. When used,

the member name and member length parameters are required.

NOTE: A member can be created by use of Logical I/O C, the load function,
or the Member statement in the allocate function.

Member-Name Parameter

The member.name parameter is used to specify the name of the member for which space

is being reserved. The value of this parameter can be up to 14 characters and can consist of

the letters A through Z, digits 0 through 9, and blanks; the blank cannot be the first character

4-19

SECTION IV. FILE SUPPORT C

of the name. If duplicate member names are requested, only the first is allocated. The for

mat of this parameter is as follows.

I NAME==e=ber-na=e,

Member-Length Parameter

The membe~length parameter is used to specify the number of blocks to be reserved for

this member. When data is subsequently loaded into the member, it may occupy all or any part

of the reserved space. The format of this parameter is as follows.

ILENGTH=number-of-blocks,I

The value of this parameter must not exceed 4,095. If it is expected that the data area of a

member will occupy more than 4,095 blocks of its file, that member should not be requested

during allocation. That member can be created at the time its data enters the file by meanS of

the load function.

FILE STATEMENT FOR THE LIST FILE

The peripheral device address of the list file may be specified by a File statement whose

first parameter is LIST. If this statement is omitted, the list file is produced on a printer with

the device address of (02).

CARD r~ LOCATION
OPERATION OPERANDS NUMBER CODE

I 2: 3 4 5 • 7 • 1415 20 Zt 62 .. 00

I FILE" LIST
I

I I
I I

: I

The list file is used only to print the cylinder and track address of any track which cannot

be successfully formatted during allocation of a file. If all tracks are successfully formatted, no

list file is produced. The message is produced in the following form:

CYL nnn TR nnn ERROR, (nnn denotes decimal values.)

Device-Address Parameter

The device-address parameter allows changes to be made in the standard assignment for

the peripheral device used for the Ii st file.

I DEVADD={pcu),

4-20 #5-618

SECTION IV. FILE SUPPORT C

The peripheral address is written as two octal digits. All bits including sector bits must

be specified. The default assumption is device address (02).

DAY STATEMENT

A Day statement is used to specify the value to be placed in the creation date field of the

volume directory entry for the file being allocated. When a Day statement is not specified, i. e. ,

when this statement is omitted from the allocate function job control statements, the allocate

function places the contents of the Supervisor's current date field in the creation date field. The

format of the Day statement is as follows.

CARD ~II LOCAT'ON
OPERATION

OPERANDS NUMBER CODE

I 2 3 " S • r 0 1415 2021
I ! 1M y l'I'v.ddd
I

I
i I
I I

The parameter of the Day statement is used to specify the actual creation date of the file.

The yy portion of the parameter specifies the last two digits of the year, and the ddd portion

the number of the day. For example, if the creation date of a file is 15 December, 1969, then

the value of the parameter is ~349.

Job Control Language Example for Allocate Function

ao

The following job control statements request the allocation of a sequential file named

FILEAA. This file's item length is specified as 100 characters, and each of its blocks contains

six items. This means that the block length is 600 characters. The record size is specified as

600 characters. Since values are not supplied for the password, expiration date, and protection

parameters, the allocate function does not assign password protection, expiration date protec

tion, or write protection.

In this example for a Type 259 Disk Pack Drive, one unit of allocation consisting of all the

tracks on cylinders 05 through 09 inclusive is requested. The volume name is VOLA. The allo

cate function assumes that the volume's peripheral address assignment (pcu) is 04, drive number

0, since a device address is not supplied.

A Day statement is not submitted, so the allocate function assigns the value of the Super

visor's current date field as the creation date of the file.

4-21 # 5 -61.8

SECTION IV. FILE SUPPORT C

N~BER I~ LOCATION
oPERATION OPERANOS CODE

I 2 S .. , • 1 • 1415 20 20"
I IE.X .flL,e.~UP.
I

I ~UN.tT. IALL~AT£
i I J=ILE NAM£:FILEAA o.~~:~E~

• ! I F.t.17.E 'TE.M::.tal0.l..L. oe" =6 _ u..~=.600
i ! u..MlT.~ NA.ME.::-VOLA
I I r.RoM~.(05 .. ~J ~~.aSQ. Q.\

The following example. for a Type 273 Disk Pack Drive. requests the allocation of a

sequential file ROBYN. The volume name is RESVOL and the device address is assumed to be

pcu 04. drive O. The item. record. and block sizes are specified. In this example. the unit

of allocation is placed on the volume on cylinders 07 through 14 inclusive.

CARl)
LOCATION

OPERATION OPERANOS NUMBER CODE
12,.5. 1 • o ••00

I : I:;'t. *~\l.E:S.UP
I I F.U~T ALLO~.ATE
i I FILE. NAME:.lro.~V."'.O.1i:6.: SE.Q

• ! I ~JZE I TEMs2.0<2S ... !t.(O.~.""' 5" .. 2.E.c. '" i.Qi.0.~.
i ! U.NIT5 NAME=,'2E:~Vo.L
I I IE f.RoM-::, (070) TO.:.t~ 4 1.9.'

The following example requests the allocation of a partitioned sequential file FILEBB.

The item. record. and block sizes are specified. Note that two records form one block of nine

items. which gives a larger data capacity on each track of the Type 259 Disk Pack Drive than

would be achieved using a record size of 900 characters (refer to Appendix C). Because the

member index size is not specified. one block is reserved. Two members are reserved during

allocation in this example.

CARl)
NUMBER

8/29/69

LOCATION
_TION

CODE OPERANOS

4-22 #5-618

•

SECTION IY. FILE SUPPORT C

The following example requests the allocation of a sequential file which extends over three

volumes. The mass storage device on which each of the three volumes is to be mounted is speci

fied through two device address parameters in the File statement. As many device address pa

rameters are written as there are devices to be used. In this example, the unit of allocation for

the first volume (specified in the first Units statement) is placed on the volume at address 04,

drive 1; for the second volume at address 04, drive 2; and that for the third volume at address

04, drive 1 (which is thus used again). The number of volumes on which the file is allocated

(this is equal to the number of Units statements) does not have to equal the number of devices

used (this is obtained from the device address parameters). Before the allocate function allo

cates the third volume of the file, the volume originally mounted on drive 1 (YOLA) must be re

placed by the volume named YOLC, which is to be the third volume for the file.

8/29/69 4-22.1 #5-618

1

1

1

-.J
1

1

1

1

1

1

1

.,.'

'"

---.../

..
r

1

1

1

1

1

1

1

1

1

1

1

I
i

i
1

1

1

SECTION IV. FILE SUPPORT C

EASYCODER
COOING FORM

PROBLEM PROGRAMMER DATE MG E OF

CARD a lOCATION
OPERATION OPERANDS NUMeER coo£

12S45. 7 • 1415 20 .,
I : lE.lC *FI LE~UP.,
I I FUNCT [ALLOCATE
i I ~ILE NA.Me.cFIL~6
I I ORG=SIOG
~ ! OEVA.I>O={04 1) ~EVA.DD=(QS4- 2) c'vdiec.1 ...I. .
I I So I Z.E. I TEM.1 Z5 1ZEC.5~,
: ! U,'lITS NAME: VOLA"

I FROM~,(:I.4-d,) TO=.{50 .. Q.)

• I I UNITS NAME-vOLB
10 I I FROM"'{ 1S~) TOs,(,44-q)
Il I FROM .. ,{1 /lS0,.,,,~ .TO.ti 4-ai. 9.)
.2 I I JNITS NAME.-VOLe
01 ii ~RO.M",Co.0. .. 0J TO •• (i .~~ .. ,91
•• I I

The following example requests the allocation of an indexed sequential file on three vol

umes, each on a Type 259 Disk Pack Drive. The master/cylinder index and overflow units are

assigned to the volume named VOLEE; the data units of allocation are assigned to the two vol

umes VOLED and VOLEF in that sequence. All three volumes are to be mounted at address 04,

drive 2; volume VOLED is mounted after volume VOLEE has been processed, and volume VOLEF

is mounted after volume VOLED has been processed.

EASYCODER
COOING FORM

PROBLEM R DATE MGE OF

CARD II lOCATION
OPERATION OPERANDS NUMBER COOE

12345' 7 • 141' 2021"
I : lEX I!:F I LESup
I I fUNCT A.lLOCAT..E~
i I FilE NAME:FILE2
I I IORGsiNO !(.EY=(o 10)

: ttEVADO·II2l4 2J
I I ~IZE STRING"'4 I TEJ\(s5~.
: I UNITS INAME=YOLEE.
i I IMC.INDEX.'=LF,ROM"'.('\ i ,0), TO"'(.11.~n Onczt .. a<. ~Iv.
I I bVE.RFJ.QW=.('F.ROJr!",,cij, 1,). . .T.O.",{ -t 16.)., TwotlY4t" ... ~~n\y.

'0 I lINI T~ INAME=YOLED
/

~ir:,~ <14 Q "nIt
,

I i FROM=,(1dQS.\ To:, (S0.Q:'J ~.ot""ty·on cy'\ndc ,. i i ~NITS INAME s,VOU~.F Sotco;'~ : .. ~ ·It
OJ I I F.ROMs,CS .0.), TO",.c,+2 .9). ~i .. tydi It. (.y\it\Ckrs
14 l I F.I L.E.. IL I ST, bE\lA.~b {QI.~,~ Prinft.r 0' Dc.u 0~. ,.

I I
,. I I

I I

4-23 #5-618

SECTION IV. FILE SUPPORT C

The default assumptions for this file are as follows:

1. Record size = 250 characters,

2. Block size = 5 items,

3. Strings per cylinder = 36 strings, 1

4. String index = 5 blocks, 1

5. Items per string = 20 items,
2

and

6. No cylinder overflow.

Summary of Job Control Statements for Allocate Function

Table 4-2 contains a complete summary of the job control statements for the allocate

function.

lCalculated by allocate function from record size, string size, and track width.

2Calculated by allocate function from item size, block size, and string size.

4-24 #5-618

"-

"" I
N
\11

=II::
\TI
I

'"
co

(

Statement

Execute

Function

File

Command
(Operation
Code)

EX

FUNCT

FILE

" .,.

(

Table 4-2. Summary of Job Control Statements for Allocate Function

Parameter
Value

Parameter (Operands
Name Field) Function

P~gram *FILESUP, Directs Supervisor to load File
Segment Support C.
Name

Function ALLOCATE, The allocate function is to be
Name performed.

Defines the file being allocated.

File Name NAME = file- Names the file being allocated.
name,

File aRG= {SEO Defines the filels organization.
Organization PART

DIR
,

IND

General GENOV= {NO} Specifies whether file is to con-
Overflow YES

,
tain a general overflow area.

Item Key KEY = Specifies leftmost position and
(position, length), length of keyfield.

Password PW = password, Specifies the password to be
assigned to the file.

Expiration EXP = yyddd, Gives date of file IS expiration.
Date

Write PROT
= {:O}'

Specifies the type of write
Protection protection to be assigned.

Device DEVADD = Gives the device address of the
Address (pcu, drive), volume. More than one can be

specified for multivolume files.

(

Conunents

Required when running under
control of mass storage
Supervis or C.

Required.

Required.

Required.

Optional; applies to direct
access files only. Assumed
value = YES.

Required for direct access
and indexed sequential files;
does not apply to other file
organizations.

Optional. As sumed value =
no password.

Optional. As sumed value = no
expiration date protection.

Optional. Assumed value =
NO.

Optional. As sumed value =
(04,0), . If mo re than one
value, use is cyclical.

CIl
t':J
C1
:j

~
<:

~
t"'
t':J
CIl c::
I'(j
I'(j

~
~

C1

~
I
N
0'

"II:
V1
I
0'
......
00

Statement

Size

Units

(

Command
(Operation
Code)

SIZE

UNITS

Table 4- 2 (cont). Summary of Job Control Statements for Allocate Function

Parameter I Value
Parameter (Operands I

Name Field) Function Comments

Record Size REC = Gives the number of characters The Size statement is normal-
record-length, in each record. ly present. It may be omitted

Item Size ITEM = Gives the number of characters
only if the assumed values for

item-length, in each item including status all its parameters are satis-

character when applicable. factory.

Block Size BLOCK = Gives the number of items in
items-per- block, each block.

1

Bucket Size BUCKET = Gives the number of blocks per Optional. Meaningful only for
blocks-per- bucket, bucket. direct access files. Assumed

value = 1.

Index Size INDEX = Gives the number of blocks in Optional. Meaningful only for
blocks - in- index, member index. partitioned sequential files.

Assumed value = 1.

Cylinder CYLOV = Gives the number of tracks in Optional. Meaningful only for
Overflow Size number-of-tracks, the cylinder overflow area. direct access and indexed

sequential files. Assumed
value = O.

String STRING = Specifies the number of blocks Optional. Meaningful only
Size blocks -per -string, per string for an indexed for indexed sequential

I
sequential file. files. Assumed value = 1.

Specifies the units of allocation One required for each volume I

for the file. . of the file. :

Volume NAME = Names the volume to be used for Required for each volume.
Name volume- name, this Units statement. Must be first parameter.

Master/Cyl- MCINDEX = Specifies the unit of allocation Required. Allowable only ,

inder Index (FROM=(c, t), for the master / cylinder index. for indexed sequential
TO=(c,t)), files. Must be first unit.

((
10 ~

Ul
M
()
..,;j
o z
.....
<:

"zJ
t:"'
M
Ul c::
~
~
..,;j

()

oj>. ,
N
--.l

=11=
\J'1 ,
C-......
00

(

Statement

Units

Member

File

Day

Command
(Operation
Code)

UNITS
(cont)

MEMBER

FILE

DAY

t' ,

((

Table 4-2 (cont). Summary of Job Control Statements for Allocate Function

Parameter
Value

Parameter (Operands
Name Field) Function Comments

Overflow OVERFLOW= Specifies the unit of allocation Required. Allowable only
(FROM=(c, t), TO= for the general overflow for indexed- sequential
(c,t)), area. files. Must be second unit.

FROM FROM = Gives the low cylinder and track At least one pair required.
(c, t), addresses of the data unit of Additional pairs must have

allocation. same track width.

TO TO = (c, t), Gives the high cylinder and
track addresses of the data
unit of allocation.

Reserves space for a member Optional. Meaningful only for
of a partitioned sequential file. partitioned sequential files.

Member NAME = Gives the name of the member May appear more than once.

Name member-name, that space is reserved for.

Member LENGTH = Gives the number of blocks in
Length numbe r- of- blocks, the member.

File LIST, Specifies the list file device Optional. When omitted,
address. listing is produced on a

printer with peripheral con-
trol address of (02).

Device DEVADD=(pcu), Allows changes in the standard
Address device assignment for the list

file.

Date yyddd, Gives the year and day the file Optional. Assumed value =
is created. Supervisor's current date

field.

U'l
M
()
I-j
~
<:

"1j
~
U'l
c::
'tl
'tl

~
I-j

()

SECTION IV. FILE SUPPORT C

DEALLOCA TE FUNCTION

The deallocate fWlction is used to delete files from a mass storage volume or volumes.

File deallocation is the only means by which allocated areas on a volume can be freed for the

allocation of new files. Before a file is deallocated, checks are made on the volume name, the

file expiration date, and the password. This is done to avoid inadvertent removal of a file which

has not expired or which is protected by a password.

To deallocate a file, the programmer must supply the volume name of the first volume

containing the file, the name of the file, and its password if the file is protected by a password.

The deallocate fWlction is requested by a FWlction statement whose first parameter is DEALLO

CATE. This statement must be followed by a Volume statement and at least one File statement.

A Day statement may follow the last File statement. The Volume, File, and Day statements

must be submitted in that order after the FWlction statement.

Job Control Language for Deallocate FWlction

Figure 4-3 shows all the job control statements that are required for, or that can be used

in, the deallocation of files from mass storage volumes. Each statement and its parameters are

described in subsequent paragraphs.

EASYCODER
COOING FORM

PROBlEM PROGRAMMER OATE

CARD II LOCATION
OP£RATION OPERANDS NUMBER COOE

12,.5. 7 • '415 20 10

I : lEX ~FIL ($Up 1«.0._ ~tQttm4.nt.
I 1 F.UlltC.T DEAL LO.CA"TE ~.~~Ar .. " ... t
i I Iv.OLUME ·I<'e~. Srqtcm.ert.
! I ~AME~ \/0 I u nw. - namo. R'eQ. Rncunet'er.
j ! FILE 1~4.Q.. StatCA'l'l4.nt,
I I NAME" ,~i 1 Cl - t'lan)Q, . R,~. Par'I'" .,.+,
I I Ups " 0 1 O!5t19001 ('aromat:4.f.
i I 1,Y.E~\'
I I IPW'" pQ.4~wor.d. IR4Q..· ",01" ~il4. wi",

10 I I I PQ'b~ord. Ql'dtACtlqn.
I I I OEVAOO".(p.c,u. dt"i \/4.) IQpi:i~ho.l l'o..omo.t4.r. I. i i OAV ~\lddd optional stdto.mf.-nt.

II I I

Figure 4-3. Job Control Statements for Deallocate FWlction

EXECUTE STATEMENT

The Execute statement with the parameter *FILESUP directs the Supervisor to load File

Support C. The format of the Execute statement is shown in Figure 4-1.

4-28 #5-618

...

SECTION IV. FILE SUPPORT C

FUNCTION STA TEMENT

The Function statement specifies to File Support C what function to perform. This state

ment is required, and to perform the deallocate function the statement must be coded as follows.

CARD
1111 LOCATION I ~N OPERANDS NUMBER

I 2 S 4 S • 1 • 1415 . .,-I : IFUNC.T DEA.L L.O.CA.TE
, I I

VOLUME STATEMENT

The Volume statement is used to specify parameters that pertain to the first or only vol

ume containing the files to be deallocated. There can be only one Volume statement per deallo

cate function; i. e., all files to be deallocated with this execution of the deallocate function must

begin on the same volume •

Volume Name Parameter

The volume name parameter is used to specify the name of the first or only volume on

which a file to be deallocated resides. The format of this parameter is shown below.

NAME =volume -name,

FILE STATEMENT

Each file to be deallocated is named by a File statement whose first parameter contains

the name of the file. This statement is required. To deallocate more than one file with a single

Function statement, there must be a File statement naming each file to be deallocated.

File Name Parameter

The file name parameter is required and is used to specify the name of the file to be deal

located. The format of this parameter is as follows.

I NAME=file-name,

Expiration Date Check Parameter

The expiration date check parameter is used to specify whether the expiration date of the

file to be deallocated is to be checked by the deallocate function. This parameter is optional.

When it is not specified by the programmer, the deallocate function automatically checks the

expiration date of the file being deallocated against the date specified by the user (see the Day

statement). The format of this parameter is as follows:

4-29 415 -6'18

SECTION IV. FILE SUPPORT C

NO ::J The expiration date will not be checked, and

YES = The expiration date will be checked.

Password Parameter

The password paratneter is used to pertnit only authorized deallocation of a file. The

fortnat of this paratneter is as follows.

I PW=password, .,

The password paratneter tnust be specified if the file being deallocated is protected

by a password. When the password specified in this paratneter is not the satne as that assigned

to the file, the file is not deallocated.

Device Address Paratneter

The device address paratneter is used to specify the peripheral address assigntnent of the

volUtne or volutnes containing the file to be deallocated. The fortnat of this statetnent is as

follows.

DEV ADD=(pcu, drive), ••• ,

When specifying values for this paratneter, the peripheral address assignment (pcu) is

written as two octal digits. The high-order bit is not significant. The drive nutnber is written

as one octal digit. As tnany of these paratneters as are required for tnultivolutne files tnay be

specified. This paratneter, however, is optional.

If the device address paratneter is otnitted, the default assutnption depends on whether or

not this is the first file being deallocated by this deallocate function. If it is the first file, the

default assutnption is that only one device is to be used (04 .. 0). If it is not the first file, the

default assutnption is that the devices used for the preceding file specified with this deallocate

function are to be used again.

4-30 #5 -618

SECTION IV. FILE SUPPORT C

DAY STATEMENT

The Day statement is used to specify the date against which the expiration date for the file

is to be checked. This statement is optional. When a Day statement is not specified, the deal

locate function compares the contents of the Supervisor I s current date field with the expiration date

assigned to the file. This check is not made if the value of the expiration date check parameter is

NO. The format of the Day statement is as follows.

CARD Y a LOCATION
OPERATtON

OPERANDS NUMBER CODE

I 2 '5 4 5 15 7 • 1415 202' 10

I MY vv.ddd,
I

I

-1- I

The parameter of the Day statement is yyddd and is used to specify the last two digits of

the year (yy) and the day of the year (ddd). Thus, if the date submitted was 15 December, 1969,

it would be coded as 69349.

Only one Day statement may appear for each request for the deallocate function. All files

named in the File statements following the Function statement have their expiration date checked

against this same date.

Job Control Language Example for Deallocate Function

The following job control statements request the deallocation of two files on the volume

named AOOOOO. If the two files being deallocated are multivolume files, the deallocate function

assumes that both begin on volume AOOOOO. Because only one device address is specified for

the files, the deallocate function assumes that the peripheral address assignment (pcu) is 04 and

that the drive number is 1 for both files. The first file to be deallocated is named FILEEE. Its

expiration date is automatically checked against the current date field of the Supervisor. The

file's password is specified as DEPT. 100. The second file to be deallocated is named FILECC.

Its expiration date is not checked. A password parameter is not specified for the file, but the

deallocate function automatically checks to ensure that the file is not protected by a password.

CARD II LOCATION
OPERATION

OPERANDS NUMBER CODE

I 2 '5 4 5 • 7 • 1415 202' 10

I ~lI. *.FI LESuP
I FUNC.T DEALLOCA.TE.

I i V.OLU~£ NAME:' A/I).f/JrlX/Ji~.\
I I FILE N.A.ME~ F I L HE PW-,1:)EPT.1 ¢4I bE.V.A.bh~.r~4. n
: : FILE NAME""FI LECC
I I E EXP·NO

4-31 #5-618

SECTION IV. FILE SUPPOR T C

The following example illustrates a request to deallocate sev~ral files, all beginning on the

same volume. If the files did not all start on the same volume, their deallocation would have to

be done through separate requests for the deallocate function. Three files are deallocated in this

example. FILEA is a multivolume file and three device addresses are specified for it; its volumes

are mounted on drives 1, 2, 3, 1, and so forth as necessary. Since device addresses are not

specified for FILEB, its volumes are assumed to be mounted on the same set of devices as FILEA,

with the first volume of FILEB mounted on drive 1. FILEC is specified to begin on drive 1. If it

is a multivolume file, all subsequent volumes also will be mounted on drive 1, in sequence, each

volume replacing the previous volume. All three files must begin on the volume named VOLA;

this volume name will be checked for each file. The name of each subsequent volume (not required

in the job control file) is taken from the directory of the current file volume.

EASYCODER
CODING FORM

PROBLEM lIME OF

N::"'BER Il II LOCATION
OI'£IIATlON OPERANDS CODE

I 2 :s .. 5 • 1 • 141S 202110

I : E,X itFILE.SUP
I

I FUNC.T. DeALL.oCI\Te.
i I V.OLUME NAME "VOLA

• ! I F I.L.E JIIAME=FILEA
i ! DEVAtlO::(2f4. nnEVA.OQ.(~4, 2) DEVAD[):.(04~)
I I FILE. NAME:F I LE~~· ./

1 I F,ILE. NI\ME:: F I LEe.
i I E [)EVA~O".(0.4, 1.).
I I

,
•

10 !

The following example illustrates a request to deallocate three multivolume files, each of

which starts on a different volume. File FILER begins on volume A (VOLA) and continues through

VOLB, VOLC, and VOLD. File FILEX begins on VOLC and continues on to VOLA. File FILET

begins on VOLD and continues on to VOLA. The volumes reside on the following device addresses

(all using pcu 04).

VOLA - drive 1

VOLB - drive 2

VOLC - drive 3

VOLD - drive 4

Disk changing is not required during the deallocation of these three files. Three Function

statements are required for this operation.

4-32 #5-618

SECTION IV. FILE SUPPORT C

EASYCODER
CODING FORM

PROBLEM PROGRAM MER DATE

N~BER tJ LOCATION OPERATION
OPERANOS CODE

123456 1 • 1415 2021 1"
I I 1 EX *.FI LE~UP.,

I
.1 FUNCT DEAL L-"~C ,. T E, •.

i I N.oLUME INAME ~VO\.A.
I I FILE NA.ME~ FI LE.2. EXP=NO ~DeAD..E1 L E

..1 ! O~V~O= (~4 n DEVAD.t'lw(~4 2) DEVAOO:,Ll2S.4. 3,) .
I I OEVA.OO~(~4- 4)
! I

j I FUNCr IDEAL lD.CAT£
I ! iV,OlU.ME INAME=VOLC

'0 ! 1 F.I L.E. NAMEyFILEX EXP·~E~
, j ...1 C>E'lAQ~·(04. .. ?I) .D.EVA.tlD=.l QS.4. 1)
• I i IOAY b.7~
• I I
• ! I F:UNCT DEALI...Q..C.A.TE
• ..1 1 V.OY.lME N.A~·VOl.Q.
• I F,ILE NAM~,F I L ET.
1 1 I [)EVA~D. .. I~,.4) .~EVAD.o=L~ .. 1.).
• ! !
• I I
0 I i
I I

Summary of Job Control Statements for Deallocate Function

Table 4-3 contains a complete summary ofthe job control statements for the deallocate

"--'" function.

LOAD AND UNLOAD FUNCTIONS

The load function is used to load a file onto a mass storage volume from punched cards,

magnetic tape, or another mass storage file of the same organization. The unload function is

used to unload a file from a mass storage volume onto punched cards, magnetic tape, printer,

or another mass storage file. However, at least one of the files in the load/unload function

must be on mass storage When loading or unloading one mass storage file to another, the

files must be of the same organization, with the following exceptions: the input file can be se

quent ial and the output file can be indexed sequential, or, the input file can be sequential and

the output file can be a direct access file. All standard fixed-length card and tape formats

can be used with the load and unload functions.

A load or unload function is requested by a Function statement whose first parameter is

either LOAD or UNLOAD. (The File statements specify whether the operation is to or from

mass storage.) The Function statement is followed by two File statements, one for the input file

and one for the output file. When a File statement is for a mass storage partitioned sequential

file, it may be followed by one or more Member statements. The Member statements associated

with a File statement must follow immediately after that statement. There may also be one

Exits statement per load or unload function. This is explained under "Exits Statement" later in

this section.

4-33 #5-618

~
I
v.>
~

'=II:
U'l
I

'" .-
00

Statement

Execute

Function

Volume

File

Day

(

Command
(Operation
Code)

EX

FUNCT

VOLUME

FILE

DAY

Table 4-3. Summ.ary of Job Control Statements for Deallocate Function

Parameter
Parameter Value
Name (Operands

Field) Function Comments

Program '~FILESUP, Directs the Supervisor to load Required when running under
Segment File Support C. control of mass storage
Name Supervisor.

Function DEALLOCATE, Required.
Name

Required.

Volume Name NAME = Gives the name of the first Required.
volume-name. volume containing the file to

be deallocated.

Required.

File Name NAME = Name s the file to be deallocated Required.
file-name,

Expiration EXP = {~~S} •
Specifies whether the file's Optional. Assumed value =

Date expiration date is checked. YES.

Password PW = pas sword, Gives the password for the file. Required if file is protected
by a password.

Device DEVADD = Gives the physical device Optional. As sume d value =
Address (pcu, drive), address of a volume. May be (04. 0), for all volume s of a

repeated for multivolume files. file.

Optional. Assumed value =
Expiration yyddd, Specifies year and day against Supervisorfs current date
Date which the filels expiration date field.

is to be checked.

((
" \i ,II

CJl
M
()
~
H

o
Z

<
"'1
H

t"'
M
CJl
c::
1:l
1:l

~
~

()

SECTION IV. FILE SUPPOR T C

Job Control Language for Load and Unload Functions

The job control language is similar for load and unload functions. Figure 4-4 shows all

the job control statements that are required for, or that can be used in, the loading and unload

ing of files. Each statement and its parameters are described in following paragraphs. Many

of these parameters can be omitted for any given load or unload function.

EASYCODER
COOING FORM

PROBLEM PROGRAM ER M OATE I'IIIGE OF - -
CARD

~ LOCATION
OPERATION OPERANDS NUMBER COOE

1234$& 7 • 1415 l 2021 10

I lEX *(:I LESup ""'J''' ~ ,.j.
I 1 FUNCT ICLOAtl) R .. Jwir .. d.
i i Il~"'LOAD) ,

,
I I FILE. I(lN) 1~'IIrt.d. O~ .-\0,-
: i ~OUT! I~ .~;\4..
1 I NAME:.C i \ t. - .nQ.m4. 11Z4.l-\.Ilr44.;t W1aM ~Qt'''CH. .•
: I DEV~.Pe. = 44. v i C-L - 1":",.,.4 S.4 .paQ4. 4-?l'1 u

i 1 IDEVA~D",{D.C'" dt" i v.iJ ... ~ \Q~.
I ,

I TE.M: i tL m - I /I. nat';h ~qnjl\. TQH ~ CQr4 9\1\ /Op1
'0 ! : ~E~ .. r,/l.eo\"4,-14..I~a.t:h ~9"Q\.TQ~ ~n\\,. o.~ ,

1 I ~N~."'lt~ . 1.
..

~C);\PI.'\Q\.Tag4 ~\V • .. L 1 NO i,
'. I I .~",,,, J ,. I I IPAR. • • OD.D .1 1~·";lnQ\. Ta.x. .onl\l. .. I ! EV EN. C,

" I PAC' Qacid i .n,Q bdl-: I •. \OPL ~n\\I.
! I MOD£",{ SPEC, ~) o9tlQnQI •. Cor<J ,. I I ,t ~'T AAD t ' I~;\f ,~\v., '. i : PWc DQ~j!,wor-"'. R"~Q1" .~j\c._\1\1

'0 I i I P.Q.~~wor.d .• , I I BUC.KE.T=.f .REL.l P.\iflcm<M. Q'r«t .QI:4Uio

•• I t .\A.S,~J ' out~t on\y.' .. ! 1 PR,OT= A SD Jl'.iC;1lil 9t)\lt .~Dt" .. I I B ImQ'!>,.· 'St01:"QQQ.

I
I 1.&

7 ovtRuT .~i\4. u ..
•• i I NO .7 I I I M&EQ: vnU!9.u:i,- i t ,t..m~- JI,CI..t".- 4'1",\'",i .t\,Q IO.PtiQt)Q\ 11 .. """
II .t I u 1<>., ,,.. ."..t: .1 04ltlJlJt, C!NI,L.
H I RE.LE.A.~E -.{ ,'I',E~.1 lO.p1\"cmql. Pa~i1i~

I i 1wo(' ~~,~ £ itt. '?11,1'(.
, I I~EPOt~·t'9~rt-n~mb4r ... b~iionol.lJnW.to p. ... , .. 1e ... on)v
• I

I ME.MSE~ NAME· mt.mb4.-r - .nQ.n1t. t\,~lonQI f",,:(.tione(i

• i I ~r.QI.Cl(nlv ..
I I E."ITS, f'RO~s,I'.'" o~.rtCI.lY\.-nQm¢.. R~i.rt.<I ~o'cfw«t

• j ! IW.MA .. lpw-~¢.~)".v.-.a.ddrjl..IOS ~fo ou1p\.!t .~;\¢.

• 1 I bpiiC?nol tor!.)!\ ~¢r.~iI~.
7 ! I

• i I

• I I

Figure 4-4. Job Control Statements for Loading and Unloading Files

4-35 #5 -618

SECTION IV. FILE SUPPORT C

EXECUTE STATEMENT

The Execute statement with the parameter *FILESUP directs Supervisor C to load File

Support C. The format of the Execute statement is shown in Figure 4-1.

FUNCTION STATEMENT

The Function statement specifies to File Support C what function to perform. This state

ment is required; and to perform eit.her the load or the unload function, it must be coded as

shown in the following example.

Nc;:"BER II LOCATION
OPERATION OPERANDS CODE

I Z 1 4 , • 1 1 1415 2021 lZO'

I FUNCT I (LOA.~ ,
I IluNLOAD l'

j I

The value chosen for this parameter may be either load or unload. However, the input

and output File statements specify the direction of data flow.

FILE STATEMENTS

0-

Both the input and the output File statements are described here, since they are essentially

the same in form. The input file for a load or an unload function is identified by a File statement

whose first parameter is IN; the output file is identified by a File statement whose first pa

rameter is OUT.

The file name parameter is required to specify the name of the mass storage file. This

parameter can be omitted for other device types, in which case label checking is omitted also.

For printer output, the file name is always taken from the input mass storage file. The device

type parameter specifies the storage medium used to contain the file and describes the type of

device used to access the file. The device address parameter allows the physical device address

of the file to be altered from the assumed value. When operating with multivolume mass stor

age files, more than one device address parameter may be specified. Both the input and output

files may be assigned to devices connected to the first, second, or both I/O sectors.

The remaining parameters apply to specific storage media. For a mass storage file, size

parameters are obtained from the volume directory. The item size, record size, banner,

padding, and parity parameters apply to a magnetic tape file. Item size and mode parameters

apply to a punched card file. The password parameter applies to a mass storage file. The

bucket parameter applies only to an output direct access file on mass storage. The protect

parameter applies to an output mass storage file. The imbed parameter applies to an output,

indexed sequential mass storage file. The release parameter applies to an output, partitioned

sequential mass storage file. The report parameter applies to print-image files.

4-36 #5 -618

"

SECTION IV. FILE SUPPORT C

In/Out Param.eter

The in/out param.eter is required to specify whether the File statem.ent applies to the input

file or to the output file. This param.eter m.ust be the first param.eter of the File statem.ent. The

form.at of this param.eter is as follows.

The value chosen for this param.eter will have the significance shown below.

IN = The input file is being described by this File statem.ent.

OUT = The output file is being described by this File statem.ent.

File Nam.e Param.eter

The file nam.e param.eter is used to specify the nam.e of the file being used as input or out

put. This param.eter is required for m.ass storage files and optional for files stored on other

device types. This param.eter does not apply to an output printer file. The form.at of this param.

eter is as follows.

NAME=file-nam.e,1

The nam.e of the input or output file specified here can be up to ten characters long. Trail

ing spaces are autom.atically added by the load or unload function. When this param.eter is om.itted

for a non-m.ass storage file, the file nam.e is not checked on that storage m.edium. by the load or

unload function.

Device Type Param.eter

The device type param.eter is used to specify the storage m.edium. used for the file, as

well as the type of peripheral device used to access the file. The form.at of this param.eter is

as follows.

DEVT YPE =device -type,

If this param.eter is absent, the assum.ed value is m.ass storage. When present, this para

m.eter specifies the device type on which the file resides; the param.eter value m.ust be chosen

from. the following list.

Device-Type Description

227 Card reader or card punch

224-1 Card reader /punch

223 Card reader

224-2 Card reader /punch

214-1 Card punch

4-37 #5 -61~

I

SECTION IV. FILE SUPPORT C

Device Type Description

214-2 Card reader/punch

204B 1 /2-inch m.agnetic tape

155 Mass storage

258 Mass storage

259 Mass storage (259, 259A, 259B)

261 Mass storage

262 Mass storage

273 Mass storage

222 Printer

206 Printer

Device Address Param.eter

The device address param.eter allows the program.m.er to change the peripheral address

assignm.ent used to access the file. The form.at of this param.eter is as follows.

Card or Printer Tape Mas s Storage

I DEVADD = (pcu), I DEV ADD = (pcu, drive) , I DEVADD = (pcu, drive),

This param.eter is optional. When it is used, the peripheral address assignm.ent (pcu)

m.ust be specified as two octal digits. The high-order (I/O) bit is ignored, but all other bits,

iilcluding the sector bits, m.ust be specified. Also, the sirve num.ber m.ust be specified as one

octal digit. When this param.eter is not used, the load or unload fucntion assum.es that one of

the following standard peripheral addresses (depending on the device type) is to be used.

I/O Media Peripheral Addres s

Punched card input pcu 41

Punched card output pcu 01

Magnetic tape input pcu 40, drive 1

Magnetic tape output pcu 00, drive 1

Mass storage input pcu 44, drive 0

Mass storage output pcu 04, drive 0

Printer output pcu 02 •

If the file is on m.agnetic tape, it can be stored on m.ultiple reels. They all m.ust us e the

sam.e device address.

If the file is on m.ass storage, m.ore than one device address param.eter can be subm.itted;

the specified devices are used cyclically. For a m.ultivolum.e m.ass storage file, two or m.ore

1/05/70 4-38 #5-618

.,'

SECTION IV. FILE SUPPORT C

device address parameters can be specified to avoid volume changing. For some operations,

'-....,...-. multiple mass storage device addresses are required. The load/unload function uses these

addresses in the order in which they appear on the File statement.

Table 4-4 illustrates the minimum device requirements for each file organization.

Table 4-4. Minimum Device Requirements for Mass Storage File Organizations

Minimum Number of Devices
Mass Storage File Organization File Usage Required

Sequential or Partitioned Sequential Input or One.
Output

Direct Access Input One.

Output One for each file volume.

Indexed Sequential Input One for MCINDEX; one for OVERFLOW
if .llot on same volume as MCINDEX; and
one for current data unit if not on same
volume as MCINDEX and OVERFLOW.

Output One for each file volume.

Item Length Parameter

The item length parameter is used to specify the length in character s of each item in a

non-mass-storage file. This parameter is optional and does not apply to mass-storage files or

output printer files. Item size must not exceed 4,095 characters. The format of this parameter is

is as follows.

I ITEM = item-length,

The default assumptions for this parameter are as follows.

Mass storage

Magnetic tape

Card input

Card output

Printer

Record Length Parameter

Obtained from the volume directory.

Equal to the item size of the mass storage file.

80 characters.

Equal to the item size of the mass storage file.

Obtained from the volume directory.

The record length parameter applies only to a file stored on tape and is used to specify the

number of characters in each record in the file, including the banner character, if present. The

format of this parameter is as follows.

REC = record-length,

4-39 #5 -618

SECTION IV. FILE SUPPORT C

This parameter is optional. When it is omitted, the load or unload fWlction assumes that

the record length of a tape file is equal to the mass storage file block length plus one character

if the magnetic tape file is bannered. Record length has no meaning in a printer or card file.

If the file is a mass storage file, this parameter is ignored since the record length is obtained

from the volume directory.

Banner Character Parameter

The banner character parameter is used to specify whether a magnetic tape file is ban

nered. The format of this parameter is as follows.

BAN={ banner}
NO ,
YES

This parameter applies only to magnetic tape files and is optional. When this parameter

is not specified, the load or unload function assumes that the file is unbannered. The value

chosen for this parameter will have the significance shown below.

banner = The file is bannered and the parameter specifies the banner character
written as any two octal digits.

NO = The file is unbannered.

YES = The file is bannered and File Support C assigns 41 (octal) as the banner
character for an output file.

Note that for an input file, the banner character parameter specifies only the presence or

absence of the banner character; the actual value is irrelevant. For an output file, the value

specified is written as the first character of the output data records. To specify record size,

refer to "Record Length Parameter" above.

Parity Parameter

The parity parameter is used to specify the parity of recording for magnetic tape files.

The format of this parameter is as follows.

PAR={ODD I
EVEN'

This parameter applies only to magnetic tape files and is optional. When this parameter

is not specified, the function assumes that the parity is odd. The value chosen for this parameter

has the significance shown in the following.

ODD = The parity of recording is odd.

EVEN = The parity of recording is even.

4-40 #5-618

SECTION IV. FILE SUPPOR T C

NOTE: A Honeywell file containing the octal character 12 should be handled in odd parity.
If this is not done, 128 is unloaded as 00

8
and loaded as 00

8
.

Padding Character Parameter

The padding character parameter is used to specify the padding character to be used with

rnagnetic tape files. The padding character that is specified rnust be two octal digits. The

forrnat of this pararneter is as follows.

PAD=padding,

This parameter applies only to rnagnetic tape files and is optional. When this parameter

is not specified and the file is an odd parity file, the load or unload function assumes the padding

character is 77 (octal). When the file is an even parity file, the function assurnes the padding

character is 11 (octal). If the first character of an item on the input tape is equal to the padding

character, the tape input/output routines assume that this is not a valid itern, bypass it, and

advance to the next item.

Mode Parameter

The mode parameter is used to specify the reading or punching mode to be used for card

files. The format of this parameter is as follows.

MODE= { STAND}
SPEC

This parameter applies only to card files and is optional. When it is not specified, the

function assumes that the "special" punching or reading mode is used. The value chosen for

this parameter has the significance shown below.

STAND = The standard card mode is used.

SPEC = The special card mode is used.

NOTE: Refer to the appropriate programmer reference and card reader/punch
manuals for a description of the differences between the standard and
special modes.

Password Parameter

The password parameter is used to specify the password value to be checked against the

password assigned to the rnass storage file. The format of this pararneter is as follows.

PW=password,

This pararneter applies only to rnass storage files and is required if the file has password

protection. When specified, the password can be up to eight characters; trailing spaces are

4-41 #5-618

SECTION IV. FILE SUPPOR T C

added automatically. If the file has password protection, the password check is made regardless

of the presence or absence of the password parameter. If the file does not have password pro

tection, a request for password checking must not be made.

Bucket Addressing Parameter

The bucket addressing parameter is used to specify the type of bucket addressing used for

an output direct access file. The format of this parameter is as follows.

BUCKET= {REL}
ABS '

This parameter is optional and applies to output, direct access files only. When this pa

rameter is not specified, the function assumes that absolute (actual) bucket addresses are being

used. When this parameter is specified, the value chosen has the significance shown below.

REL = Relative bucket addresses are supplied by a user-written routine.

ABS = Actual bucket addresses are supplied by a user-written routine.

Parameters describing the user-written routine are supplied in the Exits statement

(described under "Exits Statement" which follows).

Protection Status Parameter

The protection status parameter is used to indicate the write protection assigned to an

output mass storage file when the file was allocated. The format of this parameter is as follows.

PROT= {~ }

AB '
NO

This parameter is required for an output mass storage file which has write protection.

When this parameter is not specified, the load or unload function assumes that the file has no

write protection. When a file has been allocated with a protection parameter containing a value

other than NO (described under "Protection Status Parameter" earlier in this section). the same

value that was used during the allocation must be used when describing the output mass storage

file. When this parameter is specified, the value chosen has the significance shown in the following.

A = The file was assigned A-file write protection.

B = The file was assigned B-file write protection.

AB = The file was assigned both A- and B-file write protection.

NO The file was not assigned write protection.

4-42 #5-618

SECTION IV. FILE SUPPORT C

Imbed Parameter

The imbed parameter specifies the number of item positions that are set aside as unused

at the end of each data string of a file when the file is loaded. This parameter applies only to

an output indexed sequential file on mass storage.

If these unused item positions (identified by 41 octal) are left within the data strings of an

indexed sequential file when it is loaded, items can subsequently be inserted in those files with

out having to use the cylinder overflow or general overflow areas until all unused item positions

are used.

I IMBED=unus ed- items - pe r- string.

The default assumption is that item positions are not set aside. The value of the imbed

parameter must be less than the number of items per string (as specified by the block and string

parameters when the file is allocated).

Release Parameter

The release parameter specifies whether or not the contents of an output, partitioned se

quential file are to be released before data is loaded. (Releasing a file consists of removing all

member names from the member index so that the entire data area of the file is available as un

used space.) This parameter applies only to a partitioned sequential outputfile on mass storage.

I RELEASE=

YES - The file is to be released before loading.

NO - The file is not to be released before loading.

The default assumption is that the file is not to be released before loading. Thus, data from

input members is either added to the file as new members or it overlays existing members of

the same name.

Report Number Parameter

When a sequential print-image file containing one or more reports is being unloaded onto

the printer, the report number parameter specifies the number of the report to be printed.

This parameter has the following format.

I REPORT = report number, ...

4-43 #5-618

SECTION IV. FILE SUPPORT C

The report number given is the decimal number which is contained (in binary) in locations 2 and

3 of each item of the mass storage file. This parameter is specified when unloading a mass

storage print-image file to the printer. It is optional and can be repeated for as many reports

as the user wishes to print. When this parameter is used, character position 56 of the

VOLDESCR entry for the file must contain 42. Refer to "Unloading Mass Storage Files to

the Printer" in this section and to Appendix G.

MEMBER STA TEMENTS

The input File statement and the output File statement may be followed by member state

ments if that input or output file is a partitioned sequential file on mass storage. Each Member

statement used specifies the name of one member to be loaded or unloaded. There must be one

Member statement for each member to be loaded or unloaded. However, if the programmer

desires, he can omit all Member statements, and all members of the input file will be loaded

onto the output file. Refer to page 4-58 for more detailed information.

CARD II LOCATION
OPERATION OPERANDS

NUMBER CODE

12145' 7 • 1415 20 ••10

I ME..M.~.E..& NAME=In4.mbQ...r - Ame.
I I I I

Member Name Parameter

The member name parameter is used to specify the name of the member to be loaded or

unloaded. When used with an input file, each named member is extracted for output to any media;

when used with an output file, each incoming member is renamed by the corresponding member

statement prior to entry in the mass storage file. The format of this parameter is shown in the

preceding example. The member name specified in this parameter can be up to 14 characters

long; trailing spaces are added automatically.

The status of a member loaded by File Support C allows unrestricted processing.

EXITS STATEMENT

The Exits statement enables the load or unload function to exit to a user-supplied routine

just after retrieving the input item and just prior to writing the output item. This statement is

required for loading a direct access mass storage file. because bucket addresses must be

supplied by the user. It is optional for all other load/unload operations. The Exits statement

is used to describe the user-supplied routine.

4-44 #5-618

''-,--

SECTION IV. FILE SUPPORT C

Program-Segment-Name Parameter

The program-segment-name parameter is used to supply the name of a single-segment

user-written routine. The format of this parameter is as follows.

I PROG:program-segment-name, I
The first six characters of this parameter are the program name; the last two are the

segment name. Imbedded spaces are significant; trailing spaces are added.

Low-Memory-Address Parameter

The low-memory address parameter specifies in decimal the lowest memory address used

by the user- supplied routine. The value of this parameter must indicate a memory location

below 32K. The format of this parameter is as follows.

I LMA=low-memory-address, I
The highest location occupied by the own-code routine cannot exceed the location specified

in the Supervisor communication area as the highest memory location available.

Job Control Language Examples for Load and Unload Functions

The following job control statements request that a file be loaded onto mass storage. It

is specified that the input file is a bannered magnetic tape file named FILEXX. The output file

is on mass storage and is also named FILEXX. Own-coding is employed to modify items while

loading the file. (See next page for coding example.)

For this example, it is assumed that the mass storage file FILEXX was allocated as a

sequential file with the following values.

No password protection

No write protection

Item length

Rec ord length

Block length

150 character

450 characters

900 characters (6 items per block)

The following figure is the assumed value for the mass storage file.

Device address (04.0)

The following assumed values will be assigned to the tape input file.

Item length

Record length

Device address

Parity

Padding

150 character s

901 characters (same as mass storage block size plus one
character for banner)

(40. I)

Odd

77 (octal)

4-45 #5-618

SECTION IV. FILE SUPPORT C

CARl) II LOCATION
OPERATION OPERANDS NUMIER COD[

I 2 J .. , • 7 • 1415 H2O-
I : E" *FI LE.SU\>
I I FUNCT LOAb.
i I F.ILE IN
! I N"'ME: FI Le.~~
j ! b£VTV.PE .. 20.4:&.
I I ~AN :,<E.~

I f:IL~. O\..1.T
i I NAME·FIL~~~. bEvTVPE-Z59.
I I IE IE.~I TS PROG~.x."eol),~.(zkI..MA" U.9.0~

In the following exaIllple, job control stateIllents request that two reports in a print-iIllage

file on Illass storage be unloaded to the printer. The input Illass storage file is naIlled FILEAP.

10

1

•

In the exaIllple below, the following assuIllptions have been Illade:

1. For the Illass storage file FILEAP:

a. That it was allocated as a sequential file without password protection.

b. That, at a tiIlle prior to unloading, character 56 of the >:'VOLDESCR~'
iteIll for this file was set to 42 octal and that character 57 of the
VOLDESCR iteIll was set to indicate the nUIllber of control char
acters in each iteIll of the file (in binary). These characters IllUSt
have been set by a Illeans other than File Support C. See Appendix
G for description of iteIlls of a print-iIllage file. See Table 3-11 for
inforIllation on own-coding Exit 01.

c. The device address is (04,0).

2. For the on-line printer file:

The device address is (02).

CARl) II LOCATION
OPERATION OPERANDS

NUMBER CODE
,214'. 7 • 1415 2021

I EX "'FILe:~UP
I I FUNCT UNLOAll
i I FILE IN.
I I NAME" F Il EAp
: I lREPOIC!.T=9R.fPO£T.= i Z
I I FILE. OUT
: I bEVT'(PE. 22.Z

I 1

I I

!
j j

i i

.10

ParaIlleters for file naIlle, iteIll size, and record size are irrelevant to the output File

stateIllent when unloading onto the printer.

4-46 #5-618

;;

SECTION IV. FILE SUPPORT C

In the following exatnple selected tnetnbers of a partitioned sequential file are unloaded

onto the printer.

CARD ~I~ OPERATION OPERANDS
NUMBER ~ ~ LOCATION CODE

I 2 3 4 5 6 7 • 1415 2021 6263

I : IE~ *!=ll.E.$UP
I

I r.UNC,'T UNLOAb
i I fiLE IN NAME: Fl P"RT~1 . bEVT'lPE = 2.59
I I PW:S.E,5AME :b£VAb:b={ 04 n
i I MEM'ER N"ME~FIPA~,T~~U~~AH
I I MEMr.ER. NAME: FI PAR.TMEMSE£.X"
I I MEMSE.£ NAME: FI PARTM.E.MS,E&:AA..
I I ~IL.E OUT .l>,EVTV~E=Z2Z
I I IE

10 !
1 I I

80

In the above exatnple, the three natned tnetnbers are unloaded onto the printer in the order

natned. The file is on device I, second sector. All pertnit switches on the control unit can be

in PROTECT position.

In the following exatnple, a tape file is loaded onto a tnass storage partitioned sequential

file.

CARD ~Ii LOCATION
OPERATION OPERANDS NUMBER CODE

I 2 3 4 5 6 7 • 1415 2021 6263

I EX *FI LEiUP
I

I F:UNCT LOAb
I I FIL.E" \ N NAME -T4.PE C:I ~~4.A .. bEVTYPE =204,g
I I pA.R.=Obb PAl): 63 liJAN~Y.ES R.EC=8,01
: I ITSM=80. 'bEVAbl>:,(40. 2.\
I I FILE OUT NAMc=FIPAR~001 ~EYTVPE =.1..5.9,
I I PW"OPEN.b.oo,R. .bEY Ab)).~,(,¢.4. "."
I I IMEMBER INAME'" PARTME'N/Z-~""""LU.
I I EXIT~ PROG :,T A PEP,Tas1 LMA "1 7,0.00

10 I E

" I I

In the above exatnple, the tape file (single file on one or tnore reels) enters as a single

tnetnber (renatned PARTMEMBER004A). If the tnetnber does not already exist in the tnass

80

storage tnetnber index, a new tnetnber is created in as tnany tnass storage blocks as are nec

essary to contain the tape file. The own-code progratn will perfortn user-desired tnodifications

of the data. The tnass storage itetn, record, and block sizes are as previously detertnined by

the allocate function.

In the following exatnple, the statetnents request that a file on tnagnetic tape be loaded on

to tnass storage. Assutne that the tnass storage file natned FILEC was allocated as an indexed

sequential file on three volutnes with an itetn size of 252 and a record and block size of 1,512

(6 itetns). Also assutne that the index area, the general overflow area, and the first data unit

4-47 #5-qIB

•

00

,
'I

SECTION IV. FILE SUPPORT C

were allocated on the first volume and that additional units were allocated on the second and third

volumes. Three device addresses must be specified. The first volume of the file, containing

the index and general overflow areas (and the first data unit of allocation), is mounted on drive

1. The second volume of the file is mounted on drive 2. The third volume is mounted on drive

3. The imbed parameter requests that three item positions be left unused in each string of the

filels data area when items are loaded from the input file. This value of the imbed parameter

implies that the file was allocated with a data string that will hold at least four items. (String

size equals one or more blocks, each with a capacity of six items.)

CAIIO II LOCATION
_noN OPERANDS IIUMIEIt CODE

I I I 4 S ••• 14'. -:oc
! : I~,)(1ffl LE~UP.
I I 11=.UMCT ILOAD
i i folLE IN
I I OeVTY.PE-2C114&
i : ITEM.s.25d
I I REC .50.11
: I &A.NsY,Eft
i I ~ILE OUT
I I flAMe. FI LIe
! i I M&el),s ~ -.

I I bEYAb,O.(cM 1 '\ ~EVA~D.(04. .2'
i i ,

b.EVAbJ)·C0 ~'

Summary of Job Control Statements for Load and Unload Functions

Table 4-5 contains a complete summary of the job control statements for the load and

unload functions.

I

I

4-48 #5-618

>l>
I

>I>
-.0

=!I=
\J1
I

0"-.....
00

(

Statement

Execute

Function

File

Command
(Operation
Code)

EX

FUNCT

FILE

,.

((

Table 4- 5. Summary of Job Control Statements for Load/Unload Functions

Parameter
Value

Parameter (Operands
Name Field) Function Comments

Program ~'FILESUP, Directs Supervisor to load Required when running under
Segment File Support C. control of mas s storage
Name Supervisor.

Function { LOAD } Specifies the function to be Required.
Name UNLOAD ' performed.

File {~~T} ,
Identifies the file as input or Two required; one for input

Function output. file and one for output file.

File Name NAME = Names the file for the function. Required for mas s storage files
file-name, only. Optionalfor other media.

Device Type DEVTYPE = Gives the type of device used Optional for mass storage.
device -type, for the file. See list on pages Required for other media.

4-37, 4-38. As sumed value is 259.

Device DEVADD = Allows changing the assignment Optional. See device-type list ,
Address (pcu, drive), of the peripheral device. for assumed values, page 4-38.~

Item Size ITEM = Gives the number of characters Optional. See item length
item-length, in each item (card or tape). parameter, page 4-39. i

Record Size REC = Gives the number of characters Tape only. Optional. Assumed
record -length, in each tape record including value=mass storage block size

I

banner character, if any. (adjusted for banner character).

Banner BAN= { banner I For tape files only. Gives the Optional. Assumed value =
Character NO , banner character to be used, NO.

YES or the function assigns 41 (octal
as the output banner character.

Parity PAR= {ODD } For tape files only. Optional. Assumed value =
EVEN' ODD.

Padding PAD = For tape files only. Gives the Optional. When omitted, 77
Character padding, padding character to be used. (octal) is used for odd parity

file; 11 (octal) is used for
even parity file.

Mode MODE= {SPEC } For card files only. Gives the Optional. Assumed value =
STAND' card reading or punching mode. SPEC .

(Jl

trJ
()
~

o
z
<:

I'Ij
t"'
trJ
(Jl

c:
~
~ o
!l:I
~

()

....
I
\Jl
o

=11=
\Jl
I
0'
~

00

Stateznent

File (cont)

Meznber

Exits

~

Table 4-5.(cont). Suznznary of Job Control Stateznents for Load/Unload Functions

Parazneter
Coznznand Value
(Operation Parazneter (Operands
Code) Nazne Field} Function Coznznents

Password PW = For znass storage files. Gives Required if file is protected
password, the password for the file. by a pas sword.

Bucket BUCKET= Gives the bucket addressing Direct access files only.
Addressing {REL} znode for direct access output Optional. Assuzned value :::
Mode ABS ' files on znass storage. ABS.

Protection PROT={~ } Gives the type of write protec- Required if file was as signed
Status tion assigned to the file when write protection when it was

AB • it was allocated. allocated. Assuzned value =
NO NO.

Iznbedded IMBED::: Unused- Specifies the nuznber of itezn Optional. Applies only to
Overflow itezn-positions- positions that are set inactive indexed sequential files.

per-string, in each data string of a file As suzned value ::: 0
when the file is loaded.

Release RELEASE= {YES} Specifies whether the contents Optional. Applies only to
NO ' of the file are to be released output partitioned sequential

before data is loaded. files. Assuzned value :::
NO.

Report REPORT ::: Specifies the report nuznber Optional. Applies only to
report-nuznber. of the report(s} to be printed. sequential files unloaded to

the printer in print-iznage
forznat.

MEMBER Meznber NAME = Each zneznber stateznent Optional. When oznitted, all
Nazne zneznber- nazne. naznes a zneznber to be pro- zneznbers are processed.

cessed. Applies only to partitioned
sequential files.

EXITS Required for direct access
Prograzn and PROG = Naznes the single- segznent znass storage output file;
Segznent prograzn- own-code routine. optional otherwise.
Naznes segznent-nazne,

Low LMA = Gives the lowest znain zneznory
Meznory low-zneznory location used by the own-code
Address address. routine, in deciznal.

((
r. ~

Ul
M
() ., o z
::::
t'Ij
~
Ul
c:::
'1:l
'1:l

2 .,
()

-'

SECTION IV. FILE SUPPORT C

MAP FUNCTION

The map function is used to extract selected information about the files on one volume.

This function can perform three actions: it can produce a description of all files or specified

files on the volume, produce a description of expired file?;;, or list unassigned tracks on the

volume. The information produced is taken from the contents of the volume directory and listed

by means of a printer or print-image tape.

The map function is requested by a Function statement whose first parameter is MAP. The

second parameter of the Function statement gives the type of mapping desired. In most cases,

these two parameters are sufficient. The Function statement may be followed by a Volume state

ment, one or more File statements, and a Day statement. The Volume, File, and Day statements

must be submitted in that order after the Function statement. They serve to restrict map informa

tion, as required. If a File List statement is specified, it must follow all other File stateITlents.

Job Control Language for Map Function

The following list shows all the job control statements that are required for, or that can

be used in, the mapping of a volume. Each statement and its parameters are described in the

following paragraphs.

EASYCODER
CODING FORM

RO P Bl£M PROGRAMMER DATE MGE OF

N:ER III~ LOCATION
OPERATION

OPERANDS COOE
1234~6 7 • 1415 2021

1 I 1£)(1I'FI LfSUP R,c.Q./Ji rc.ci.
I

J f'UNCT MAP .(.r,eSCR .) D. A .
i I .\EX.PIRED}'
I I .l,UNUSE-,D J
j ! V,QL.UME NAME:volv~4·~Qmc. O"tigntl\.
I I DEVADO .. (.D.C..V .. til" i .v.t. \
I I FilE IW"Mf ... t. i I c.., n ~ft\ot. OD1\onal.
i I IClAV Ivvddd.

.
1001;"nol.

I I F,ILE. LI~T O.rstionol.
10 I I OEvT~PE .. dc.viet.-tvD~

1 I I OEVAQO-Ca.c"vd ... i.v.G.)
II i i . . .

EXECUTE STATEMENT

10

The Execute stateITlent with the prograITl segITlent naITle *FILESUP directs the Supervisor

to load File Support C.

FUNCTION STA TEMENT

The Function stateITlent specifies to File Support C what function to perforITl. This state

ITlent is required. Its forITlat is shown in the preceding eXaITlple. The forITlat of the Function

stateITlent's first two paraITleters is shown in the following exaITlple.

4-51 #5-618

SECTION IV. FILE SUPPORT C

MAP, {DESCR }
EXPIRED ,
UNUSED

Both of these parameters are required. The value assigned to the second parameter has

the significance shown in the following list.

DESCR = A description based on the volume directory information for
selected f:les, or for the whole directory, is produced.

EXPIRED = A description is produced based on volume directory information
for all files whose expiration date is less than or equal to the date
specified by the Day statement or the current Supervisor date.

UNUSED = A listin,g of all unassigned tracks on the mass storage volume is
produced.

VOLUME STATEMENT

The name of the volume to be mapped and its device address arl:l specified by the Volume

statement. This statement is optional. When this statement is omitted, the volume name is

not checked and the map function assumes that the peripheral ~ iress assignment (pcu) is 04,

drive number O.

Volume Name Parameter

The volume name parameter is used to specify the name of the volume to be mapped. The

format of this parameter is as follows.

I NAME=volume -name,

This parameter is optional. When a volume name is not specified, the map function does

not check the volume name in the volume label.

Device Address Parameter

The device address parameter is used to specify the peripheral address assignment (pcu)

and the drive nuT""l-. of the mass storage volume. The format of this parameter is as follows.

I DEVADD=(pcu, drive),

This parameter is optional. When a device address is specified, the peripheral address

assignment (pcu) is given in two octal digits. The high-order bit is not significant. The drive

number is given in one octal digit. When a device address is not specified, the map function

assumes the peripheral address is 04, drive number O.

4-52 '#5-618

....

SECTION IV. FILE SUPPOR T C

FILE STATEMENT

If a listing of the volume directory information for selected files is desired, one or more

File statements must be submitted. The format of the File statement is as follows.

CARO !~ LOCATION
OPERATION

OPERANDS NUMBER COOE
I Z 'S .. , • 1 • 1415 202. 00

I FILE ~A ME ·.~.i \ ¢ - nalN.

I

The File statement is optional. If a File statement is not submitted, the volume directory

information for all files on the volume is listed. This statement can be used only with the DESCR

option. When the volume directory information for selected files is desired, a File statement for

each desired file must be submitted. Files are listed in the order in which they appear in the

volume directory. The names of files not found in the directory appear at the end of the printed

listing.

DAY STATEMENT

The Day statement is used to specify the date against which each file's expiration date will

be checked when the function specified is the mapping of expired files. The format of the Day

'-". statement is as follows.

CARD n LOCATION
OPERATION

OPERANDS NUMBER COOE
I 2], .. , • 1 • '415 202.

I D.A..., Ivvd.dd
I

This statement is optional. When a Day statement is submitted, the yy portion of the

parameter specifies the last two digits of the year, and the ddd portion specifies the number

of the day in the year. For example if the day is the first of January and the year is 1975,

the parameter is coded ~001. When a Day statement is not submitted, the file's expiration

date is checked against the current date field of the Supervisor.

FILE STATEMENT FOR THE LIST FILE

00

The device type and peripheral device address of the device to be used for the map listing

may be specified by a File statement whose first parameter is LIST. If no such File statement

appears, the listing is produced on a printer with the device address of (02).

CARD II U LOCATION
OPERATION

OPERANDS NUMBER COOf

I 2 3 .. , • 1 • 1415 2021 00

I : ~\ Le LI~T

4-53 #5-618.

SECTION IV. FILE SUPPORT C

Device Type Parameter

The device type parameter specifies the storage medium and the peripheral device on which

the list file will be created.

I DEVTYPE=device-type,

The device type number may be one of the following values.

206 - Type 206 Printer,

222 - Type 222 Printer, or

204B - Type 204B Magnetic Tape Unit

The default assumption is a Type 222 Printer.

Device Address Parameter

The device address parameter allows changes to be made in the standard assignment for

the peripheral device used for the list file.

Tape Printer

DEVADD=(pcu, drive), DEV ADD=(pcu),

The peripheral address assignment is written as two octal digits. All bits including the

sector bits must be specified. The drive number is written as one octal digit.

If the device address parameter is omitted, the default assumption depends on the device

type as follows.

Device Assumed Address

Type 222 Printer (02)

Type 206 Printer (02)

Type 204B Magnetic (00,3)
Tape Unit

Job Control Language Examples for Map Function

In the following example, the job control statements request a listing of the volume direc

tory information for files named FILEFF and FILEGG. The volume name is not checked and the

map function assumes that the device address is 04, drive number O. In this case, File Support

programs are resident on the volume being mapped.

CARD Ifl~ LOCATION
OP£IIATION

OPERANDS NUMBER CODE

t 2 J 4 S • 7 • 1415 2<21 eo
I : IE.~ *FILESlIP
I I ~lINCT ~AP OE-SCR.
i I fiLE NAM£~ FILE FF
! I E IF.I LE INAM£: .. F I LEGG

4-54 #5-618

SUPPOR T IV. FILE SUPPORT C

In the following example, the job control statements request a listing of the unused tracks

,-----,. on volume PTMS04. The volume is mounted on device 3. A print-image tape (for offline listing)

will be created on tape unit 5.

EASYCODER
CODING FORM

PROBLEM PROGRAMMER DATE GE OF I'll

CARD
~ LOCATION

OPERATION OPERANDS
NUMBER CODE

121456 1 • 1415 2021 00

I : EX ~FI L E'SU.P.
I I IF.UNCT MA~ U.NUU,D
i I VOL.Lt.ME INAMEaPT.M&'~, DEVADDot.12I4 ~\
! I FILr I ':>T .DEVT,V,P,E =~A-.B De.VIt.O\) ·.(0~. 5.)
i !
I I
! I
i I

The following example illustrates a request to map three volumes for descriptive and un

assigned information. In the descriptive operation, assumed values for the volume statements

have not been used. Three disk drives are online. so all three volumes are mapped without

changing disk packs. All output is on a printer whose peripheral address is 02.

EASYCODER
CODING FORM

PROB LEM PROG RAM MER DATE I'IlGE OF

N~n LOCATION
OPERATION

OPERANDS CODE

123456 1 • ,4'5 2021 00

I lEX f!IoF'LE~UP
I I FUNCT IMAP DEseR
1 i Iv.OLUME INAME • PT.M S~i D.EVADD~(.0,4as)
I I FUNCT IMAP DES,C R
: i !vOLUME NAME- PTMc:.QS,a DEVAOO=L04. n
I I FUNCT MAP DES(!.R
I J VOLUME NAME: PTMS,¢,~ DEVAoo~,(,0+ 2)
i I IE

• I I IE-X iWFI LE~UP I
,0 I : FUNCT MA p .uHU,~,E,o. OEV,0. VOLuME MAPPED. NO 1'1"" ME. CH Ee.K..

I I F,U,NCT MAP, UI'I.o.':>.E,[)" DEV i VOL.uME MAPpEO. NO t4A ME CHE(!.,K..
'-'-<-

I i !\:OLUME. IDE.VA,~D=.Cal.4 n . , .
" I I rUNCT iMA.P U N.LLSEJ:>L Dev Z VOLuME .~UST .s,e PTMS¢ 3 . I. I I VOLUME il'iAME= PTM~! DEVADDs.G*-".2.), '. ~ !
" I

When a file is multivolume, each map listing will give the relative volume number (0-7) of each

file volume and mime the subsequent volume on which the file continues. Combining map listings in

the relative volume order appropriate to each file produces a complete description of a multivolume file.

Summary of Job Control Statements for Map Function

Table 4-6 contains a complete summary of the job control statements for the map function.

4-55 #5 .. 618

~
I
\11
0'

"#::
\11
I
0-
f-
00

Statement

Execute

Function

Volume

File

Day

File

(

Command
(Operation
Code)

EX

FUNCT

VOLUME

FILE

DAY

FILE

Table 4- 6. Summary of Job Control Statements for Map Function

Parameter
Value

Parameter (Operands
Name Field) Function

Program *FILESUP, Directs Supervisor to load
Segment File Support C.
Name

Function MAP, Names the function and
Name and l DESCR I specifies the type of listing
Lis ting Type

EXPIRED
to be produced. ,

UNUSED

Volume NAME = Names the volume to be
Name volume-name, mapped.

Device DEVADD = Gives the physical device
Address (pcu, drive), address of the volume to be

maDDed.

File Name NAME = Names each file to be mapped.
file-name,

Date yyddd, All files whose expiration date
is les s than or equal to this
value are listed if the expired
option is requested.

File LIST, Specifies the output listing
medium.

Device DEVTYPE= Specifies storage medium
Type device type, and peripheral device on

which file will be created.

Device DEVADD= Allows changes to the stan-
Address (pcu, drive), dard device as signment for

the list file.

~
~ ~

Comments

Required when run under
mass storage Supervisor.

Required.

Optional.

Optional. When omitted, the
volume name is not checked.

Optional. Assumed value =
(04,0).

Optional. (any number). When
omitted, all files on the vol-
ume are mapped. Applies
only to MAP, DESCR,.

Optional. Assumed value =
Supervisor's current date.
Applies only to MAP,
EXPIRED.

Optional. When omitted,
listing is produced on a
printer with peripheral
control address of (02).

Optional. See device type
parameter for possible
values. As sumed value=
Type 222 Printer.

Optional. See device
address parameter for
assumed values.

(

i

en
t:zl
n
~

6 z
< .
"rJ
t"'
t:zl
en
C
"I:l

~
::0
~

n

SECTION IV. FILE SUPPORT C

PROGRAMMER'S PREPARATION INFORMATION FOR FILE SUPPORT C

File Considerations

DIRECT ACCESS FILES

When allocating a direct access file, the item length is interpreted as including the status

character (rightmost character of the item). The allocate function sets this character to "inactive"

for all items in the file. For any item loaded, the value is set to "active" during the load process.

The possible values (in octal) of this character after loading are as follows.

Last Block All Other
of File Volume Blocks Meaning

76 77 Inactive item.

00 01 Active item.

40 41 Deleted item. 1

IDeleted items can appear in a direct access file only if
some interim processing has occurred between successive
loads.

Unloading a Direct Access File

Direct access files are unloaded in a sequential manner in the physical order in which

the active items are encountered on the file. Only active items are unloaded. The programmer

is never requested to supply a bucket address; but he may, however, specify an own-code routine

to modify, omit from the output file, or examine the item being unloaded.

Loading a Direct Access File

When loading a direct access file onto mass storage, the Exits statement must always be

specified, since the programmer must supply the bucket address (in binary) for each item in the

file via an own-code routine.

A direct access file is loaded in a cumulative manner; thus, all items being loaded are

added to the data already in the file. A direct access file containing previously loaded data can

be initialized by de allocating the file and allocating it again.

SEQUENTIAL FILES

A sequential file is always loaded and unloaded in a sequential manner. An own-code routine

may be used as described for unloading a direct access file.

4-57 #5 -61~

SECTION IV. FILE SUPPORT C

PARTITIONED SEQUENTIAL FILES

Each member of a partitioned sequential file is processed individually. During loading,

the entire output file can be made available for new members by the use of the release param

eter. Within each member, the items are processed in a sequential manner in the physical

order in which they are encountered.

Unloading a Partitioned Sequential File

UNLOADING BY FILE: To unload an entire partitioned sequential file, no member names are

specified in the job control file; only the file name is specified. All active members of the

partitioned sequential file are unloaded in the order in which their names appear in the member

index for the file.

UNLOADING SELECTED MEMBERS: To unload selected members of a partitioned sequential

file, the desired member names are specified in the job control file after the file statement for

the input file. These are unloaded in the order in which the names appear in the job control file.

Loading a Partitioned Sequential File

LOADING BY FILE: The programmer may load an entire partitioned sequential file by either

of the following means.

1. Specify no member names in the job control file. In this case, the member
names are taken from the input file.

2. Specify in the job control file after the File statement for the output file, the
member names of all members which enter the output mass storage file.
Input members are renamed in the order of encounter with the specified out
put member names.

LOADING SELECTED MEMBERS: The programmer may load selected members of an output

mass storage partitioned sequential file by specifying the desired member names in the job

control file after the File statement for the output file. Input members are again renamed in

the order of encounter with the specified output member names.

Processing a Partitioned Sequential File by Member Names

When loading an output mass storage file, the load function takes the output member names

from the job control file if specified or from the inp1%l: file if not specified. When mass storage

is input, names are found in the input member index. When card or tape is input, columns 51

through 64 of each IHDRb. record contain each member name.

If the name under which the member is to be loaded already exists in the member index of

the output mass storage file and if the member can be processed in the output-only mode, the

input data replaces the member's data on the output mass storage file. This is true whether

loading by file or member name. If the member name does not already exist in the output file's

member index, the input member and its data are ~dded as a new member to the output mas s

storage file.

4-58 #5 -618

...

SECTION IV. FILE SUPPORT C

When m.em.ber nam.es are specified and the output m.em.ber nam.es in the job control file

are exhausted before all indicated input m.em.bers have been processed, loading is term.inated with

an appropriate halt (see Table 4-10). Mem.ber nam.es are specified in the job control file only for

a file which is on m.ass storage, not for card or tape files.

Loading from. Mass Storage to Mass Storage

When a partitioned sequential file is being loaded or unloaded from. m.ass storage to m.ass

storage, both input m.em.ber nam.es and output m.em.ber nam.es m.ay be specified. If one set of

m.em.ber nam.es is exhausted before the other, an appropriate halt occurs.

INDEXED SEQUENTIAL FILES

Allocating an Indexed Sequential File

When allocating an indexed sequential file, the item. length, as expressed by the item. length

param.eter, m.ust include the item. status character (rightm.ost character of the item.).

It is recorn.rn.ended that the m.aster/cylinder index unit of allocation and the general over

flow unit of allocation be placed on the sam.e volurn.e, with data units on other volurn.es. This will

result in efficient use of m.ass storage drives during unloading and sequential processing. If

sufficient drives are available, proces sing m.ay be speeded up by placing the m.aster / cylinder

index and the general overflow area on separate volurn.es with data units on still other volurn.es.

Loading an Indexed Sequential File

The load function is the only m.ethod in the Mod I (MSR) Operating System. by which an in

dexed sequential file can be created. All indexes are created during the load operation. A sub

sequent load operation will recreate all indexes while loading.

The load function reads the input file from. cards, m.agnetic tape, a sequential or an in

dexed sequential file on rn.ass storage. An input file m.ust be ordered in ascending binary se

quence by item. key as specified in the file allocation. Duplicate keys are not allowed.

The load function perform.s the following actions.

1. It creates the m.aster index and the cylinder index.

2. It creates the string indexes.

3. It loads the prime data area of the file with item.s from. the input file.
The item.-status character of any item. loaded is set to active. No
active item.s are loaded into any of the overflow areas.

4. If requested by the user, the load function can create irn.bedded inactive
item.s in each string processed. The item.-status character of each
im.bedded item. is set to deleted.

4-59 #5-618

SECTION IV. FILE SUPPOR T C

5. It initializes the cylinder overflow area of each cylinder containing a loaded
item. The item status character of each item in the cylinder overflow
area is set to inactive.

6. It initializes the general overflow area. Each item status character is
set to inactive.

7. For the string containing the last item loaded, the load function sets
the high key in the string index to all I bits, so that an item having a
key higher than that of the last item loaded may be inserted in the file.

S. For the cylinder containing the last item loaded, the load function sets
the key in that cylinder index item to all 1 bits. Prime data areas

and cylinder overflow areas beyond the last string containing a loaded
item are not processed. These areas are not available for data. An
own-code routine may be used to examine, modify, or omit from the
output file any processed item. The contents of the item key field must
not be di sturbed.

When a multivolume indexed sequential,file is loaded. all volumes must be on-line.

Unloading an Indexed Sequential File

An indexed sequential file is unloaded in ascending sequence by item key field. Only active

items are unloaded.

When a multivolume indexed sequential file is unloaded, the volume or volumes containing

the master / cylinder index and the general overflow area must remain mounted throughout the

unloading. The other volumes of the file are processed one at a time sequentially.

MIXED FILE ORGANIZATIONS

Loading or Unloading

When loading or unloading one mass storage file to another, the files must be of the same

organization, with the following exceptions: the input can be a sequential file and the output can

be an indexed sequential file, or the input can be a sequential file and the output can be a direct

access file. The items of the sequential file must contain a key field acceptable to the indexed

sequential file.

Own-Coding Considerations

During a load or unload function, the user may execute an own-coding routine for further

item processing. In the case of direct access files which are being loaded onto mass storage,

an own-code routine is required. In all other cases this own-coding routine is optional. The

user may examine. modify, or omit items at this time. File Support C branches to an own

coding routine for each active item. Whenever a difference in item size exists, the item is

moved to the larger of the two storage areas before the branch to own-coding. When the item

is returned to File Support C, only the original punctuation (a leftmost word mark) should be

present.

4-60 #5-61S

..

,--- ..

SECTION IV. FILE SUPPOR T C

NOTE: During loading of an indexed sequential file, the own-code routine
must not modify the value of the key. If it should accidentally
change the value, one of the following actions would occur.

1. If the key of the current item is changed to a value less than
or equal to the key of the preceding item, the change is not
detected and loading of the file continues until completion.
This file cannot be successfully processed by Logical I/O C
or the File Support C unload routine since it contains an out
of- sequence key.

2. If the key of the current item is changed to a value greater than
or equal to the key of the next item to be read in, the current
item is read in successfully and the key-out-of-sequence exit
occurs during processing of the next item.

STRUCTURE OF OWN-CODING ROUTINE

The own-coding routine must be written and assembled as a single-segment program.

This program should have its origin located at a point in memory such that the program occupies

the memory area immediately below the floating portion of the Supervisor or below location

32,768, whichever is lower. File Support C loads the own-coding routine only fro,m the same

storage medium (and the same executable program file) as File Support C itself.

When the user wishes to load an own-coding routine by means of the load/unload function,

the following rules must be observed.

1. If the console typewriter is used during the File Support C run, the highest
memory location which can be used by the own-coding routine is 3,000
locations below:

2.

a. The address specified in the communication area of the
Supervisor as the highest available memory location, or

b. Location 32,767,

whichever is lower.

If the console typewriter is not used during the File Support C run, the own
coding routine should occupy memory immediately below the Supervisor
or below location 32,767, whichever is lower.

OWN CODING CONSIDERA TIONS FOR TAPE-RESIDENT OPERA TION

When File Support C is tape resident, the own-coding routine must be placed on the binary

run tape (BR T) beyond the load/unload routine with which it is being used. Otherwise, a halt

or console typeout occurs when Floating Tape Loader-Monitor C searches for the next segment

of the load/unload routine on the BRT. In this case, a response must be made to Floating Tape

Loader-Monitor C to reverse direction and search again. When the segment is found, normal

operation continues.

4-61

SECTION IV. FILE SUPPOR T C

OWN-CODING COMMUNICATION WITH LOAD/UNLOAD FUNCTION

In the Exits statement of the load/unload function, the user is required to specify the

lowest memory address (LMA) of the own-coding routine. One word-marked character should

be reserved at that address for communication with File Support C. When File Support C gives

a new item to the user, the communication character is set to zero. More detailed information

on the use of this character is given in subsequent paragraphs. The branch to the own-coding

routine occurs at the next character location (LMA+l). This location must contain an instruction

to store the contents of the B-address register for return to File Support C.

Address communication is made through index registers 1 and 5. Index register 1 is set

by File Support C to the leftmost character of the current item before branching to the own

coding routine. Index register 5 is set by the own-coding routine to the rightmost character of

a user-supplied field into which the user places his binary bucket address when loading a direct

access file. The field is four characters if a relative bucket address was specified, and eight

characters (in the form DPCCTTRR) if an actual bucket address was specified. The leftmost

character of the field must contain a word mark; no other punctuation may appear in this field.

If the own-coding routine modifies index registers other than X5, it must save their contents

and restore them prior to returning to File Support C.

Omitting Items from the Output File

The communication character is set to zero (00) when the item is given to the user. If

the item is to be written onto the output file. the communication character must remain zero. If

the user desires to omit the item, he sets the communication character to one (01) prior to

return to File Support C.

Invalid Bucket Addresses (Direct Access Files)

If the branch to the own-coding routine shows a communication character of one (01), then

the last bucket address supplied to File Support C for a direct access file was an invalid address.

When this is the case, the user may do either of the following:

1. Return to File Support C with a communication character
of zero to have that item bypassed, or

2. Return to File Support C with a communication character of one to
terminate the loading of this file. In this case, processing proceeds
to the next File Support C function, if any.

Insufficient Space (Direct Access Files)

If the branch to the own-coding routine shows a communication character of two (02) there

was no room left in the bucket or overflow area(s) of a direct access file for the last item given

to the load function. In this case, the user may do either of the following:

4-62 #5 -618

..

SECTION IV. FILE SUPPORT C

I. Return to File Support C with a communication character of
zero to have the item bypassed, or

Z. Return to File Support C with a communication character of one
to terminate the loading. In this case, processing proceeds to
the next File Support C function.

Entrance to General Overflow (Direct Access Files)

If the branch to the own-coding routine shows a communication character of three (03),

this indicates that the item which was last loaded into the direct access file was placed in the

general overflow area. The user may:

1. Return to File Support C with a communication character of zero to

Z.

continue loading the file, i. e., process the next item from the input file, or

Return to File Support C with a communication character of three to
terminate loading of the file. In this case, processing proceeds to the
next function, if any.

NOTE: At this exit the user can only examine the item which overflowed. It
has been added to the file and remains there. For purposes of infor
mation, index register I still points to that item in memory.

Key Out of Sequence (Indexed Sequential Files)

If the branch to the own-coding routine shows a communication character of one (01) while

loading (creating) an indexed sequential file, this indicates that the key of the current item is

not greater than that of the last item processed. The user may:

1. Return to File Support C with a communication character of zero
to have the current item bypassed and continue processing, or

Z. Return to File Support C with a communication character of one to
terminate loading of the file; the index areas of the file will be
completed and control will be transferred to the next File Support C
function, if any.

Tape and Card File Considerations

liZ-INCH TAPE FORMATS

Header Label

The tape header label is 80 characters in length and must be the first record of a file.

It consists of the following fields:

Field Chararters Contents
1 1-5 lHDRa
Z 6-10 Tape serial number
3 11-15 File serial number
4 16 Minus (-)
5 17-19 Reel sequence number
6 ZO Blank
7 ZI-30 File name

4-63 #5-618

SECTION IV. FILE SUPPOR T C

Field Characters Contents

8 31-35 Creation data
9 36 Minus (-)

10 37-39 Retention cycle
11 40 Blank
12 41-50 Reserved
13 51-64 Member name (partitioned

sequential only)
14 65-80 Reserved

File Support C uses only fields I, 2, 5, and 7, except for a partitioned sequential file,

which uses field 13 also. The 1EOF~ record terminates loading of all files except partitioned

sequential, which may consist of multiple members. The 1ER~ record terminates loading of

a partitioned sequential file.

When a partitioned sequential file exists on tape, each member is one file of a multifile

reel or reels. To identify the member on tape, the header includes an additional field in char

acters 51 through 64 giving the member name. The load/unload function assumes that tapes are

properly positioned. No searching for the file name or member name is performed.

The load/unload function operates according to the following rules.

1.

2.

When using the load function to load a partitioned sequential file and the
output member names are specified in the job control file, the member
name field is not required in the header. The output mem.ber name is
taken from the job control file and the tape file currently positioned is
loaded as that member. If the output member names in the job control
file are exhausted before all input files have been processed, processing
of the load function is terminated without halting and the next function is
executed.

When loading a partitioned sequential file and the output member names
are not specified in the job control file, the member name field in each
header is required. All files on that reel of tape are loaded as members
until a IER~ record is encountered on that tape. The member name is
assumed to be correct and is entered into the member index of the mass
storage file. Note that multifile reels are processed only for a single
volume partitioned sequential file.

3. When unloading a partitioned sequential file, the member name field in the
file header is always filled in by File Support C.

4. When member names are specified, only those members will be unloaded.
When no member names are specified, all active members on the file will
be unloaded.

4-64 115 -618

..

SECTION IV. FILE SUPPORT C

When loading a mass storage file from tape with no name specified on the job control file

for the input tape file, the file name on the tape is not checked. If a name was specified for the

input tape file, the name in the tape header label is checked for equality with the name specified

in the job control file. In either case, the header label of the input tape is checked for the

presence of IHDRA in positions 1 through 5, and the value of the reel sequence number in posi

tions 17 through 19 is also checked.

When unloading a mass storage file to tape with no name specified in the job control file

for the output tape file, the file name field in the tape header label is not checked and the mass

storage file name is written onto the output tape header label. If a name was specified for the

output tape file, its header label is read and the file name field is checked for equality against

the specified name; if it is equal, the specified file name is then written onto the tape header label.

In either case, the output tape header label is read and checked for the presence of IHDRA

in positions 1 through 5.

Whenever any of the preceding equality checks fails, a program halt or console message

will occur, at which point the operator must enter the proper response. See Table 4-10 or 4-13.

When an out-of-sequence input tape has been accepted by the operator, the sequence num

ber of the next reel will be tested for a value one greater than the sequence number of the

accepted reel.

Data Records

Data records processed by File Support C must be fixed in length (blocked or unblocked)

but may use any combination of parity and bannering. The following combinations exist.

Parity Odd Odd Even Even

Banner* Yes No Yes No

*When banner is specified, one additional character
should be provided in the REC = parameter.

The four types of data record blocking and bannering can be illustrated as follows.

1. Unblocked, Unbannered

I ITEM

2. Blocked, Unbannered

ITEM 1 ITEM 2 ITEM 3 ITEM 4

4-65 #5-618

3.

4.

SECTION IV. FILE SUPPORT C

Unblocked •. Bannered
B
A
INI

Blocked. Bannered
B

1 ITEM

I~I ITEM 1 ITEM Z ITEM 3 ITEM 4/

For those installations trying to decide which type of file to use. the odd parity. bannered file

is the Honeywell recommended standard.

PADDING ITEMS: On an input tape file, File Support C examines the first character of each

item for equality to the specified (or assumed) padding character.

item is bypassed.

In the case of equality, the

Trailer Label

The trailer label is 80 characters in length and must be the first record following the

last data record of a file. Only two fields of that record are used by File Support C.

Character
Field Positions Contents

1 1-5 Must be IEOF~ or IEO~.

Z 6-10 Is not checked on input; on
output (UNLOAD), the tape
record count (decimal) is
entered.

In the normal situation, this record is followed by two 80-character records containing IE.RI~

(end of recorded information) in the first five characters. However. in partitioned sequential

files, each IEOF record is followed by the next IHDR record until all members are accounted

for. Only the last IEOF record is followed by the two IERI records. The trailer label contain

ing IEOR~ (end of reel) signifies a reel to be an intermediate reel of a multireel file.

Tape Marks

Tape marks on an input tape are ignored. On output files, tape marks are not created.

CARD FILE FORMATS

Header Label

Each card file must have a label card with the IHDR~ in columns 1 through 5 and (option

ally) the file name in columns ZI through 30. Partitioned sequential files are handled in exactly

the same way as in the lIZ-inch tape files previously described. except that only one IERI

card terminates the file.

4-66 HS -618

•

SECTION IV. FILE SUPPORT C

Data Items

Card format is always unblocked and unbannered. The item consists of the minimum

number of cards which can handle one item. Any character positions left over are ignored.

Each item is assumed to start in column 1. For load/unload operations, only the item length

parameter is used to describe the card item size. Thus, if the item length parameter is

specified as

I ITEM=120,

two cards will contain one item.

Trailer Label

Trailer labels for cards are the same as for I /2-inch tape, as previously described, except

that field two (item- count) is not used.

Unloading Mass Storage Files onto Printer

Mass storage files may be unloaded onto the printer. Partitioned sequential and sequential

files may be either print-image files or non-print-image (data) files; direct access and indexed

sequential files are always unloaded as data files. In addition. for sequential print-image files,

it is poSSible to print only selected portions of the file by using the report number option.

The last item in each sequential file or in each member of a partitioned sequential file must

have the standard end-of-data configuration (0 EOD¢) in positions I through 5. All partitioned

sequential and sequential print-image files must contain at least one, and may contain more,

control characters as the first (leftmost) character(s) in each item. If more than one character

is present, partitioned sequential files use only the first and possibly the fourth of these charac

ters; sequential files use the first four. (Specification of the format of a print-image file is

described in Appendix G.)

The first control character always acts as the C3 variant of a PDT instruction to a Type

222 Printer. (For details, see the Programmers· Reference Manual.) The second and third

characters, if present, can divide a sequential file into one or more reports. Each report con

sists of all information to be printed as a single unit. Reports may be unloaded in a specific

order, as indicated by the job control file REPORT parameter(s) or in sequential order by report

number. In partitioned sequential print-image files, each member is considered a report. re

gardless of report numbers. When the report number is present. the fourth control character

indicates one of the following actions.

1. If the fourth bit from the left is a 0, the item is printed under control of the
first control character and the next item is read from the input mass storage
file.

4-67 #5 -618

SECTION IV. FILE SUPPORT C

2. If the fourth bit from the left is a I, the item is printed as in 1 above, and a
5465 halt or a console typeout occurs to allow the printer form to be adjusted.

A = go on to the next item of the file,

G = reprint this same item and halt again,

F = go to the next File Support C function, or

E = go to the Supervisor.

The control characters must be located at the beginning of each item.

When a data file is unloaded, the contents of each item are printed in alphanumeric format;

each item includes as many 120-character print lines as are required to accommodate it. Each

item is preceded by an item header line which gives the item number within the file. The file

name (and member name if the file is partitioned) appears at the top of each page of the listing.

along with a page count. (See Figure 4-5.)

Print-image files are unloaded in the format in which they appear on mass storage. In a

partitioned sequential file, each member is treated as one report. A sequential file may contain

interspersed reports with the report number in characters 2 and 3 of each item. If character

56 of the *VOLDESCR* entry for a sequential file is 42 and if the output file device type is an

online printer, reports are unloaded according to the numbers specified on the job control file.

If report numbers were not specified, the unload function attempts to unload reports by generated

number, beginning with report number 00 and continuing in binary increments, of 01 until a

nonexistent report number is sought on the file. At this point the function comes to a normal

end-o~-file exit. If the generated report number 00 or a requested report number of any value

cannot be found on the mass storage file, a normal file support halt or console message occurs

awaiting an operator response.

OPERA TING PROCEDURES FOR FILE SUPPORT C

Loading File Support C

The File Support C program may be loaded in either of the following ways.

1. From mass storage by the Supervisor of the Mod 1 (MSR) Operating
System or

2. From magnetic tape by the Floating Tape Loader-Monitor C program of
the Mod 1 (TR) Operating System. (Loading from mass storage is signif
icantly faster, especially when programs are frequently used.)

MOD 1 (MSR) OPERATING SYSTEM

When loading from mass storage, an Execute statement with the program and segment

name *FILESUP should be submitted in the job ~ontrol file and followed by the desired statements

for File Support C. Mass storage device 0 must contain a resident program file (*DRSIRES)

and the bootstrap records (cylinder 0, track 0).

4-68 /#5 -618

SECTION IV. FILE SUPPORT C

~ u u u u u u u u u
u u u u u u u u u ... u u u u u u u u u
u u u u u u u u u
u u u u u u u u u
u u u u u u u u u
\t u u u u u u u u
u u u u u u u u u
u u u u u u u u u

I&J u u u u u u u u u
\!J u u u u u u u u u
4(u u u u u u u u u
Q. u u u u u u u u u

u u u u u u u u u
u u u u u u u u u
u u u u u u u u u
u u u u u u u u u
u u u u u u u u u
u u u u u u u u u
u u u u u u u u u
u u u u u u u u u
u u u u u u u u u
u u u u u u u u u
u u u u u u u u u
u u u u u u u u u
u u u u u u u u u
u u u u u u u u u
u u u u u u u u u
u u u u u V u u u s::
u u u u u u u u u' 0
u u u u u u u u ".
u u u u u u u u u ...
u u u u u u u u u 0
u u u u u u u u u § u u u u u u u u u
u u u u u u u u u f:r.. u u u u u u u u u
u u u u u u u u u

'"' u u u u u u u u u
u u u u u u u u u CIl

i:l .. 4(
. ...

I&J '"' ..J ~
I

I&. 0

~
...

I
'tI

I&J CIS .- 0
I&J

....
2: :5 4(
Z
I&J CIl
..J CD In 0 4 4 ~ ..0. 4

~ I&. 4 N
4 4

CIS
U)

0 0 0
UJ 4 W UJ 0
:I: 4 :I: :I: bO U U U 4 .- .- .- s::
4(< <
:E :E :E ...

III

I&. I&. I&.
....
~

a: ... a: a: z .
\!J 2: \!J \!J 0
< Z < < U U')- I
0 :E 0 0 lE

""" Z ..J Z ..J
0 < 0 < CIl
U > U > '"' ... ~ ... o.l ~
lE ..J lE ..J bO

"- f:r..
IXl IXl U U

u u u u Uu u Uu Uu u
u lXlu lXlu u u u u u u
u u u u u u u u u
u u u u u •• u u u u

•• u u u u u OU u •• u •• u
ZU ... u •• u •• u NU Zu ... u Uu UJu
UJu ou Ou a:u Ou <u OU UJu OU
>u Uu OU <u Uu .- u UU Q.u Ou
l&Ju ... u OU Q.u ... u lIlu ... u lIlu lEu
•• U II U •• U •• u lIu •• u IIU •• U •• U

U U U U U U U U U
U U U U U U U U U ... u N u u ~ u In u 4 U U CD u a- U 0

:su :su :su :su :su 3:u 3u 3:u 3u ...
Uu Uu Uu Uu Uu Uu UU UU UU
Ou Ou Ou Ou Ou Ou OU OU Ou

u u u u u u u u u
u u u u u u u u u
u u u u u u u u u
u u u u u u u u u
u u u u u u u u u
u u u u u u u u u

0 u 0 u 0 u 0 u 0 u 0 u 0 u 0 u 0 u 0
Z u Z ..Ju Z u Z u Z ..Ju Z u Z ..Ju Z u Z u Z

u u u u u u u u u
lE u 2: u lE u lE u lE u lE u X u lE u lE u lE
I&J u I&J u I&J u UJ u UJ u UJ u UJ u UJ u UJ u UJ .- u .- u .- u .- u .- u .- u .- u .- u .- u .-

u u u u u u u u u
u u u u u u u u u

4-69 #5-618.

SECTION IV. FILE SUPPORT C

MOD 1 (TR) OPERATING SYSTEM

Loading from magnetic tape is the same as for mass storage except that a console call

card with the program and segment name *FILESUP is used instead of an Execute statement.

Protection of Mass Storage During Execution of File Support C

Protection switches on the mass storage control must be set as shown in the following.

PROTECTION DURING ALL,OCA TE

Format write

Data write

B-file

PERMIT

PERMIT

PERMIT, if specified for the file being allocated

PROTECTION DURING DEALLOCA TE

Data write PERMIT

PROTECTION DURING LOAD/UNLOAD

If the function includes an output file on mass storage:

Data write PERMIT

A-file

B-file

PERMIT, if the file being loaded is a system file with A protection

PERMIT, if specified at allocation for the file being loaded

If the function includes no output files on mass storage, all protection can be set to

PROTECT.

PROTECTION DURING MAP

All protection switches can be set to PROTECT.

Operator Control and Messages for File Support C

This section describes the messages to the operator and the responses he may make.,

This information comprises the operator control file.

OPERA TOR CONTROL WITH CONTROL PANEL

When the operator control device is a control panel, information is conveyed to the

ope1."ator through a Halt instruction. The B-address register indicates the meaning of the halt

by means of a coded value. The A-address register usually contains the address of a response

field. The user must enter a response character into this character location as indicated under

4-70 #5 -618

•

SECTION IV. FILE SUPPORT C

the specific halt. In the case of most halts, additional information is provided in memory

locations immediately higher than the response character as described on page 4-69.

Peripheral Conditions

If the contents of the B-address register are in the range 0000 to 3777, the condition

relates to a peripheral device. The general form for the B-address register value is ppxd,

pp = peripheral control address;

x = code indicating type of condition:

0 = device not operable,

1 = uncorrectable read error,

2 = uncorrectable write error,

3 = end of storage medium,

4 = positioning or address error, or

7 = miscellaneous condition; and

d = device number.

The operator should determine the peripheral control unit involved and take appropriate

action. If the control unit addressed is mass storage, the meanings of the B-address register

values can be found in Table 3-15. If the control unit addressed is for some other device, the

meanings of the B-address register values are listed in Table 4-7.

NOTE: If a peripheral condition occurs on mass storage during allocation, in
conjunction with a cylinder and track message on the printer, see para
graph entitled "Failure During Allocation and Deallocation, " in this
section.

Table 4-7. Conditions Related to Non-Mass Storage Files

B-Address
Register
Value Condition Function Operator Action (see note)

ppld Uncorrectable Load Tape File
(If pp = read error. To attempt rereading, enter G
magnetic tape into response location. Press
control unit, RUN. To bypass record and go
the A-address on to next record, enter A into
register con- re sponse location. Press RUN.
tains the

All Card File
response

Correct card in error if possible
location.)

and refeed, starting with that
card. Press RUN.

4-71 #5 -61~

SECTION IV. FILE SUPPORT C

Table 4-7 (cont). Conditions Related to Non-Mass Storage Files

B-Address
Register
Value Condition Function Operator Action (see note)

pp2d Uncorrectable Unload and TaEe File
write error. Map To attempt rewriting, enter G

into response location. 'Press
RUN.

Unload Card File
Remove erroneously punched
card and press RUN to repunch.

Map and Printer
Unload An erroneous line has been

printed. To ignore error and
go on to next line, press RUN.

pp3d End of storage Load/Unload TaEe File
medium and Map When next reel is ready, enter

G into the response location.
Press RUN.

~OTE; A = 21
8

, G = 27
8

File -R ela ted Conditions

If the value of the B-address register is in the range 4000 to 4777, the condition is related

to logical operations with mass storage files. See Section III for a description of these halts.

Job Control File Conditions

If the value of the B-address register is in the range 5000 to 5777, the condition is related

to errors in the job control file statements. The A-address register contains the address of a

list of information in the following format:

R F I S I

R is a response field.

F indicates the function being performed (response field plus 1);

01 = Deallocate
02 = Allocate
03 = Load/Unload, or
05 = Map.

I is an indicator (response field plus 2). This field is significant when

S

a 5040 halt occurs. Its values and their meanings are listed in Table 4-9.

Indicates the type of statement in which the error has been detected
(response field plus 3). This field is always 00 at a 5040 halt.

4-72 #5 -618

•

/

'"

~-

I

SECTION IV. FILE SUPPOR T C

00 = Statement is irrelevant,
01 = File statement,
02 = Volume statement,
03 = Units statement,
04 = Exits statement,
05 = Size statement,
06 = Member statement, o"r
07 = Day statement.

The operator decides what action to take and enters a character into the response location; the

punctuation of this character is irrelevant. Each specific condition allows certain possible re

sponses, as shown in Table 4-8. The general meanings of the various response characters are:

G (27
8

) =

F (26
8

) =

B-Address
Register

Value

5000

5001

5002

5003

5004

5005

Attempt to perform the operation again. The operator corrects
the erroneous statement (if possible), refeeds job control state
ments beginning with the Function statement for the function con
taining the statement in error, enters a G, and presses RUN.
The program searches for the next Function statement in the
job control file.

Go on to next function. If the operator cannot correct the erro
neous statement, he may skip to the next function by entering an
F and pressing RUN. The program searches for the next Function
statement within the File Support C job control file.

Emergency exit to the Supervisor. If the entire file support run
must be discontinued, the operator enters an E and presses
RUN. The program exits to the Supervisor.

Table 4-8. Job Control Halt Codes

Meaning Possible Operator Responses

Syntactic error. G
F
E

Invalid command field. G
F
E

Invalid positional parameter. G
F
E

Invalid keyword. G
F
E

Required parameter missing. G
F
E

Invalid keyword parameter...yalue. G
F
E

4-73 1/5 -618

SECTION IV. FILE SUPPORT C

Table 4-8 (cont). Job Control Halt Codes

B-Address
Register

Value Meaning Possible Operator Responses

5010 Invalid combination or sequence G
of parameters. F

E

5040 Same as 5010. See below. F
E

5077 Job control file too large for E
available memory. F

NOTE: G=27
8

, F=26
8

, and E=25
8

When any of the above halts occur with the exception of the 5040 and 5077 halts, the erro

neous card can be punched and the entire set of statements, starting with the Function statement

in which it is located, can be entered by means of the card reader.

When a 5077 halt occurs, available memory has been exhausted for the storage of the pa-

rameters in the job control file. The job control file can be broken into smaller units and

File Support C rerun, following an operator response of E. If a response of F is entered, the

Function satement read just prior to the halt, and all subsequent Function statements, will be

bypassed. They must be included in a later run of File Support C.

When a 5040 halt occurs, the four fields starting at the response character can be displayed

to determine the nature of the error. At this halt, no corrective action is possible and the func

tion in which the error has occurred must be bypassed.

The F -field (at response plus 1) indicates the File Support C function within whose param

eters error has been detected.

The I-field (at response plus 2) contains a value which indicates the specific error condi

tion that has been detected. The possible values of the I-field are listed in Table 4-9.

Table 4-9. File Support Diagnostics for 5040 Halt

I - Field Meaning

Console Con t:rol
(Alpha) Panel(Octal) Allocate Diagnostics (allocation is not performed)

A 21 Allocation has been requested for a file whose
name starts with an illegal character.

B 22 No file organization was specified.

4-74 #5-618

SECTION IV. FILE SUPPORT C

Table 4-9 (cont). File Support Diagnostics for 5040 Halt

I - Field
Meaning

Console Control
(Alpha) Panel (Octal) Allocate Diagnostics (allocation is not performed)

C 23 1. Key length was unspecified for a direct access
or indexed sequential file.

2. Key position was unspecified for a direct
access or indexed sequential file.

3. Specified key position and size are incompatible
with item size.

E 25 The number of tracks in the cylinder overflow area is not
less than the number of tracks requested per cylinder for
a direct acce s s or indexed sequential file.

F 26 Records-per-block is greater than records-per-cylinder.

G 27 The total number of blocks requested for members exceeds
the total data blocks in the file.

H 30 1. No Units statement appeared for this file.
2. The to cylinder in a unit of allocation is smaller

than the from cylinde r.
3. A cylinder has been specified in a Units statement which

exceeds the allowable maximum (Type 258 Disk Pack
Drive: cylinder 103; Types 155, 259, or 273 Disk Pack I
Drive: cylinder 202; Type 261 or Type 262 Disk File:
cylinder 127).

4. The to track in a unit of allocation is smalle r than the
from track.

5. A track has been specified in a Units state:rnent which
exceeds the allowable maximum (Type 155 Disk Pack
Drive: track 1; Type 258 or Type 259 Disk Pack Drive:

I
track 9; Type 273 Disk Pack Drive: track 19; Type 261
or Type 262 Disk File: track 127).

6. Less than two cylinders for a unit of allocation for a
direct access file have been specified and general
overflow has been requested.

7. The number of tracks per cylinder for each data unit
of allocation is not the same.

8. The second of two adjacent units of allocation on
the same volume begins on the same cylinder
on which the first one ended.

I 31 A volume name was not specified as the first parameter
of this Units statement.

. 33 In requesting the allocation of the *BADTRACKS file,
one of the following events has occurred.

1. File organization was not specified as sequential.
2. A parameter of the Size statement was specified.
3. A password was specified.
4. More than one unit of allocation was specified.
5. More than one Units statement was specified.

% 35 Indexed sequential file: number of records per block
exceeds records per track.

1/05/70 4-75 #5 -618.

SECTION IV. FILE SUPPORT C

Table 4-9 (cont). File Support Diagnostics for 5040 Halt

I - Field Meaning
Console Control
(Alpha) Panel (Octal) Allocate Diagnostics (allocation is not performed)

• 36 A requested unit of allocation includes either the boot-
strap track or the volume label track.

? 37 1. The requested member index is too small (contains
less than 75 characters).

2. The requested member index is too small to contain
the names of all the requested members.

J 41 The number of records per bucket or string exceeds the
number of records in the data area of a cylinder.

L 43 Either name or length was omitted for a member in a
partitioned file.

M 44 Indexed sequential file -

1. String index item length is greater than a block size.
2. MCINDEX unit of allocation area is too small for the

file's data area size.
3. Block length exceeds one track.

N 45 The MCINDEX and/or OVERFLOW units of allocation
were specified in the wrong sequence or were omitted.

0 46 The requested track width per cylinder of an indexed se-
quential file data unit is not large enough to contain a string
plus a string index block.

Deallocate Diagnostics (de allocation is not performed)

R 51 No file name was specified.

52 No volume name was specified.

Load/Unload Diagnostics (load/unload is not performed)

/ 61 No file name was specified for a mass storage file.

S 62 No mass storage file was specified. (Both input and output
media are non-mass-storage).

T 63 The input file. the output file. or both files were not
specified.

U 64 Either the program segment name or the low memory ad-
dress was not specified in an Exits statement.

V 65 A memory location greater than 32.767 was specified for
the low memory address in an Exits statement.

W 66 The *VOLSPARES file has been specified as a file to be
loaded or unloaded.

General Diagnostics

C
R

75 Insufficient memory for this call of the function indicated
in the F character. (A-address plus one.)

4-76 #5-618

..

SECTION IV. FILE SUPPOR T C

Conditions Specific To File Support C

If the B-address register contains a value in the range 5400 to 5477. the halt condition is

specific to File Support C processing. The A-address register is the address of a list of

information which is presented in the forma.t shown in the following.

The error code and all succeeding information is typed out on the console as a supple

mentary list if the console typewriter is being used.

Character -field
Number of Characters Location (left) Explanation

1 A Response character.
1 A + 1 Error code (applied to mass storage peripheral

device or file condition).
10 A + 2 Mass storage file name.

1 A + 12 Relative volume number of the mass storage file.
6 A+13 Volume name.
1 A + 19 Mass storage peripheral control unit address.
1 A + 20 Mass storage device address.
1 A + 21 Mass storage pack number.
6 A + 22 Mass storage address in binary (CCTTRR).

for device error only.

If a mass storage partitioned sequential file is being loaded or unloaded. the member

name is placed in a 14-character field to the right of the preceding list of information (A+2S).

If a mass storage print-image file with report numbers is unloaded. the report number appears

in a 2-character field to the right of the above list (A+2S).

The operator decides what action to take and enters a character into the response loca

tion. Each specific halt allows certain responses. as indicated in Table 4-10. The general

meanings of the various response characters are:

A(21S) Accept the last operation as correct and continue.

G(27 S) Attempt to perform the operation again.

S(62
S

) Skip to next logically permissible operation.

F(26
S

) Go to next function. and

E(25
S

) Emergency exit to the Supervisor.

4-77 #5-618

SECTION IV. FILE SUPPORT C

Table 4-10. File Support C Halts

B-Address
Register

Value Function Condition Operator Action (see note 1)

5400 any Volume name check failed. Enter G, F, or E.

5401 A,D Volume name check failed Enter G or E.
on second or subsequent
volume of the file (see
note 2).

5402 A Directory has no space for Enter F or E.
new file (see note 3).

5403 D Mass storage file name not Enter G, F, or E.
L/U found (see notes 4 and 5).

For deallocate, can also enter
A to accept condition and
continue to next volume of file;
enter S to go to next file.

5404 L/U Mass storage file name Enter F or E.
not specified.

5405 A Duplicate file name (see Enter S, F, or E.
note 3).

5406 L/U File name check failed on Enter A to accept the file
card or tape input or tape (tape only), G, F, or E.
output.

5407 D Error detected in units of Enter A or E.
allocation portion of volume
directory, due to incom-
plete deallocation on a prior
run (see note 5).

5410 D Wrong password supplied. Enter G, F, or E. For de-
L/U allocate, can also enter S to

skip file.

5411 D No password was supplied, Enter S (for deallocate),
L/U but file has a password. F, or E.

5412 D Expiration date check failed. Enter S, F, or E.

5413 A Error in units of allocation. Enter F or E.
There is a conflicting unit
of allocation already on the
mass storage volume (see
notes 3 and 6).

5414 D Volume sequence check Enter G or E.
L/U failed (volume mounted out

of sequence).

4-78 #5-618

SECTION IV. FILE SUPPORT C

Table 4-10 (cont). File Support C Halts

B-Address
Register

Value Function Condition Operator Action (see note 1)

5415 A An illegal combination of Enter G or E.
device classes has been de-
tected while allocating a
multivolume file (see
note 3).

5416 A During allocation of a multi- Enter G or E.
volume file, a request for a
unit of allocation in which a
cylinder or track exceeds
the allowable maximum for
the device being addressed
has been encountered (see
note 3).

5417 L/u Reel sequence check failed A = accept the current reel;
on input tape (reel mounted G = re -open the tape reel;
out of sequence). F = go to next function;

E = go to Supervisor.

5420 L/u Member name not found in Enter
member index of input S to skip member; go to next

\..../. mass storage file. member;
F to close file; go to next
function;
E to close file; go to
Supervisor.

5421 L/u Member unavailable for out- See halt 5420.
put processing.

5422 L/u No space in member index See halt 5420.
for new member.

5423 L/U No member name in input Enter
file header (non-mass G to re -open file;
storage). F to close file; go to next

function; or
E to close file; go to
Supervisor.

5424 L/u No data space to create new See halt 5420.
member.

5425 L/u Member names of output Enter
mass storage file exhausted F to close file; go to next
before those of input mas s function; or
storage file. E to close file; go to

Supe rvis or.

4-79 #5-618

SECTION IV. FILE SUPPORT C

Table 4-10 (cont). File Support C Halts

B-Address
Register

Value Function Condition Operator Action (see note 1)

5426 L/U No member names in mem- See halt 5425.
ber index of input mass
storage file.

5427 M An item with invalid con- Enter S. F. or E.
tents has been detected in
the volume directory.

5430 L/U No data space to add next Enter
item to output mass stor- A to close member and/or
age file. file; go to next function;

S to close member; go to
next member; or
E to close the file and/or
member; go to Supervisor.

5431 L/U No more input members. Enter
but not all specified output A to close file; go to next
members have been function;
processed. G to re-open input file; or

E to close file; go to
Supe rvis or •

5432 L/U End of file between two Enter
cards of an input item. A to close member and/or

file; go to next function.
S to skip member; go to
next member.
E to close member and/or
file; go to Supervisor.

5433 L/U File header is missing Enter A to accept the file
from input card or tape file (tape output only). G. F. or E.
or output tape file.

5440 L/U Invalid device type speci- Enter F or E.
fied (see list on pages
4-37 and 4-38).

5441 L/U Invalid mass storage file Enter F or E.
organization.

5442 L/U Invalid combination of file Enter F or E.
organizations specified for
mass storage to mass
storae:e operation.

5443 L/U No own-coding program Enter F or E.
name specified when a
direct access file is to
be loaded.

4-80 #5-618

SECTION IV. FILE SUPPORT C

Table 4-10 (cont). File Support C Halts

B-Address
Register

Value Function Condition Operator Action (see note 1)

5444 L/U An attempt is being made to Enter A to continue function
load data into the *BAD- and to load the file.
TRACKS file. Enter F to skip to next function.

Enter E.

5445 L/U. Specified or assumed tape Enter F or E.
item size is greater than
tape record size.

5450 L/U Indexed sequential load- Enter
input data item key not high- S to skip out-of-sequence
er than prior key. Xl item and continue processing.
= lefthand end of item. F to close file; go to next

function; or
E to close file; go to
Supervisor.

5451 L/U Insufficient device address Enter F or E.
parameters have been
supplied for a multivolume
file (see DEVADD,
Table 4-4).

5452 L/U Indexed sequential load- Enter A (file will be loaded
requested number of im- with one active item per data
bedded overflow items per string), F, or E.
string is not less than num-
ber of data items per string.

5453 D An attempt is being made to Enter A, S, F, or E.
deallocate the *BADTRACKS Ente r A to continue function
file. and to deallocate the file.

Enter S, F, or E.

5454 A An attempt is being made to Enter F or E.
allocate the *BADTRACKS
file, but no *VOLSPARES
file exis ts . on the volume.

5455 A A bad track has been de- Enter E.
tected in the data area of a
file being allocated, and
the structure of the file
does not permit it to con-
tain bad tracks.

5456 A There are no unused substi- Enter E.
tute track addresses in the
*BADTRACKS file. A sub-
stitute cannot be estab-
lished for the latest bad
track detected or declared.
(see note 2).

4-81 #5-618 •

B-Address
Register

Value

5465

5466

5467

5475

5476

NOTES:

Function

L/U

L/U

L/U

A, L/U

Any

SECTION IV. FILE SUPPORT C

Table 4-10 (cont). File Support C Halts

Condition

(Unload to printer.)
Printer form may re
quire adjustment.

Unload to printer- print
image items in a parti
tioned file being unloaded
to printer contain a report
number.

Unload to printer- report
number is not found in a
sequential print-image
mass storage file.

Allocate - insufficient
memory to declare mem
bers.

Load/Unload:
Insufficient memory
to build table of all
input member names.

Insufficient memory for
buffers.

Operator Action (see note 1)

Enter
A to print the next item from
the mass storage file,
G to print the same item and
reexecute this halt, F, or E.

Enter
A to ignore all report num
bers and print each mem
ber as a separate report,
F, or E.

Enter
A or S to go on to next re
port number, F, or E.

Enter
A to allocate file without
members, F or E.

Enter
A to unload those members
in the existing table,
For E.

Enter For E.

1. Operator response codes are interpreted as shown below, unless otherwise indicated.

Enter ---
A (21S)
G (27S)
S (62S)
F (26S)
E (25S)

Explanation

Accept the condition or file. Continue.
Reopen volume or file.
Skip file; go to next file.
Skip function; go to next function.
Skip function; go to Supervisor.

2. This halt may occur during allocation or deallocation. If the allocation or de allocation
is not completed, see "Failure During Allocation and Deallocation, " below.

3. These halts may occur during allocation. If the allocation is not completed, the file
must be deallocated. S~e "Failure During Allocation and Deallocation, " below.

4. This halt may occur during deallocation. If the deallocation is not c,ompleted, the
file must be deallocated promptly. See "Failure During Allocation and Deallocation, "
below.

5. These halts may occur during a de allocation that is correcting a prior allocation or
deallocation that was incomplete. See "Failure During Allocation and Deallocation, "
below.

6. This halt may occur if allocation of a file was not completed and the required deal
location was not done or was not completed. (It may also occur due to an error in
specifying the units of allocation.) See "Failure During Allocation and Deallocation, "
below.

4-S2 #5-61S

..

.~'

SECTION IV. FILE SUPPORT C

OPERA TOR CONTROL WITH CONSOLE TYPEWRITER

When a console typewriter message indicates an error or requests operator action, the

operator performs the following steps.

1. Read the typeout. (To repeat the message, press the space bar twice.)
If necessary, consult the manual for possible action.

2. Perform the desired corrective action.

3. Type the appropriate I-character response (G, E, etc.).

4. If the type in is correct, press the space bar to continue. If incorrect,
type any other character and return to step 3.

Peripheral Conditions

When a peripheral condition causes a console typeout, a 1- or 2-line message is given.

With all files, the first line below is given.

pp d description

pp d

description

gives the peripheral control unit (pp) and device number
(d) of the peripheral device containing the file in error.

is a message describing the condition. (See Table 4-11).

With mass storage files, the second line is given which identifies the disk device containing the

error.

The operator should determine the peripheral control unit involved and take appropriate

action. If the control unit is mass storage, the possible description messages in line 1 and the

contents of the second line are described in "Console Typewriter Operating Procedures" in

Section III. For control units for some other device, the message, the error condition, the

function which may issue the message, and any possible operator actions are given in Table 4-11.

Table 4-11. Typewriter Messages for Conditions Related to Non-Mass Storcl.ge Files

Message Condition Function Operator Action

READ ERROR Uncorrectable Load Tape File
read error. To attempt rereading, type G.

To bypas s the record and go on
to the next, type A.

All Card File
Correct card in error if
possible and refeed, starting
with that card, Type G.

WRITEERROF Uncorrectable Unload and Map Tape File

write error. To attempt rewriting, type G.

Unload Card File
To repunch, remove the
erroneously punched card, and
type G.

4-83 #5 -61~

SECTION IV. FILE SUPPORT C

Table 4-11 (cont). Typewriter Messages for Conditions Related to Non-Mass Storage Files

Message Condition Function Operator Action

WRITE Uncorrectable Map and Unload Printer
ERROR write error An erroneous line has been

(cont). printed. To ignore the error

END End-of-storage Load/Unload
VOLUME medium. and Map

File-Related Conditions

When using File Support C, messages in the format

pp d FILE filename description

c filename v volume p d m a

and go to the next line, type G.

Tal2e File
When next reel ready,
type G.

may be given. These are related to logical operations with files and are discussed in Section III.

Job Control File Conditions

All console typewriter messages that deal with the job cont:rol file begin with the words

JOB CONTROL FILE ERROR,

Certain messages, as indicated in Table 4-12, are preceded by the words

CANNOT REFEED,

Following these words, there is a general message to describe the condition and three fields

of characters that further isolate the condition and indicate the function being performed. These

fields have the format: F I S

where F indicates the function being performed:

1 = Deallocate
2 = Allocate
3 = Load/Unload
5 = Map

I is an indicator. This is significant when a PARAMETER COMBINATION
message is given, preceded by the indicator CANNOT REFEED. The
possible values I may have and their meanings are given in Table 4-9.

S indicates the type of statement in which an error has been detected.
This field has the value 0 if I is greater than 20 (octal). The possible
values of the S field are:

0 = Statement is irrelevant,
1 = File statement,
2 = Volume statement,
3 = Units statement,
4 = Exits statement,
5 = Size statement,
6 = Member statement, or
7 = Day statement.

4-84 #5-618

SECTION IV. FILE SUPPORT C

The operator decides what action to take and types the appropriate response character. Each

condition allows certain responses as shown in Table 4-12. The general meanings of the

various response characters are as follows.

G Attempt to perform the operation again. The operator corrects the
erroneous statement (if possible), refeeds job control statements
beginning with the Function statement for the function containing the
statement in error, and types G. The program searches for the next
Function statement in the job control file.

F Go on to next function. If the operator cannot correct an erroneous
statement, he may skip to the next function by typing F. The program
searches for the next Function statement within the File Support C job
control file.

E Emergency exit to the Supervisor. If the entire file support run must be
discontinued, the operator types an E. The program exits to the Supervisor's
emergency return address.

Table 4-12. Job Control File Console Typewriter Messages

Message Meaning Possible Operator Responses

SYNTAX Syntactic error. G
F
E

COMMAND FIELD Invalid command field. G
F
E

POSITIONAL Invalid positional G
PARAMETER parameter. F

E

KEYWORD Invalid keyword. G
PARAMETER F

E

MISSING PARAMETER Required parameter G
missing. F

E

PARAMETER VALUE Invalid keyword G
parameter value. F

E

PARAMETER Invalid combination or G
COMB INA TION sequence of parameters. F

E

CANNOT REFEED,
Invalid combination or F

PARAMETER
sequence of parameters E

COMBINA TION
(used in conjunction with
I-field).

CANNOT REFEED, JOB Job control file too large E
CONTROL FILE TOO for available memory. F
LONG

4-85 #5-618 .

SECTION IV. FILE SUPPORT C

When any of the messages indicated above appear, with the exception of those preceded by

the message CANNOT REFEED, the erroneous card can be repunched and the entire set of

statements, starting with the Function statement in which it is located, can be entered by means

of the card reader.

When a PARAMETER COMBINA TION message occurs, preceded by CANNOT REFEED,

the value of the I-field following it should be checked. The possible values this field may have

are given in Table 4-9.

When the message JOB CONTROL FILE TOO LONG is given, available memory has been

used for storage of the parameters in the job control file. The job control file should be broken

into smaller units and File Support C rerun.

Typewriter Messages Specific to File Support C

The messages given in Table 4-13 pertain to error conditions that are specific to File

Support C processing. The operator decides what action to take and types the appropriate

response character. Each error allows certain responses, as indicated in Table 4-13. The

general meanings of the various response characters are:

A Accept the last operation as correct and continue,

G Attempt to perform the operation again,

S Skip to next logically permissible operation,

F Go to next func tion, and

E Emergency exit to the Supervisor.

Table 4-13. Typewriter Messages Specific to F..ile Support C

Message Function Condition Operator Action

FIRST VOLUME Any Volume name check G = Reopen volume.
NAME WRONG failed. F = Skip function; go to next

function.
E = Skip function; go to

Supervisor.

SUBSEQUENT A, D Volume name check G = Reopen the volume.
VOLUME NAME failed on second or E = Skip function, go to
WRONG subsequent volume Supervisor.

of the file.
(See note 5.)

VOLUME A Directory has no F = Do not allocate; go to
DIRECTOR Y FULL space for new file. next function.

(See note 1.) E = Do not allocate; go to
Supervisor.

4-86 #5-618

SECTION IV. FILE SUPPORT C

Table 4-13 (cont). Typewriter Messages Specific to File Support C

Message Function Condition Operator Action

FILE NOT FOUND D Mass storage file A = Accept the condition.
name not found. Continue to the next
(See notes Z and 3.) volume of the file.

(Deallocate)
G = Reopen volume.
S = Skip file; go to next file.

(Deallocate)
F = Discontinue function; go

to next function.
E = Discontinue function; go

to Supervisor.

FILENAME Llu Mass storage name F = Discontinue function; go
UNSPECIFIED not specified. to next function.

E = Discontinue function; go
to Supervisor.

DUPLICATE A Duplicate file name. S = Skip file; go to next file.
FILENAME (See note 1.) F = Discontinue function; go

to next function.
E = Discontinue function; go

to Supervisor.

FILENAME CHECK Llu File-name check A = Accept the file. (Tape
FAILED failed on card or only.)

tape output. G = Reopen card or tape file.
F = Discontinue function; go

to next function.
E = Discontinue function; go

to Supervisor.

ERROR IN D Error detected in A = Accept condition; con-
VOLALLOC units of allocation tinue deallocation.

portion of volume E = Discontinue deallocation;
directory due to in- go to Supervisor.
complete dealloca-
tion on a prior run.
(See note 3.)

WRONG PASSWORD D Wrong password G = Reopen volume.
Llu supplied. S = Skip file; go to next file.

(Deallocate)
F = Discontinue function; go

to next function.
E = Discontinue function; go

to Supervisor.

MISSING PASSWORD D No password was S = Skip file; go to next file.
Llu supplied; file has (Deallocate)

password. F = Discontinue function; go
to next function.

E= Discontinue function; go
to Supervis or •

4-87 #5-6)8

SECTION IV. FILE SUPPORT C

Table 4-13 (cont). Typewriter Messages Specific to File Support C

Message

EXPIRATION DATE
ERROR

CONFLICTING UNITS
OF ALLOCATION

VOLUME SEQUENCE
NUMBER ERROR

ILLEGAL DEVICE
COMBINATION

MAXIMUM CYLINDER
OR TRACK ILLEGAL

REEL SEQUENCE
CHECK FAILED

MEMBER NOT
FOUND

Function

D

A

D
L/u

A

A

LIU

Llu

Condition

Expiration date check
failed.

Error in units of
allocation. There is
a conflicting unit of
allocation already on
the mas s storage
volume. (See
notes 1 and 4.)

Volume sequence
check failed
(volume mounted out
of sequence).

An illegal combina
tion of device clas se s
has been detected
while allocating a
multivolume file.
(See note 3.)

During allocation of
a multivolume file, a
request for a unit of
allocation in which
the cylinder or track
exceeds the allowable
maximum for the de
vice being addressed
has been encountered.
(See note 3.)

Operator Action

S = Skip file; go to next file.
F = Discontinue function; go

to next function.
E = Discontinue function; go

to Supervisor.

S = Skip file; go to next file.
F = Discontinue function; go

to next function.
E = Discontinue function; go

to Supervisor.

G = Reopen volume.
E = Discontinue function; go

to Supervisor.
F = Discontinue function; go

to next function.

G = Attempt to continue the
function on the correct
volume.

E = Exit to Supervisor.

G = Attempt to continue the
function on the correct
volume.

E = Exit to Supervisor.

Input tape reel mount- A = Accept the current reel.
ed out of sequence. G = Mount the correct reel

Member name not
found in member in
dex of input mass
storage file.

4-88

and retry.
F = Go to next function.
E = Go to Supervisor.

S = Skip member; go to next
member.

F = Close file; go to next
function.

E = Close file; go to
Supe rvis or •

#5-618

/ ,,--,,'

..

SECTION IV. FILE SUPPORT C

Table 4-13 (cont). Typewriter Messages Specific to File Support C

Message Function Condition Operator Action

MEMBER CANNOT L/U Member unavailable S = Skip member; go to next
BE OUTPUT ONLY for output processing. member.

F = Close file; go to next
function.

E = Close file; go to
Supervisor.

MEMBER INDEX L/U No space in member S = Skip member; go to next
FULL index for new mem- member.

ber. F = Close file; go to next
function.

E = Close file; go to
Supervisor.

MEMBER NAME L/U No member name in G = Reopen file.
MISSING input file header F = Close file; go to next

(non-mass-storage). function.
E = Close file; go to

Supervisor.

NO SPACE FOR L/U No data space to S = Skip member; go to next
NEW MEMBER create new member. member.

F = Close file; go to next
function.

E = Close file; go to
Supervisor.

UNEQUAL NUMBER L/U Member names of F = Close file; go to next
OF MEMBERS output mas s storage function.

file exhausted before E = Close file; go to
those of the input Supervisor.
mass storage file.

NO MEMBERS IN L/U No member names F = Close file; go to next
INPUT FILE in mem.ber index of function.

input mas s storage E = Close file; go to
file. Supe rvis or.

ERROR IN VOLUME M An item with invalid Enter S, F, or E.
DIRECTORY ITEM contents has been

detected in the
volume directory.

NO MORE SPACE L/U No data space to add A = Close .member and/or file;
IN OUTPUT FILE next item to output go to next function.

mass storage file. S = Close member; go to next
member.

E = Close the file and/or
member; go to Supervisor.

4-89 #5-618 .

SECTION IV. FILE SUPPORT C

Table 4-13 (cont). Typewriter Messages Specific to File Support C

Message Function Condition Operator Action

TOO FEW INPUT L/U No more input mem- A= Close file; go to next
MEMBERS bers, but not all function.

specified output mem- G = Reopen input file.
bers have been E = Close file; go to
processed. Supervisor.

ERRONEOUS END L/u End of file between A = Close member andlor file;
OF CARDS two cards of an in- go to next function.

put item. S = Skip member; go to next
member.

E= Close member andlor file;
go to Supervisor.

FILE HEADER L/U File header is miss- A= Accept the file (tape
MISSING ing from input card output onI y).

or tape file or out- G = Reopen file.
put tape file. F = Close file; go to next

function.
E= Close file; go to

Supervisor.

INV ALID DEVICE L/U Invalid device type F = Discontinue function; go to
TYPE specified. next function.

E = Discontinue function; go to
Supervisor.

INV ALID FILE L/u Invalid mass storage F = Discontinue function; go to
ORGANIZATION file organization. next function.

E= Discontinue function; go to
Supervisor.

CONFLICTING L/u Invalid combination F = Discontinue function; go to
FILE ORGANIZA- of file organizations next function.
TlONS specified for mass E= Discontinue function; go to

storage to mass Supervisor.
storage operation.

NO OWN-CODE L/U No own-coding pro- F = Discontinue function; go to
PROGRAM gram name speci- next function.

fied when a direct E = Discontinue function; go to
access file is to be Supervisor.
loaded.

WILL LOAD INTO L/U An attempt is being A = Accept condition; continue
*BADTRACKS FILE made to load data function and load.

into *BADTRACKS F = Discontinue function; go to
file. next function.

E = Discontinue function; go to
Supervisor.

INV ALID ITEM L/U Specified or as sumed F = Discontinue function; go to
SIZE tape-item size is next function.

greater than tape- E = Discontinue function; go to
record size. Supervisor.

4-90 #5-618

SECTION IV. FILE SUPPORT C

Table 4-13 (~ont). Typewriter Messages Specific to File Support C

Message Function Condition Operator Action

KEY OUT OF L/U Indexed sequential S = Skip out-of-sequence item;
SEQUENCE load-input data item process next item.

key not higher than F = Close file; go to next
prior key. function.

E = Close file; go to Supervisor.

NOT ENOUGH L/U Insufficient device- F = Discontinue function; go to
DEVICES address parameters next function.

have been specified E = Discontinue function; go to
for a multivolume Supervisor.
file (see Table 4-4).

TOO MANY IM- L/U The value of the im- A = Continue; file is loaded with
BEDDED ITEMS bedded parameter is one active item per string.

not less than the num- F = Discontinue function; go to
ber of items per next function.
string. E = Discontinue function; go to

Supervisor.

WILL DEALLOCATE D An attempt is being A = Accept condition; continue
*BADTRACKS FILE made to deallocate function and deallocate.

*BADTRACKS file. S = Skip file; go to next file.
(Deallocate)

F = Discontinue function; go to
next function.

E = Discontinue function; go to
Supervisor.

VOL UME DOES NOT A An attempt is being F = Discontinue function; go to
CONTAIN made to allocate next function.
*V OLSPARES FILE *BADTRACKS file, E = Discontinue function; go to

but no *VOLSP ARES Supervisor.
file exists on the
volume.

FILE CANNOT A A bad track is detect- E = Discontinue function; go to
CONTAIN BAD ed in data area of a Supervisor.
TRACKS file being allocated;

file structure doe s
not permit it to con-
tain badtracks.

NO MORE SPACE A There are no more E = Discontinue function; go to
IN *BADTRACKS available tracks in Supervisor.
FILE the*BADTRACKS

file. (See note 2.)

PRINTER FORM L/U (Unload to printer.) A = Print the next item from
ADJUSTMENT Printer form may the mass storage file.

require adjustment. G = Print the same item again
and reexecute this halt.

F = Discontinue function; go to
next function.

E = Discontinue function; go to
Supervisor.

4-91 #5-618~

SECTION N. FILE SUPPORT C

Table 4-13 (cont). Typewriter Messages Specific to File Support C

Message Function Condition Operator Action

REPORT NUMBERS
PRESENT

L/U (Unload to printe r.)
Print-image items
in a partitioned se
quential file that is
being unloaded to the
printer contain a re
port number.

A = Ignore all report numbers;
print each member as a
separate report.

REPOR T NUMBER
NOT FOUND

INSUFFICIENT
MEMORY FOR
MEMBERS

INSUFFICIENT
MEMORY FOR

L/U

A
L/U

A
L/U

(Unload to printer.)
Report number not
found in sequential
print-image mass
storage file.

Allocate:
Insufficient mem
ory to declare
members.

Load/Unload:
Insufficient mem
ory to build table
of all input mem
ber names.

Insufficient memory
for buffers.

F = Discontinue function; go to
next function.

E = Discontinue function; go to
Supervisor.

A}= Accept; go on to next
S report number.
F = Discontinue function; go to

next function.
E = Discontinue function; go to

Supervisor.

A = Allocate file without mem
bers (Allocate). Unload
those members in the exist
ing table (Load/Unload).

S = Skip file; go to next file.
(Allocate)

F = Discontinue function; go to
next function.

E = Discontinue function; go to
Supervisor.

F = Discontinue function; go to
next function.

BUFFERS E = Discontinue function; go to
Supervisor.

NOTES: 1. These messages may occur during allocation. If the allocation is
not completed, the file must be deallocated. Refer to tr..e following
paragraphs.

2. This message may occur during deallocation. If the deallocation
is not completed, the file must be deallocated promptly. Refer to
the following paragraphs.

3. These messages may occur during a deallocation that is correcting
a prior allocation or deallocation that was incomplete. Refer to
the following paragraphs.

4. This message may occur if allocation of a file was not completed
and the required deallocation was not done or was not completed.
(It may also occur due to an error in specifying the units of allo
cation.) Refer to the following paragraphs.

5. This message may occur during allocation or deallocation. If the
allocation or deallocation is not completed, refer to the following
paragraphs.

4-92 #5-618

SECTION IV. FILE SUPPORT C

FAILURE DURING ALLOCATION AND DEALLOCATION

This paragraph outlines the procedures to be used if there is a failure during allocation

or deallocation. These failures may be due to:

I. Errors, such as attempting to allocate to areas already assigned to
another file, or incorrect mounting of volumes, or

2. Equipment malfunctions, evidenced as device errors.

If allocation encounters a track which cannot be formatted successfully, a response to

the halt or console message will continue the allocation so that additional cylinder and track

messages (if any) will be produced on the printer. Permissible responses are as follows:

A = continue allocation

G = reattempt to format the track

E = exit to Supervisor.

The procedures described here should be followed so that additional problems will not

arise at a later time when they will be more difficult to analyze. Reference should be made to

Table 4-10 or 4-13 for the appropriate operator action.

Failure During Allocation

If an allocation fails, perform the following operations.

I. Do not use the volumes on which the file was to be allocated
until that file is deallocated.

2. Deallocate the file. Use the volume name check option. Mount the volumes
for the file in the proper order, starting with the first volume of the file.

3. The deallocation will proceed normally unless a halt 5403 or message FILE
NOT FOUND occurs. Note the volume name and file name for future reference.
Skip the file and go to the next operation.

4. The deallocation may have failed to remove from .the volume noted in step 3
all of the units of allocation assigned to the file. Failure to perform the
following steps may lead to a 5413 halt or message (conflicting units of
allocation) at a later allocation operation of this volume.

5. Map the volume. Both the descriptions of all files on the volume (MAP,
DESCR) and the listing of unassigned tracks (MAP, UNUSED) are needed.

6. Compare the two listings to determine the tracks that are not assigned to
any of the files listed. The listings of unassigned tracks will show as
"used" any tracks still belonging to the file. If there are no such tracks,
the volume is completely usable and step 7 is omitted.

7. This step consists of one of the following:

a. Accept the unavailability of the tracks noted in step 6.

b. If a recent backup of the volume exists, it may be suitable for
restoration by use of the Utility program Disk/Tape Copy. Update
activity performed after the date of the backup must be repeated
to make the restored volume current.

4-93 #5-618 •

SECTION IV. FILE SUPPORT C

c. If neither of the above two possibilities seems desirable, unload
all the files on the volume, perform volume preparation, reallo
cate all the files, and reload all the files.

Failure During Deallocation

1£ a deallocation fails, perform the following operations.

1. Do not use the volumes from which the file was to be deallocated until
the de allocation of that file is completed. It is absolutely essential
that the de allocation be completed before any other file is allocated on
the volume which was being processed when the deallocation failed.
Otherwise, two or mo=e files may attempt to use the same units of
allocation.

z.

3.

4.

Repeat the deallocation run. Use the volume name check option.
Mount the volumes for the file in the proper order, starting with
the first volume of the file.

The deallocation may come to halt 5403 or message FILE NOT FOUND
for the first several volumes of the file. These are the volumes from
which the file was completely or partly deallocated in the prior run.
Enter A (accept the condition). The deallocation proceeds to the next
volume of the file.

The deallocation may come to halt 5407 or message ERROR IN
VOLALLOC portion of the volume directory. The volume name
and file should be noted for future reference. Accept the condition
and continue deallocation.

5. If the 5407 halt was encountered or message ERROR IN *VOLLALOC*
(see step 4), the de allocation may have failed to remove from the volume
noted in step 4 all of the units of allocation assigned to the file. Failure
to perform the following steps may lead to a 5413 halt or message
(CONFLICTING UNITS OF ALLOCA TION) at a later allocation operation
on thi s volume.

6.

7.

Map the volume. Both the descriptions of all files on the volume (MAP,
DESCR) and the listing of unassigned tracks (MAP, UNUSED) are needed.

Compare the two listings to determine the tracks that are not assigned
to any of the files listed. The listing of unassigned tracks will show as
"used" any tracks still belonging to the file. If there are no such tracks,
the volume is completely usable and step 8 is omitted.

8. This step consists of one of the following:

a. Accept the unavailability of the tracks noted in step 7.

b. If a recent backup of the volume exists, it may be suitable for
restoration by use of the Utility program, Disk/Tape Copy.
Update activity performed after the date of the backup must be
repeated to make the restored volume current.

c. 1£ neither of the above two possibilities seems desirable, un
load all files on the volume, perform volume preparation,
reallocate all the files., and reload all the files.

4-94

..

#5-618

APPENDIX A

VOLUME LABEL AND VOLUME DIRECTORY

Both the volume label and volume directory are created by Volume Preparation C. Table

A-I describes the volume label, and Table A-2 describes the volume directory.

The volume label is the unique identification of the volume. This record is 250 characters

long and is recorded as the first record (record 00) on the second track (cylinder 00, track 01)

of each volume.

The volume directory is a list of all files that are stored on the volume. The directory

begins on the third track (cylinder 00, track 02, record 00) of each volume except for the Type

155 Disk Pack Drive, where it begins on cylinder 00, track 01, record 1. Three sequential

files make up the volume directory:

1. File name index (':'VOLNAMES*),

2. File description index (*VOLDESCR*), and

3. File allocation index (*VOLALLOC*).

The first file (*VOLNAMES~') is an index of file names and refers to the other two files

for additional information. This index contains the names of all files allocated on this volume

and the addresses of the associated entries in the file description index and the file allocation

index. The item size of the file name index is 30 characters. This file begins on cylinder 00,

track 02, record 00 and never exceeds one track except for the Type 155 Disk Pack Drive,

where it occupies records 1 through 14 in cylinder 00, track 01. It can accommodate up to

26 file names for a Type 155 Disk Pack Drive, up to 86 names for a Type 258, 259, or 273

Disk Pack Drive, and up to 158 file names for a Type 261 or Type 262 Disk File.

The second file (*VOLDESCR*) is a complete description of each file, including general

information, labeling information, and information pertinent to the particular organization and

structure of the file. The item size of the file description index is 100 characters. Except for

the Type 155 Disk Pack Drive, this file begins on cylinder 00, track 03, and record 00; its

length may be one, two, or three tracks, depending on the rnaximum-number-of-files parameter

specified to the Volume Preparation C program. For the Type 155 Disk Pack Drive it begins

on cylinder 01, track 00, record 00 and has a maximum length of one track.

I

I
I

1/05/70 A-I #5-pI8

I

APPENDIX A. VOLUME LABEL AND VOLUME DIRECTORY

Table A-I. Volume Label

Field Position Name and Length Description

1 1-5 ID (five characters) lVOLA

2 6-11 Volume name The unique name assigned to the
(six characters) volume.

3 12 Device type (one character) 11 (octal) = Type 258
12 (octal) = Type 259, 259A, 259B
13 (octal) = Type 273
21 (octal) = Type 155
31 (octal) = Type 261
32 (octal) = Type 262
33 (octal) = Type 26lL
34 (octal) = Type 262L

4 13-18 Volume serial number Permanently assigned identification
(six characters) of the physical volume (volume

name is its logical identification).

5 19 Operating system flag OO(octal) = Mod 1 (MSR)
(one character) 02(octal) = Mod 2

04(octal) = Mod 4
10(octal) = Mod 8

6 20 Status of ~'VOLNAMES*
address field (one character) B, A bits indicate status as follows:

00 = not present; ~'VOLNAMES*
begins on COT2.

01 = reserved for future use.
10 = present; *VOLNAMES~' begins

on CCTT specified in positions
24 through 27.

11= see 00.

7 21-23 Reserved (three characters) Reserved for future use.

8 24-25 Cylinder where *VOLNAMES* Specifies the cylinder on which
begins (two characters) *VOLNAMES~~ file begins.

9 26-27 Track where *VOLNAMES* Specifies the track on which
begins (two characters) *VOLNAMES* file begins.

10 28-31 Reserved (four characters) Reserved for future use.

11 32-250 Reserved (219 characters) Reserved for future use.

The third file (':'VOLALLOC*) is a list of the mass storage areas allocated to each file

stored on the volume. Each unit of allocation is one item. The item size of the file allocation

I index is 20 characters. Except for the Type 155 Disk Pack Drive, this file begins on cylinder

00, track 04, 05, or 06, depending on the length of the file description index. For the Type 155

Disk Pack Drive it begins on cylinder 01, track 01. The file allocation index is the same number

of tracks in length as the file description index.

1/05/70 A-2 #5-618

APPENDIX A. VOLUME LABEL AND VOLUME DIRECTORY

Table A-2. Volume Directory

FILE NAME INDEX (':'VOLNAMES*) ITEM FORMA T

Field Position Name and Length Description

1 1-10 FILE NAME The unique name as signed to the file.
(ten characters) Pos. 1 : 778 = unused.

2 11 VOLUME SEQUENCE The relative number of
NUMBER (one char- this volume in the file,
acter) in binary. This field

is zero for the fir st
volume in the file.

3 12 SYSTEM OF ALLOCA- An indication of which
TION (one character) operating system allo-

cated this file.

00 = Mod 1 04 = Mod 4
02 == Mod 2 10 = Mod 8

4 13-14 RESERVED (two Reserved for future use.
characters)

5 15-22 FILE DESCRIPTION AD- Address (in the binary format
DRESS CCTTRRII) of the entry in the file
(eight characters) description index describing

the file named in "1" above.

6 23-30 ALLOCA TION AD- Address (in the binary format
DRESS CCTTRRII) of the first entry in
(eight characters) the file allocation index for the

file named in "1" above.

FILE DESCRIPTION INDEX (':<VOLDESCR*)

1 1 FILE ORGANIZATION 01 = Sequential
(one character) 02 = Direct access

03 = Indexed sequential
11 = Partitioned sequential ..
70 = Nonstandard; not processed

by Mod 1 (MSR)
77 = Unused item of ':'VOLDESCR*

2 2-3 ITEM SIZE Number of characters in item,
(two character s) in binary.

3 4-5 RECORD SIZE Number of characters in record,
(two characters) in binary.

4 6-7 BLOCKING FACTOR Number of items per block, in
(two characters) binary.

5 8-9 RECORDS PER BLOCK Number of records per
(two characters) block, in binary.

6 10-11 RECORDS PER TRACK Number of records per track, ex-
(two characters) eluding track linking record, in

binary.

7 12 CYLINDER OVERFLOW Number of tracks per cylinder as-
(one character) (direct signed for overflow, in binary.
access or indexed se-
quential file s only)

A-3 #5-618

APPENDIX A. VOLUME LABEL AND VOLUME DIRECTORY

Table A- 2 (cont). Volume Directory

FILE DESCRIPTION INDEX ('~VOLDESCR'~) (cont)

Field Position Name and Length Description

8 13 GENERAL OVERFWW General overflow indicator for
(one character) direct access files:

00 = No general overflow
77 = The last cylinder of each

unit of allocation is used
for general overflow.

9 14 OPEN/CWSE INDI- Not used by Mod 1 (MSR).
CATOR (one character) Included for compatibility

with other operating systems.

10 15 BAD TRACK INDICATOR 1. Bit 1 (leftmost bit)
(one character) ~ 0; the file is not allowed

to have bad tracks.
= 1; the file is allowed to

have bad tracks.
2. Bit 2

= 0 the file does not contain
any bad tracks.

= 1; the file contains one 0 r
more bad tracks for which
substitues have been
established.

11 16-21 RESER VED (six Res-erved for future use.
characters)

12 22-26 CREATION DATE Date file was last created, in
(five characters) the form yyddd.

13 27-29 CREATION NO. Number of times this file has been
(three characters) reorganized, in decimal.

14 30-34 MODIFICATION DATE Date this file was last modified
(five characters) (i. e. , opened for output- only or

input/output only processing), in
the form yyddd.

15 35-37 MODIFICATION NO. Number of times this creation
(three characters) of the file has been modified, in

decimal.

16 38-42 EXPIRATION DATE The date on which this file is ex-
(five characters) pected to expire, in the form yyddd.

17 43-50 PASSWORD User-supplied code to permit
(eight characters) access to the file. If omitted, no

password protection exists for
the file.

18 51-54 ITEM COUNT Partitioned Sequential: Inactive.
(four characters) Sequential: Active only for last

active volume of the file. ---
Direct Access and Indexed Sequential:
Active for last volume of the file only.
See also the Note at end of this table.

19 55 DATA STATUS 02 - No data has been written on this
(one character) file volume.

NOTE: Always = 00 for
01 - Data has been written on this

file volume, and it is not the
direct access and last file volume with data.
partitioned se- 00 = Data has been written on this
quential files. file volume, and it is the last

file volume with data.

A-4 #5-618

APPENDIX A. VOLUME LABEL AND VOLUME DIRECTORY

Table A-2 (cont.) Volume Directory

Field Position Name and Length Description

20 56 FILE DATA TYPE 40 = Print-image file without report
(one character) (sequen- numbers or form adjustment.
tial and partitioned sequen- 42 = Print-image file with report
tial files only) numbers and form adjustment.

41 = Card-image file. (Mod 8
Operating System use)

other = standard data file.

21 57 NUMBER OF CONTROL Number of control characters, in
CHARACTERS binary, for first n positions of each
(one character) item of a print-image file.

22 58 TERMINAL FILE CON- Not used by Mod 1 (MSR); included
TROL FIELD (one for compatibility with other operating
character) systems.

23 59-60 MISCE LLANEOUS Not used by Mod 1 (MSR): included
INFORMATION (two for compatibility with other operating
characters) systems.

24 61-63 RESERVED (three Reserved for future use.
characters)

File Definition Information - Sequential Organization

25 64-65 INDEX LENGTH Number of blocks in the member
(two characters) index, in binary, for a partitioned

sequential file.

26 66-68 BLOCKS IN FILE VOLUME Total number of data blocks avail-
(three characters) able to this file, in binary.

27 69 MEMBER INDEX ITEM Length of member index items, in
LENGTH (one character) binary. Must equal 31 (octal) to

be processed by Mod 1 (MSR).

28 70-100 RESERVED (31 characters) Reserved for future use.

File Definition Information - Direct Access Organization

25 64-65 KEY LENGTH Number of characters in the key,
(two characters) in binary.

26 66-68 KEY DISP LACEMENT Number of positions from the left
(three characters) end of the item to the rightmost

character of the key, in binary.
Thus, if the key is the fourth to
twelfth characters, this field is
11 (octal 13).

27 69-70 BLOCKS/BUCKET Number of blocks in a bucket, in
(two characters) binary.

28 71-100 RESERVED Reserved for future use.
(30 characters)

File Definition Information - Indexed Sequential Organization

25 64-65 KEY LENGTH Number of charac'ters in the key,
(two characters) in binary.

26 66-68 KEY DISPLACEMENT Number of positions from the left
(three characters) end of the item to the rightmost

character of the key, in binary.

27 69-70 BLOCKS PER STRING Number of blocks in a string, in
(two characters) binary.

28 71-72 BLOCKS IN STRING INDEX Number of blocks in each string
(two characters) index, in binary.

A-5 #5-618

APPENDIX A. VOLUME LABEL AND VOLUME DIRECTORY

Table A-2 (cont). Volum.e Directory

FILE DESCRIPTION INDEX (*VOLDESCR*) (cont)

Field Position Nam.e and Length Description

File Definition Inform.ation - Indexed Sequential Organization (cont)

29 73-74 BLOCKS IN MASTER INDEX Num.ber of blocks in the m.aster
(two characters) index, in binary.

30 75-77 BLOCKS IN FILE VOLUME Total num.ber of blocks in this file
(three characters) volum.e, in binary. The total in-

cludes index and general overflow.

31 78-100 RESERVED Reserved for future use.
(23 characters)

FILE ALLOCATION INDEX (*VOLALLOC*)

1 1 STATUS Status indication for this item.:
(one character)

778 = Unused or deleted item..

4°8 = Last data unit for this file.

6°8 = More data units follow on
this volum.e.

2°8 = More data units of allocation
follow on the next volum.e.

628 = Master / cylinder index unit;
the general overflow unit
follows on this volum.e.

228 = Master/cylinder index unit;
the general overflow unit
follows on the next volum.e.

61
8

= General overflow unit; the
first data unit follows on
this volum.e.

1 ST ATUS (cont) 21
8

= General overflow unit; the
first data unit follows on
the next volum.e.

2 2-4 RESERVED Reserved for future use.
(three characters)

3 5-12 A LLOCA TION UNIT Boundaries of this unit of allocation
(eight characters) (in the binary form. CCTTCCTT).

A-6 #5-618

APPENDIX A. VOLUME LABEL AND VOLUME DIRECTORY

Table A-2 (cont). Volume Directory

FILE ALLOCA TION INDEX (*VOLALLOC*) (cont)

Field Position Name and Length Description

FILE ALLOCATION INDEX (~'VOLALLOC*) (cont)

4 13-20 NEXT UNIT ADDRESS If field 1 = 60, 61, or 62, field 4 =
(eight characters) 00000000, where the next unit of

allocation is the next item in the
current block. Otherwise, field 4
is the address of the item in this file
containing the next unit of allocation
(in the form CCTTRRn). When field
1 = 20, 21, or 22, field 4 contains
the volume name of the next volum.e
in the file as the rightmost six
characters. If field 1 = 40 or 77,
the contents of field 4 are not
specified.

NOTE: If the file is processed using LIMVOL and if processing was terminated
prior to the last file volume, the item count field (positions 51-54) in the
last file volume processed is updated with the net change in item count
during processing. Thus, when the LIMVOL option is used, it may be
necessary to add the values in this field in all file volumes to obtain the
true item count for this file.

A-7 #5-618

I

APPENDIX B

PARTITIONING A SEQUENTIAL FILE

When the partitioning option is used, there are several additional advantages to sequential

file organization. With this option. the sequential file is broken into any number of subfiles

(members). which can vary in length. The partitioning option may be used for print files.

storing various types of tables. or files which are segregated by state, wherein each state may

be processed separately.

Each member of a partitioned sequential file must have identical properties (e. g., item

size. record size. etc.). A member index is maintained to enable direct access to the beginning

of any member. The number of blocks required to store the member index is specified at allo

cation time by the user (see "NOTE, " page B-3). The member index begins with the first block

in the file and continues through the number of blocks specified. The record size and block size

of the member index are identical to those of the data area of the file. The item of the member

index contains the name of the member, its address, the number of blocks in the member. and

the status of the member; its size is 25 characters. An index can be examined by using Mass

Storage Edit C to edit the first track{s) of the file (see Mod 1 (MSR) Utility Routines manual).

The name of the member identifies the member. A member name is 14 characters in

length. The address of the member is the address of the first record in the member. The ad

dress is of the form .ocCTTRR. This identifies the cylinder, track, and record of the first

item of the member. The block count simply records the number of blocks in the member. The

status of a member may be one of the following:

1. Deleted,

2. Able to be processed as input-only, or input/output, and

3. Able to be processed as input/output, input-only, or output-only. Mem
bers created by File Support C are assigned this status to allow unres
tricted processing.

All member index items, except the first and the last, are composed of the four fields

listed in Table B-1.

B-1 #5-618.

APPENDIX B. PARTITIONING A SEQUENTIAL FILE

Table B-l. Fields of Member Index Items

Field Position Name and Length Description

1 1-14 Member name A field which identifies a mem-
(14 characters) ber. A member name must be

composed from letters, digits,
and spaces.

2 15-21 Address The address of the first record
(7 characters) of the member in the form

ACCTTRR, in binary.

3 22-24 Block count (3 charac- A binary count of the number of
ters) blocks in a member.

4 25 Status (1 character) 20 (octal) = This member can be
processed as input,
output, or input/output.

00 (octal) = Thi s member can be
processed as input-
only or input/output.

40 (octal) = Deleted member.

The first item in a member index is composed of the following four fields, as listed in

Table B-2.

Table B-2. Fields of First Item in Member Index

Field Position Name and Length Description

1 1-14 ':'UNUSED* ~~.6..6..6..6.
(14 characters)

2 15-21 Address (7 characters) The address of the first record
in the unused area of this file in
the form ACCTTRR, in binary.

3 22-24 Block count (3 char- A binary count of the number of
acters) blocks remaining in the unused

area of this file.

4 25 Status (1 character) 10 (octal) = Item pointing to un-
used area.

The last item in a member index is composed of the following four fields, as listed in

Table B-3.

B-2 #5-618

APPENDIX B. PARTITIONING A SEQUENTIAL FILE

Table B-3. Fields of Last Item in Member Index

Field Position Name and Length Description

1 1-14 *ENDINDEX* AAA.A
(14 Characters)

-
2 15-21 Address (7 characters) The address of the first data

record for this file in the form
6CCTTRR, in binary.

3 22-24 Block count (3 charac- Total number of data blocks for
ters) this file, in binary.

4 25 Status (1 character) 01 (octal) = End-of-index item.

The first item in the index always contains the address of the first record in the file that

is available for the addition of a new member. When the partitioned sequential file is allocated

and before data is entered, the member index contains at least two items: one indicating the un

used area, and the other indicating the end of index. In addition, at allocation time, block space

may have been reserved for one or more members. When a member is created after allocation

its block count is computed after the data is placed. When a member is deleted, its data area is

not reusable until the file has been reorganized. (The Program Development Subsystem, how

ever, does re-use space in the library and residence files.) Figure B-1 shows a sequentially

organized file using the partitioning option.

NOTE: The number of blocks which should be assigned to the member index is
determined as follows.

I = (item) (BI)
B

N =

25

M +2
u

IB = Number of index items per block,

Ignore any remainder.

N = Number of index blocks, expressed as next higher integer,
(e. g., 19.2 = 20),

Mu = User members, maximum active at one time,
Item = Item size of the file (per allocate), and
BI = Items per block of the file (per allocate).

B-3 #5-618

Start
Unused
Area

APPENDIX B. PARTITIONING A SEQUENTIAL FILE

Start
Member
D

Start
Member
3

Start
Member
G

Unused Area

End
of
Index

Unused Area

Figure B-1. Sequential File Using Partitioning Option

B-4 #5-618

APPENDIX C

FILE DESIGN AND ALLOCA TION

In setting up data files for mass storage, sufficient time should be devoted to the planning

process. Too often mass storage files are treated as if they were magnetic tape files. Con

siderations for both media are frequently quite different. For example, updating of magnetic

tape files normally involves a copy of all data, changed or unchanged. from one tape to another.

With mass storage, applying the changes directly to the file and updating only affected items is

often more efficient. This is especially true when the percentage of the file being changed is

relatively low. Careful planning of mass storage record and block lengths is necessary for I
maximum data storage capacity.

FILE DESIGN CRITERIA

The following paragraphs describe certain considerations that should be taken into account

by the user before deciding what file organization to use.

Application Considerations

The most elementary question that must be asked about any file is: "What types of opera

tions are to be performed on the file?" Other pe"rtinent questions follow.

FILE ADDITIONS

Are the programs processing this file going to add items to the file? How many items

are to be added to the file? Are the items added in a random manner?

Provision for new items is made in both direct access files and indexed sequential files.

The sequential file organization can handle additions only if the organization is treated as mag

netic tape, i. e., each time items are added, the file is copied.

The direct access file and the indexed sequential file provide certain overflow capabili

ties for handling additions. These capabilities are discussed in the sections of the manual de

scribing specific file organizations. Depending upon their frequency and distribution, a speci

fic file organization-may be preferred for handling a particular application.

FILE INQ UIRIES

Is this file primarily used as a reference to be interrogated? Some. file organizations are

designed to provide quick and easy access to any given item. The direct access organization

provides the fastest access to any given item. However, careful planning of string size, block

8/29/69 C-I #5-6J,.8

APPENDIX C. FILE DESIGN AND ALLOCATION

length, and placement of the master/cylinder index can provide very rapid access to the indexed

sequential organization without requiring any randomizing of a key.

RANDOM VERSUS SEQUENTIAL FILES

Is the activity in this file random or are transactions sorted? What would be the effect

of doing it differently?

The answers to these questions will help to determine the design of the system and the

files within the system. In many cases, the application being developed is part of an existing

system. In such a case, the constraints are usually quite rigid. When designing a new system,

all of the assumptions should be closely examined. For example, a decision to handle a set of

transactions randomly may at first indicate the use of a direct access or indexed sequential

file. However, closer examination might reveal that the volume of transactions is so high that

a sequential operation might be faster.

RANDOM PLUS SEQUENTIAL FILES

Is it important to be able to process this file sequentially and directly? Would it be use

ful to process portions of the file sequentially?

The only file or ganization offering the full capability of both sequential and direct access

processing is the indexed sequential file. In a system in which a file is most frequently pro

cessed directly and least frequently processed sequentially, it is important to consider the ad

vantages and disadvantages of using either an indexed sequential file or a direct access file.

For instance, although sorting may not be required for an indexed sequential file, this file fre

quently requires a longer processing time. However, a direct access file which may be faster

to process requires sorting prior to any sequential operation.

There are many applications in which it is desirable to process only portions of a file

sequentially. A file organized by some multileveled key would lend itself well to this type of

operation. For example, if the first three digits of the key of a master file were a branch or

area code, it would be possible (using an indexed sequential organization) to go directly to any

branch in the file and then process only that branch.

General File Design Considerations

BLOCK LENGTH I
In general, the most significant factor in achieving a high rate of throughput is block length.

The allocation of the largest possible block to the file, consistent with the requirements of all

of the programs processing the file, almost always results in optimum efficiency. The reason

8/29/69 C-2 #5-618

APPENDIX C. FILE DESIGN AND ALLOCATION

for this is the latency tixne of xnass storage devices. For instance, on the Type 259 Disk Pack

Drive, waiting one revolution (25 xnilliseconds) following a read or write before the next block

on that track can be processed is norxnal. Thus, using sxnall blocks can dexnand considerable

tixne. For exaxnple, the tixne required to process a track with fifteen 250-character records

would be 15 x 25 = 375 xnilliseconds, whereas the tixne to process a track of five 880-character

records would be 5 x 25 = 125 xnilliseconds.

ASSIGNMENTS OF UNITS OF ALLOCATION

On a Type 258 or Type 259 Disk Pack Drive, the allocation of a full ten tracks per cyl

inder is generally xnost efficient; on a Type 273 Disk Pack Drive, however, the allocation of 20

tracks per cylinder is xnost efficient. Occasional exceptions exist for very sxnall files, but

usually ten or twenty tracks per cylinder is xnost efficient, since it reduces the nuxnber of cyl

inders for the file and, hence, the nuxnber of seeks to process the file.

NOTE: Only two tracks are available on the Type 155 Disk Pack Drive. I

As few units of allocation as possible, preferably one, should be used. However, when

handling xnany files on a single disk pack, it xnay be econoxnical to use any units available at

the tixne. If the file organization is sequential, the location of these units has little influence

on the processing tixne. If the file is to be processed directly (direct access or indexed sequen

tial),. file processing tixne increases in proportion to the distance (in terxns of cylinders) be

tween the units assigned to one voluxne.

Additional considerations for the placexnent of units of allocation for an indexed sequential

file are discussed in Sections II and IV.

MULTIVOLUME FILE PROCESSING

Ifaxnultivoluxne sequential file is to be processed sequentially froxn its beginning, only

one file voluxne need be xnounted at any given tixne. Ifaxnultivoluxne indexed seguential file is

to be processed sequentially froxn its beginning, at least one file voluxne which contains data

units of allocation and the voluxne(s) which contain(s) the xnaster/cylinder index and the general

overflow area xnust be xnounted at any given tixne. (When processing an indexed sequential file

in any xnode, the xnaster/cylinder index and the general overflow area xnust always be on line.)

Any other type of processing done with a direct access or indexed sequential file requires that

all voluxnes be xnounted and available concurrently. When extra disk drives are available, how

ever, delays in changing voluxnes can be xninixnized by having the necessary voluxnes xnounted.

Norxnally, in order to xnake best use of space, a file should be contained within a xninixnuxn

nuxnber of voluxnes, However, if speed of direct access is critical, a file xnay be split over a

1/05/70 C-3 #5-618

APPENDIX C. FILE DESIGN AND ALLOCATION

larger number of volumes. For example, a file consisting of 160 cylinders of information re

quires an average seek time of 76 milliseconds if allocated as 160 consecutive cylinders on one

disk pack. Splitting the file into four file-volumes, each with a 40-cylinder unit of allocation,

results in an average seek time of 47 milliseconds.

ASSIGNMENT OF FILES TO BE PROCESSED CONCURRENTLY

Many programs need to process more than one file. Occasionally, two or more of these

files will be on mass storage, possibly reducing processing efficiency. Planning should be done

with great care.

When two or more files share the same volume and at least one of the files is to be pro

cessed sequentially (regardless of file organization), efficiency is sacrificed. The file(s) being

processed sequentially in this application should be placed either on a separate volume or on an

entirely different device.

Ordinarily, in processing a mass storage file sequentially, minimum seek time is as

sumed; i. e., the only seeking required is from the end of one cylinder to the beginning of the

next sequential cylinder. If another file on the same volume is being processed, there may be

as much as one seek (on a Type 259 Disk Pack Drive this means 30 to 165 ms.) for each block.

In such a case, the decrease in efficiency is considerable. When communicating files can be

placed on different drives, processing time is improved by reducing head travel.

SEQUENTIAL FILE CONSIDERATIONS

Allocation

The unit of allocation is of the form CIT lC
2

T 2' To determine how much space is re

quired for a given sequential file, the following process is used.

I *

1. The following values must be known; they are represented syIllbolically as:

BL = Block (or buffer) length,

I = Total number of items in the file,

T = Tracks per cylinder, * and

IB = Items per block.

2. Using Table C-l or C-2, locate the correct values for number of records per
track (RT) and number of records per block (RB). This is accomplished by
scanning the leftmost column to locate the block length (BL) and then taking the
corresponding values for records per track (RT) and records per block (RB).

Normally, tracks per cylinder (T) is 2 for the Type 155 Disk Pack Drive, 10 for the Type 258
or Type 259 Disk Pack Drive and 20 for the Type 273 Disk Pack Drive. The user may, how-
ever, use any smaller number of tracks.

1/05/70 C-4 115-618

•

APPENDIX C. FILE DESIGN AND ALLOCA TION

3. Compute blocks per cylinder (Be) as follows:

C RT x T (" "d) B = RB Ignore any remaIn er •

4. Compute items per cylinder (IC) as follows:

IC = BC x lB.

5. Compute the number of cylinders (C) required for this file as follows:

C = ~C (round up to the next higher integer).

Example I - Determining Space for Sequential File

An example of computing the space required on a Type 259 Disk Pack Drive using the

process previously described follows:

Assuming that: Block length (BL) = 1.218 (characters per block).
Total items (I) = 5,600 (approximate value),
Tracks per cylinder (T) = 10, and
Items per block (IB) = 6 (item size = 203 characters).

There is to be one unit of allocation, starting on cylinder 20.

1. From Table C-I, records per track (RT) = 7, and records per block
(RB) = 2.

2. Blocks per cylinder (BC) = 10; 7 = 35 (remainder dropped, if any).

3. Items per cylinder (Ie) = 35 x 6 = 210

4. Cylinders for the file (C) = 5~~~0 = 26, plus a remainder of 140; the
result is rounded up to 27.

5. Therefore, the unit of allocation for this file, in the form C
1

T lC2T2'
would be: 20-0-46-9. Its maximum capacity is 5,669 items
(210 items per cylinder x 27) - 1 = 5,669.

Table C-l. Optimum Record Size - Types 155. 258, 259. 273. 259A.
and 259B Disk Pack Drives

Characters per Number of Records Number of Records Number of Data
Block (BL) Record Size per Block (RB) per Track (RT) Characters per Track

80-8! Same as block 1 32 2560-2592

82-86 Same as block 1 31 2542-2666

87-91 Same a s block 1 30 2610-2730

92-96 Same as block I 29 2668-2784

97-102 Same as block 1 28 2716-2856

103-109 Same as block 1 27 2791-2943

110-115 Same as block 1 26 2860-2990

116-123 Same a s block 1 25 2900-3075 .

1/05/70 C-5

I

I

APPENDIX C. FILE DESIGN AND ALLOCATION

Table C-l (cont). Opti:mu:m Record Size - Types 155, 258, 259, 273,
259A, and 259B Disk Pack Drives

Characters per lNu:mber of Records Nu:mber of Records Nu:mber of Data
Block (BL) Record Size per Block (RB) per Track (RT) Character s per Track

124-131 Sa:me as block 1 24 2976-3144

132-139 Sa:me as block 1 23 3036-3197

140-149 Sa:me as block 1 22 3080-3278

150-159 Sa:me as block 1 21 3150-3339

160-170 Sa:me as block 1 20 3200-3400

171-183 Sa:me as block 1 19 3249-3477

184-197 Sa:me as block 1 18 3312-3546

198-213 Sa:me as block 1 17 3366-3621

214-230 Sa:me as block 1 16 3404-3680

231-250 Sa:me as block 1 15 3465-3750

251-271 Sa:me as block 1 14 3514-3794

272-297 Sa:me as block 1 13 3536-3861

298-328 Sa:me as block 1 12 3576-3936

329-364 Sa:me as block 1 11 3619-4004

365-407 Sa:me as block 1 10 3650-4070

408-460 Sa:me as block 1 9 3672-4140

461-524 Sa:me as block 1 8 3688-4192

525-609 Sa:me as block 1 7 3675-4263

610-723 Sa:me as block 1 6 3660-4338

724-728 Block/2 2 11 3982-4004

729-880 Sa:me as block 1 5 3645-4400

881-920 Block/2 2 9 3960-4140

921-1117 Sa:me as block 1 4 3684-4468

1118-1218 Block/2 2 7 3913-4263

1219-1221 Block/3 3 10 4060-4070

1222-1512 Sa:me as block 1 3 3666-4536

1513-1572 Block/3 3 8 4032-4192

1573-1760 Block/2 2 5 3930-4400

1761-1827 Block/3 3 7 4109-4263

1828-1840 Block/4 4 9 3888-4140

1841-2301* Sa:me as block 1 2 3682-4602

2302-2436 Block/4 4 7 4025-4263

2437-2640 Block/3 3 5 4060-4400

264h·3024 Block/2 2 3 3960-4536

1/05/70 C-6 #5 -618

\~

APPENDIX C. FILE DESIGN AND ALLOCA TION

Table C-l (cont), Optimum Record Size - Types 155, 258, 259, 273,
259A, and 259B Disk Pack Drives

Characters per Number of Records Number of Records Number of Data
Block (BL) Record Size per Block (RB) per Track (RT) Characters per Track

3025-3045 Block/5 5 7 4235-4263

3046-3351 Block/3 3 4 4060-4468

3352-3520 Block/4 4 5 4190-4400

3521-3615 Block/5 5 6 4224-4338

3616-3654 Block/6 6 7 4214-4263

3655-3668 Block/? 7 8 4176-4192

3669-3680 Block/8 8 9 4122-4140

3681-4602 Block/2 2 2 3680-4602

NOTE: Where the division of block length leaves a fractiol!. the record size should be ex-
pressed as the next higher integer.

*Capacity is maximum when record size is 2,301 characters.

Table C-2. Optimum Record Size - Type 261 or Type 262 Disk Files

Characters per Number of Records Number of Records Number of Data
Block (BL) Record Size Block (RB) per Track (RT) Characters per Track

125-128 Same as block 1 50 6250-6400

129-132 Same as block 1 49 6321-6468

133-136 Same as block 1 48 6384-6528

137-141 Same as block 1 47 6439-6627

142-145 Same as block 1 46 6532-6670

146-150 Same as block 1 45 6570-6750

151-155 Same as block 1 44 6654-6820

156-160 Same as block 1 43 6708-6880

161-165 Same as block 1 42 6762-6930

166-171 Same as block 1 41 6806-7011

172-177 Same as block 1 40 6880-7080

178-183 Same as block 1 39 6942-7137

184-189 Same as block 1 38 6992-7182

190-196 Same as block 1 37 7030-7252

197-203 Same as block 1 36 7092-7308

204-211 Same as block 1 35 7140-7385

212-219 Same as block 1 34 7208-7446

220-228 Same as block 1 33 7260-7524

1/05/70 C-7 #5-618

I

APPENDlX C. FILE DESIGN AND ALLOCATION

Table C-2 (cont). Optimum. Record Size - Type 261 or Type 262 Disk Files

I
Characters per Number of Records Number of Records Number of Data

Block (BL) Record Size per Block (RB) per Track (RT) Characters per Track

229-237 Same as block 1 32 7328-7584

238-247 Same as block 1 31 7378-7657

248-256 Same as block 1 30 7440-7680

257-266 Same as block 1 29 7453-7714

267-278 Same as block 1 28 7476-7784

279-291 Same as block 1 27 7533-7857

292-304 Same as block 1 26 7592-7904

305-319 Same as block 1 25 7625-7975

320-335 Same as block 1 24 7680-8040

336-353 Same as block 1 23 7728-8119

354-372 Same as block 1 22 7788-8184

373-393 Same as block 1 21 7833-8253

394-416 Same as block 1 20 7880-8320

417-441 Same as block 1 19 7923-8379

442-469 Same as block 1 18 7956-8442

470-501 Same as block 1 17 7990-8517

502-534 Same as block 1 16 8032-8544

535-575 Same as block 1 15 8025-8625

576-620 Same as block 1 14 8064-8680

621-673 Same as block 1 13 8073-8749

674-735 Same as block 1 12 8088-8820

736-806 Same as block 1 11 8096-8866

807-894 Same as block 1 10 8070-8940

895-1001 Same as block 1 9 8055-9009

1002-1002 B1ock/2 2 17 8517-8517

1003-1133 Same as block 1 8 8024-9064

1134-1150 Block/2 2 15 8505-8625

1151-1303 Same as block 1 7 8057-9121

1304-1346 Block/2 2 13 8476-8749

1347-1533 Same as block 1 6 8082-9198

1534-1612 Block/2 2 11 8437-8866

1613-1851 Same as block 1 5 8065-9255

1852-1860 Block/3 3 14 8638-8680

1861-2002 Block/2 2 9 8370-9009

2003-2019 Block/3 3 13 8671-8749

20Z0-B29 Same as block 1 4 8080-9316

1/05/70 C-8

APPENDIX C. FILE DESIGN AND ALLOCATION

Table C-2 (cont). Optim.um. Record Size - Type 261 or Type 262 Disk Files

Characters per Num.ber of Records NUIllber of Records NUIllber of Data
Block (BL) Record Size Block (RB) per Track (RT) Characters per Track I
2330-2418 B1ock/3 3 11 8536-8866

2419-2606 Block/2 2 7 8463-9121

2607-2682 Block/3 3 10 8690-8940

2683-2692 B1ock/4 4 13 8710-8749

2693-3127* SaIlle as block 1 3 8079-9381

3128-3224 B1ock/4 4 11 8602-8866

3225-3399 B1ock/3 3 8 8600-9064

3400-3702 B1ock/2 2 5 8500-9255

3703-3909 B1ock/3 3 7 8638-9121

3910-4030 Block/5 5 11 8602-8866

4031-4038 B1ock/6 6 13 8723-8749

4039-4095 SaIlle as block 1 2 8078-8190

4096-4509 Block/9 9 17 7735-8517

4510-4600 Block/8 8 15 8445-8625

4601-4711 Block/7 7 13 8541-8749

4712-4836 B1ock/6 6 11 8635-8866

4837-5005 B1ock/5 5 9 8703-9009

5006-5212 Block/4 4 7 8757-9129

5213-5553 Block/3 3 5 8685-9255

5554-5665 B1ock/5 5 8 8880-9064

5666-6254 Block/2 2 3 8499-9381

6255-6258 Block/1 7 10 8930-8940

6259-6515 Block/5 5 7 8757-9121

6516-6987 Block/3 3 4 8688-9316

6988-7007 Block/7 7 9 8982-9009

7008-7404 Block/4 4 5 8760-9255

7405-7665 Block/5 5 6 8886-9198

7666-7818 Block/6 6 7 8939-9121

7819-7931 Block/7 7 8 8936-9064

7932-8008 B1ock/8 8 9 8919-9009

8009-8046 Block/9 9 10 8890-8940

8047-8060 Block/l0 10 11 8844-8866

8061-8085 Block/11 11 12 8784-8820

8086-9381 B1ock/3 3 3 8085-9381

*Capacity is IllaxiIlluIll when record size is 3,127 characters.

8/Z9/69 C-9 #5-618

APPENDIX C. FILE DESIGN AND ALLOCA TION

DIRECT ACCESS FILE CONSIDERATIONS

To properly use a direct access file requires careful planning. There are two essen-

tials that the user himself must calculate: (1) proper allocation of storage space and (2)

addresses for every item, assigned in such a way that items are dispersed as evenly as possible

throughout the space allocated to the file. The following paragraphs provide some general guide

lines for allocating storage space and assigning addresses in direct access files.

Bucket Size and Overflow

Any method of calculation used to translate item keys into addresses generally produces a

number of synonyms (duplicate addresses). (Refer to Appendix E for a description of randomizing

techniques.) These synonyms are handled in two ways: (1) buckets may be made large enough

to hold all synonyms for a given address, and (2) overflow areas may be specified that hold items

which overflow a bucket due to uneven distribution. If there were no variation in the number of

synonyms generated for each address, there would be no overflow. But, since some buckets

normally contain more synonyms and some less, some items will overflow.

A more even distribution of items can be obtained from a randomizing routine by making

the bucket size larger (i. e •• generating more synonyms having fewer addresses). The validity

of this statement is seen if the extreme cases are used as examples. First, if it is assumed

that relative bucket addressing is used and that the whole file contains one bucket, then all

items of the file would have 0 as their address. Of course, all items would be synonyms. Since

every bucket has an equal chance of having its address generated (because there is only one

bucket), there is even distribution of the items over the allocated space. Second, viewing the

other extreme, if every item were a bucket, then it would be much more difficult to get an even

distribution, since it is difficult to ensure that every item space has an equal chance of being

used. Thus, it can be seen from these two examples that it is not the average number of syn

onyms for a bucket that determines the efficiency of a randomizing routine; rather, it is the

amount of deviation from this average or, in other words, the evenness of the distribution of the

items over the allocated space that determines the efficiency.

The amount of overflow that occurs is directly related to two fact o.r s : (1) bucket size and

(2) storage density. The larger the bucket (i. e., the more synonyms for any address), the

lower the probability for any item that the bucket will overflow. Storage density also affects

bucket overflow. A file with space for 1,000 items will have more bucket overflow when it con

tains 800 items (storage density = 0.8) than when it contains 500 items (storage density = 0.5).

Thus, overflow may be thought of as an extension of the bucket that accommodates the uneven

distribution of items in buckets. As the bucket size becomes larger, the distribution becomes

C-IO 1#5-618

•

..

APPENDIX C. FILE DESIGN AND ALLOCATION

more even and there is less need for overflow areas. However, when designing a direct access

file, increasing the size of the bucket increases the average time required for access of an item.

Thus, when determining the bucket size, the probability of overflow should be weighed against

the desired speed of retrieving an item.

Table C-3 summarizes the overflow probabilities (i. e., the probability that an item will

overflow), assuming an even distribution.

Table C-3. Overflow Probabilities

Number of Items / Allocated Space

Bucket Storage Density
Size

(Items /Bucket) O. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

I 4.84 9.37 13.61 17.58 21. 31 24.80 28.08 31. 17 34.06 36.79
2 0.60 2.19 4.49 7.27 10.36 13.65 17.03 20.43 23.79 27.07
3 0.09 0.63 1. 80 3.61 5.99 8.82 11.99 15.37 18.87 22.40
4 0.02 0.20 0.79 1. 96 3.76 6.15 9.05 12.32 15.86 19.54
5 0.00 0.07 0.37 1. 12 2.48 4.49 7. II 10.26 13.78 17.55
6 0.00 0.02 0.18 0.67 1. 69 3.38 5.75 8.75 12.24 16.06

7 0.00 0.01 0.09 0.41 I. 18 2.60 4.74 7.60 11.04 14.00
8 0.00 0.00 0.05 0.25 0.84 2.03 3.97 6.68 10.07 13.96
9 0.00 0.00 0.02 0.16 0.61 1. 61 3.36 5.94 9.27 13.18

10 0.00 0.00 0.01 0.10 0.44 1. 29 2.88 5.32 8.59 12.51
II 0.00 0.00 0.01 0.07 0.33 1. 04 2.48 4.80 8.04 11.94
12 0.00 0.00 0.00 0.04 0.24 0.85 2.15 4.36 7.51 11.44

14 0.00 0.00 0.00 0.02 0.14 0.57 1.65 3.64 6.67 10.60
16 0.00 0.00 0.00 0.01 0.08 0.39 1.28 3.09 6.00 9.92
18 0.00 0.00 0.00 0.00 0.05 0.28 1. 01 2.65 5.45 9.36
20 0.00 0.00 0.00 0.00 0.03 0.20 0.81 2.30 4.99 8.88

25 0.00 0.00 0.00 0.00 0.01 0.09 0.48 1.65 4.10 7.95
30 0.00 0.00 0.00 0.00 0.00 0.04 0.29 1.23 3.47 7.26
35 0.00 0.00 0.00 0.00 0.00 0.02 0.18 0.94 2.98 6.73
40 0.00 0.00 0.00 0.00 0.00 0.01 0.12 0.73 2.60 6.29

50 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.45 2.01 5.63
60 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.30 1. 65 5.14
70 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.20 1.37 4.76
80 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.13 1. 14 4.46
90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.97 4.20

100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.83 3.99

NOTES: 1. These probabilities are given as percentages.

2. This table assumes an even distribution. In actual practice, perfectly even
distribution is seldom, if ever, obtained. The actual probability of over-
flow, therefore, will usually be higher.

8/29/69 C-ll #5-6.18

I

APPENDIX C. FILE DESIGN AND ALLOCATION

Allocation

The unit of allocation is of the form C 1 T 1 C 2 T 2. To determine how much space is required .-....../

for a given direct access file, the following process is used.

1. The following figures must be known and are represented symbolically as:

BL

I

T

IB

SD

BB

=
=
=
=

Block (or input/output buffer) length,

Total number of items in the file,

Tracks per cylinder,

Items per block,

Storage density. and

Blocks per bucket.

2. Using Table C-1. locate the correct values for number of records per track
(RT) and number of records per block (RB).

3. Compute items per bucket (IK) as follows:

4.

IK = IB x BB.

Using Table C-3, determine the probability (P) of overflow by using items
per bucket on the vertical axis and storage density on the horizontal axis.

5. Using Table C-4. find the number of overflow tracks whose percentage of
data area brackets P. If the lower percentage is only slightly less than p.
the corresponding tracks of overflow can be used along with general over
flow, or the tracks of overflow corresponding to the higher percentage can
be used without general overflow. If the higher percentage is only slightly
greater than p. the corresponding tracks of overflow should be used in
addition to general overflow. Otherwise. choose one of these bracketing
percentages to obtain the number of cylinder overflow tracks required (OT).

6. Compute the item space (IS) required as follows:

IS = ~D (round up to next higher integer).

7. Compute the buckets (B) required as follows:

B = ~~ (round up to next higher integer).

8. Compute the buckets per cylinder (BC) as follows:

RT x (T-OT) . .
BC = RB x BB (Ignore any remaInder).

9. Compute the cylinders (C) required for this file as follows:

B .
C = BC (round up to next higher integer).

8/29/69 C-12

I

#5-618

APPENDIX C. FILE DESIGN AND ALLOCATION

Table C-4. Cylinder Overflow as Percentage of Data Area

Percentage of Data Area Number of Cylinder Number of Data Tracks Remaining
Overflow Tracks

Type 259 Types 261/262 Required Type 259 Types 261/262

0.0 0.00 0 10 128

11.1 0.79 1 9 127

25.0 1.59 2 8 126

42.9 2.40 3 7 125

66.7 3.23 4 6 124

100.0 4.06 5 5 123

150.0 4.92 6 4 122
To illustrate the procedure for allocation of a direct access hIe, two examples are shown:

one for optimizing speed and the other for optimizing storage density. For these examples, the

following values are a:ssumed.

Total number of items in file (I)

Items per block (IB)

Block length (BL)

Storage density (SD)

Tracks per cylinder (T)

Example 1 - Optimizing Speed

10,000 items

4 (item size = 200 characters)

800

0.8

10

For this example, the bucket is equal to one block (BB = 1). Thus, each bucket has a

capacity of four items. Using the probabilities chart (Table C-3), it can be seen that the likeli

hood of anyone item overflowing is 12.3 percent. If one track for cylinder overflow is allowed,

1/9th or II. 1 percent of the data area is set aside for overflow. If two tracks per cylinder are

allowed, 2/8ths or 25 percent of the data area is set aside for overflow.

Since the 12.3 percent from Table C-3 is bracketed by the 11. I percent (one overflow

track) and the 25 percent (two overflow tracks), it means that with even distribution the overflow

could almost be accommodated with one cylinder overflow track (the rest would go in general

overflow). Excess overflow space would be available if two tracks for cylinder overflow were

specified.

If the important consideration for this file is average access time, one track per cylinder

for overflow would probably be sufficient (along with general overflow). However, if it is im

portant that no access exceed a certain time limit, two tracks could be used to gain the 25 per

cent overflow provision so that general overflow would rarely, if ever, be accessed.

8/29/69 C-13 #5-6}8

I

APPENDIX C. FILE DESIGN AND ALLOCATION

Using one track for overflow (OT I), the cylinders required for allocation would be COIn

puted as follows:

. 10,000 (I)
IteIn space (IS) reqUlred = .80 (SD) = 12, 500 and

. 12, 500 iteIns (IS)
Buckets (B) requIred = 4 . /b k (IK) = 3,125 buckets. IteInS uc et

FroIn Table C-l, it can be seen that we should have five records per track, one record

per block.

Buckets per _ 5 records/track (RT) x [10 tracks (T)/cylinder - 1 track (OT)/cylinder]
cylinder (BC) - 1 record/block (RB) x 1 block/bucket (BB)

45 buckets/cylinder, and

3,125 buckets (B)
Cylinders (C) per file = 45 buckets/cylinder (BC) = 69.4 or 70.0,

plus one cylinder per unit of allocation for general overflow.
A ssuIning that there is one unit of allocation, 71 cylinders
would be required for this file.

If two tracks were to be used for overflow, the above calculations change to:

Buckets per _ 5 records/track (RT) x 0.0 tracks (T)/cylinder - 2 tracks (OT)/cylinder] _
cylinder (BC) - 1 record/block (RB) x 1 block/bucket (BB) -

40 buckets/cylinder, and

. . 3, 125 buckets (B)
Cyhnders (C) per fIle = 40 buckets/cylinder (BC) = 78.1 or 79.

Again, if general overflow is desired, it is added accordingly.

ExaInple 2 - OptiInizing Density

In the second exaInple, an atteInpt is Inade to Inake Inore efficient use of storage (thus

sacrificing SOIne speed). It is planned to have 25 blocks per bucket (BB = 25). Looking at the

probability chart, it can be seen that the likelihood of overflow in this case is about 0.1 percent.

This percentage is so sInall that it would be sufficient to have no cylinder overflow and use only

general overflow. In this case, all ten tracks are used for the data area (OT = 0). To cOInpute

the nUInber of cylinders required for this file, the following cOInputations are perforIned:

. 10,000 (I)
IteIn space reqUlred (IS) = 0.80 (SD) = 12,500, and

. 12, 500 (IS)
Buckets per hIe (B) = 100 (IK) = 125 buckets.

Buckets per _ 5 records/track (RT) x 10 tracks (T)/cylinder
cylinder (BC) ;; 1 record/block (RB) x 25 blocks/bucket (BB) = 2, and

125 (B) .
Cylinders per file (C) = 2 (BC) = 62.5 or 63 cyhnders.

C-14 #5-618

;.

APPENDIX C. FILE DESIGN AND ALLOCATION

One cylinder per unit of allocation must be added for general overflow. Assuming that

there is one unit of allocation, 64 cylinders would be required for this file. In the first case,

if relative addressing were being used, addresses distributed between 0 and 3,124 would be re

quired. In the second case, addresses between 0 and 124 would be required.

Example 3 - Optimizing Capacity of a Direct Access File on a Type 261 Disk File

Assume that 120,000 items are to be placed with a storage density of 0.88. Item size will

be 208 characters. Maximum buffer size is 6,448 characters. One block per bucket is required.

An examination of Table C-2 establishes the following choices.

Records Order of Data Characters
Block Length Record Size Per Track Preference Per Track I

6448 B10ck/5 = 1290 7 C 2 9030

6240 Block/2 = 3120 3 A2 9360

6032 Block/2 = 3016 3 C 1 9048

5824 Block/2 = 2912 3 E2 8736

5616 Block/5 = 1124 8 D2 8992

5408 Block/3 = 1803 5 C 3 9015

5200 Block/4 = 1300 7 B 9100

4992 Block/5 = 999 9 Dl 8991

4784 Block/6 = 798 11 El 8778

4576 Block/8 = 572 15 F 8580

4368 Block/9 = 486 17 G 8262

3952 Block/S = 791 11 E3 8701

3120 Same as Block = 3120 3 Al 9360

In the above example, "Order of Preference" indicates relative maximization of storage

capacity, from A (which provides the maximum value of characters per track) descending through

G (which provides the lowest value in the example).

Since a buffer size up to 6,448 characters is permissible, a block length of 6,240 characters I
(case A

2
) offers maximum track capacity (9,360) and a large buffer. The next choice of block

length which yields equivalent track capacity is a block of only 3,120 characters (case AI). A I
choice of a 4,368-character block (case G) would result in an 11 percent loss of capacity com

pared with case Al or A
2

•

8/29/69 C-lS #5-618

APPENDIX C. FILE DESIGN AND ALLOCATION

If we now assume that the direct access file will have a track width of 60 tracks, we estab-

lish the following.

1. BL = Block length = 6,240.

I = Items in file = 120,000.

T = Tracks per cylinder = 60.

6240
IB = Items per block = 208 = 30.

SD = Storage density = 0.88.

BB = Blocks per bucket = 1.

2. Referring to Table C-2:

RT = Records per track = 3 and

RB = Records per block = 2.

3. IK = Items per bucket, computed by:

IK = IB x BB = 30 x 1 = 30

4. P = Probability of overflow, extrapolated from Table C-3:

8
1.23 + TO x (3.47 - 1.23) = 1.23 + 1. 79 = 3.02%

5. Since 2 tracks of overflow will provide:

60 - 58 .
58 x 100 = 3.45% overflow (cybnder level),

and 3 tracks will provide:

60 - 57 .
57 x 100 = 5.27% overflow (cybnder level).

The user can therefore elect no general overflow and three tracks of cy
linder overflow with a reasonable assurance of safety.

6. Compute item space (IS) as follows:

IS = 1- = 120,000 = 136 363
SD 0.88 '

7. Compute the required number of buckets as follows:

IS 136,363 4 546 b k (hi h') B = IK = 30 =, uc ets next g er lnteger .

8. Compute the buckets per cylinder as follows:

BC = RT x (T - OT)
RB xBB

= 3 x (60 - 3) = 85 buckets (remainder dropped).
2 x 1

9. Compute the cylinders required as follows:

B 4546 .
C = - = -- = 54 cybnders (next higher integer).

BC 85

I

Thus, a decision might be made to put 18 cylinders on each of three separate Type 261 Disk

Files; the average head motion would then be five cylinders (allowing for the paired cylinder

concept of the Type 261 Disk File).

8/29/69 , C-16 #5-618

APPENDIX C. FILE DESIGN AND ALLOCATION

If prime number randomizing of relative bucket address is planned, the suitable prime

would be 4,547 (from Table E-l).

The actual number of buckets available, however, (85 x 54 = 4,590) is 44 more than the

number required (4,546). Use of a larger prime, such as 4,583, would be permissible, if it

was desired to lower the storage density of the file slightly.

INDEXED SEQUENTIAL FILE CONSIDERATIONS

Indexed sequential file organization provides flexibility and can be used with many types

of applications. This flexibility introduces a wide range of considerations that must be examined

before an indexed sequential file is defined and introduced into an application.

Design Considerations

The following paragraphs describe design considerations which should be taken into account

by the user when organizing an indexed sequential file.

ITEM SEQUENCE

Items in an indexed sequential file are ordered in ascending binary collating sequence

according to some item key field. Active items in the file cannot have duplicate keys.

DISTRIB UTION AND VOLATILITY

The structure of an indexed sequential file is fixed when the file is loaded. Thus, all in

dexes are generated at this time, and physical boundaries cannot be changed until the file is re

organized. If reorganizations, such as unload and reload, are to be infrequent, and if numerous

changes to the file are anticipated, the user should consider the type and distribution of these

changes. If the changes are expected to add a large number of items to the file or to alter the

distribution because of a larger number of insertions in a relatively few strings of the file, care

ful attention must be given to overflow provisions. If changes are to be primarily updating of

items, overflow need not be a major consideration.

TYPES OF OVERFLOW

Three types of overflow are provided, and each offers advantages in particular situations.

Only general overflow is required.

Imbedded overflow is judiciously used when a relative uniform distribution of additions

occurs. However, an uneven distribution of additions may cause inefficient use of disk area.

C-17 #5-61&

APPENDIX C. FILE DESIGN AND ALLOCATION

Cylinder overflow is used to provide a fixed nUIllber of tracks for iteIlls overflowing any

of the strings on that cylinder. Use of the overflow area by all of the strings on a cylinder

lessens the effect of a large nUIllber of additions occurring at SOIlle point on the cylinder. How

ever, processing tiIlle Illay be increased. For exaIllple, if the cylinder overflow is three tiIlles

as long as a string, the tiIne required to directly retrieve an iteIll in the cylinder overflow area

will be three tiIlles as long (on the average) as the tiIne required to retrieve an iteIll in a string

when cylinder overflow is full.

General overflow is used priIllarily as a safety valve. Processing tiIne is COIllIllOnly

lengthened, but if few additions to the file are anticipated, and if the tiIlle required to retrieve

iteIlls is not critical, general overflow Illay suffice. Whenever general overflow is entered,

Logical I/O C sets indicators in the file's cOIllIllunication area for possible interrogation by the

user.

Optim.ization

An indexed sequential file can be designed to optim.ize access time, to optim.ize use of the

disk area, or to achieve a comproIllise between these two considerations.

OPTIMIZING ACCESS TIME

An indexed sequential file can be accessed both sequentially and directly. The user Illay

choose to optimize operations using one of these types of access and to ignore the other. Nor

mally, however, both sequential access tiIlle and direct access time can be optiInized siInulta

neously.

Increasing block length is the priIllary Illeans of reducing access tiIlle. Files should be

allocated with the largest possible block length consistent with the meIllory requireIllents of all

prograIlls using the file. Both sequential and direct access tiIlles are reduced because

Illaster, cylinder, and string indexes require fewer blocks.

Careful determination of the relative sizes of the string index and the string is vital. The

sum of the nUIllber of blocks in the string index and the nUIllber of blocks per string should be as

small as possible.

I

Both direct access and sequential access tim.es can be optiInized by the following procedure.

Values which mus t be known are identified -by the following sYInbols.

K = characters per key
BL = block length

T = tracks per cylinder
OT = overflow tracks per cylinder

8/29/69 C-l8 #5-618

1.

APPENDIX C. FILE DESIGN AND ALLOCATION

Refer to Table C-I or Table C-2 to determine optimum values for
number of records per track (R T) and number of records per block
(RB). Recall that block length cannot exceed one track, i. e, RBSRT.

2. Compute the number of blocks per cylinder (BC) as follows.

BC = R T x (T - OT)
RB

Ignore any remainder.

3. Compute the number of items per block in the string index (ISI)
as follows.

lSI = BL Ignore any remainder.
2K + 8

4. Compute a tentative value for the optimum number of blocks per
string (BS) as follows.

BS =~BC
lSI

Retain any remainder.
Minimum value of BS is 1.

5. Choose the two integers bracketing this value of BS and perform
the following computations for each integer value of BS.

6.

a. Compute the number of strings per cylinder (SC) as follows.

SC = BC Ignore any remainder.
BS + I/ISI

b. Compute the direct access time criterion (DA TC) as follows.

DATC = SC + BS + 8 Retain any remainder.
ISI

Choose the integer value for BS which has resulted in the smaller
value for DA TC. This is the optimum value of blocks per string (BS).
For later computations, retain the value of SC cor~esponding to this
value of BS.

Example - Type 258 or 259 Disk Pack Drives:

As sume the following values:

IL = 121 characters per item
BL = 605 characters per block

K = 16 characters per key
T = 10 per cylinder

OT = 0 tracks per cylinder overflow

To compute the string size, locate the values RT = 7 and RB = 1 from
Table C-l. Then,

BC = 7 x (10 0) = 70
1

lSI = 605 = 15 (remainder dropped)
(2 x 16) + 8

BS = 2. 14 (tentative value)

The two possible integer values for BS are, therefore, 2 and 3.

C-19 #5-618

APPENDIX C. FILE DESIGN AND ALLOCATION

Compute the trial values of SC and DA TC.

If BS = 2, then

SC =

DATC =

If BS = 3, then

SC =

DATC =

2

33
15

3

22
15

+

+

70 = 33 (remainder dropped)
1/15

+ 2 + 8 = 12.20

70
(remainder dropped)

1/15 = 22

+ 3 + 8 = 12.5

Two blocks per string (BS = 2) yields the smaller value for DATe,
although the difference is small (2.17%).

OPTIMIZING STORAGE CAPACITY

If the user desires to maximize use of the disk area, he may find it necessary to accept a

block length (BL) that is smaller than the maxiITlum block length that can be accommodated by

the application and a string size (BS) that is larger than the optimum value for direct access

time. Preferable values increase the number of blocks per cylinder and reduce the amount of

unused space at the end of the string index and the amount of unused space at the end of a

cylinder. These preferable values are a complex function of the record length that is best for

a given block length and the relationship between key length and block length.

Assume that the item size is fixed and that there is a known maximum block length that

can be handled. The following procedure can be used to determine the optimum block length (BL)

and string size (BS) for maximUITl use of disk area. Values which must be known are identified

by the following syInbols.

IL
K

MBL
T

OT
IBD

=
=
=
=
=
=

item length
characters per key
maximum block length
tracks per cylinder
overflow tracks per cylinder
number of item positions per string to be imbedded
while loading the file

1. Find the values of ISI and BC that correspond to the possible values
for the blocking factor (IB) by performing the computations described
in steps a, b, and c, below.

To find the possible values for IB, first calculate the maximum
possible items per block (MIB) as follows:

MIB = MBL
IL

Ignore any remainder.

C-20 #5-618

APPENDIX C. FILE DESIGN AND ALLOCATION

Then IB can assume the values MIB, MIB-l, MIB-2, etc. It may
be necessary to find values of lSI and BC that correspond to small
blocking factors.

a. Refer to Table C-l or C-2 to determine optimum values for
number of records per track (RT) and number of records
per block (RB).

b. Compute the number of blocks per cylinder (BC) as follows:

BC = RT x (T - OT)
RB

Ignore any remainder.

c. Compute the number of items per block in the string index
(ISI) as follows:

BL = IB x IL

ISI = BL Ignore any remainder.
2K + 8

2. For each of the preceding values of IB, BC, and lSI, choose integral
values for BS starting with one. Perform the following calculations for
each value of BS. It may be necessary to perform this calculation with
quite large values of BS, as illustrated in the examples below.

a. Compute the number of strings per cylinder (SC) as follows:

SC = BC Ignore any remainder.
BS + l/IS!

b. Compute the number of items per loaded string (IS) as follows:

IS = (IB x BS) - IBD

c. Compute the number of items per loaded cylinder (IC) as follows:

IC = IS x SC

3. Choose the pair of values for IB and BS that results in the largest value
of IC.

Example 1 - Type 258 or 259 Disk Pack Drives:

Assume the following values:

IL = 121 characters per item
K. = 21 characters per key

MBL = 605 characters per block (maximum)
T = 10 tracks per cylinder

OT = 0 tracks for cylinder overflow
IBD = 0 item positions imbedded

The optimum point for storage capacity is as follows.

IB = 5
BS =
IC

23
= 345

Note that in this example, the optimum storage capacity occurs at the
maximum blocking factor, thus optimizing sequential access time.
However, direct access time is more than twice as long when these
values are accepted as when the following values are accepted:

IB = 5 BS = 4 IC = 340

Note that the corresponding loss in storage capacity is only 1. 5 percent.

C-21 #5-618

APPENDIX C. FILE DESIGN AND ALLOCATION

Example 2 - Type 258 or 259 Disk Pack Drives:
Assume the following values:

IL = 50 characters per item
K = 21 characters per key

MBL = 550 characters per block (maximum)
T = 10 tracks per cylinder

OT = o tracks for cylinder overflow
IBD = o item positions imbedded

The optimum point for storage capacity as determined from Table C-5 is as follows.

IB = 9
BS = 89
IC = 801

However, direct access time is extremely long.

COMPROMISING BETWEEN ACCESS TIME AND STORAGE CAPACITY

An indexed sequential file can be designed to achieve a compromise between optimum

access time and optimum use of storage capacity. The relative importance of these two factors

must be determined for the particular application. The following procedures are applicable.

1. For many pairs of values of IB and BS, where IB varies from 1
through MIB and BS varies from 1 to BC - 1, compute the following
quantities:

BL = block length, which is a measure of sequential access time;

DATC = direct access time criterion; and

IC = items per cylinder, a measure of space utilization.

2. Choose the pair of values of IB and BS that is the preferable
compromise among the three quantities B L, DATC, and IC.

Example - Type 258 or 259 Disk Pack Drive:

Assume the following values:

IL =
K=

MBL =
T =

OT =
IBD =

50 characters per item
21 characters per key

550 characters per block (maximum)
10 tracks per cylinder
o overflow tracks per cylinder
o imbedded items per cylinder

Table C-5 lists values of BL, DATC, and IC for selected pairs of values
of IB and BS. The number of different points that may have to be
considered in determining the preferable compromise is indicated.

The optimum. point for direct access is Case A; this is also an optimum point for se

quential access. The optimum point for storage capacity is Case K; however, this point gives

a direct access time that is seven times as long as Case A.

C-22 #5-618

APPENDIX C. FILE DESIGN AND ALLOCATION

Table C-5. Example - Optimization for an Indexed Sequential File

Case IB BS BL DATC IC

A 11 2 550 13.04 726
B 11 3 550 13.06 726
C 11 4 550 13.55 748

D 10 2 500 13.80 760
E 10 3 500 13.50 750
F 10 6 500 15.30 780
G 10 79 500 87.10 790

H 9 3 450 14.11 756
I 9 5 450 14.89 765
J 9 8 450 17.22 792
K 9 89 450 97.11 801

L 8 3 400 15.00 768
M 8 4 400 15.00 768
N 8 7 400 16.75 784
P 8 33 400 41.38 792

R 7 3 350 16.00 735
S 7 4 350 15.71 728
T 7 5 350 16.00 735
U 7 9 350 18.71 756
V 7 109 350 117.14 763

Certain points in Table C-5 are less desirable in all three values than some other point.

For example, Case B as compared to Case A; Case R as compared to Case C; etc. Also, Cases

K and G are characterized by access times that are much too long.

When these points are eliminated, the list is reduced to the cases shown in Table C-6.

The optimum points show a direct tradeoff between direct access time and storage capacity:

the shorter the direct access time, the smaller the storage capacity.

Table C-6. Example - Summary of Optimum Points

Case IB BS BL DATC IC

J 9 8 450 17.22 792
N 8 7 400 16.75 784
F 10 6 500 15.30 780
L 8 3 400 15.00 768
M 8 4 400 15.00 768
I 9 5 450 14.89 765
D 10 2 500 13.80 760
E 10 3 500 13.50 750
A 11 2 550 13.04 726

C-23 #5-618

APPENDIX C. FILE DESIGN AND ALLOCATION

Allocation

At least three units of allocation are required for an indexed sequential file. Proper

placement of these units optimizes the performance achieved in processing the file. Placement

of the master/cylinder index, the general overflow, and the data on separate volumes is pre

ferable but frequently infeasible. (See method 1 on page 2-10 under "Allocation. ") If only one

volume more than those required for data is available, the master / cylinder index and general

overflow should be placed together on that volume, assigned to relative volume O. (See method

4 on page 2-10.) If all units must be placed on one volume they should be kept close together to

minimize head travel. A unit of allocation cannot begin on the cylinder on which the preceding

unit ends. Procedures for calculating the number of cylinders required for data and the number

of tracks required for the master/cylinder index are described in the following paragraphs.

DATA CYLINDERS REQUIRED

To compute the number of data cylinders required for an indexed sequential file, values

for blocking factor (IB) and string size (BS) must be determined. Values which must be known

are identified by the symbols that follow.

IL
K

MBL
T

OT
IBD

I

=
=
=

=
=

characters per item
characters per key
m.axim.um. block length
tracks per cylinder
tracks per cylinder overflow
number of imbedded item. positions per loaded string.
total num.ber of item.s to be loaded onto the
file (i. e., active items to be presented to
the load function).

1. Choose a pair of values for IB and BS according to the type of
optim.ization desired.

2. Compute block length (BL) as follows:

3.

BL = IB x IL

Refer to Table C-l or Table· C-2 to determine optimum. values for
num.ber of records per track (RT) and number of records per block (RB).

4. Compute the num.ber of blocks per cylinder (BC) as follows:

BC = RT x (T - OT)
RB

Ignore any remainder.

5. Com.pute the number of item.s per block in the string index (lSI)
as follows:

lSI = BL Ignore any remainder.

2K + 8

6. Compute the num.ber of strings per cylinder (SC) as follows:

SC = BC Ignore any remainder.
BS + I/ISI

C-24 #5-618

APPENDIX C. FILE DESIGN AND ALLOCATION

7. Compute the number of items per loaded string (IS) as follows:

IS = (IB x BS) - IBD

8. Compute the number of items per loaded cylinder (IC) as follows:

IC = IS x SC

9. Compute the number of cylinders required for the prime data
area (C) as follows:

C = I Round the quotient up to the next higher integer.
IC

TRACKS REQUIRED FOR MASTER/ CYLINDER INDEX

The values computed as described in the preceding paragraph can be used to compute the

number of tracks required for the master / cylinder index. The following procedures are

applicable.

1. Compute the number of items per block in the cylinder index (IBC)
as follows:

IBC = BL
K + 8

Ignore any remainder.

2. Compute the number of blocks required for the cylinder index (BCI)
as follows:

3.

BCI = C Round up to the next higher integer.

IBC

Compute the number of blocks required for the master index (BMI)
as follows:

BMI = BCI
IBC

Round up to the next higher integer.

4. Compute the number of tracks required for the master/cylinder
index (TMC) as follows:

TMC = (BMI + BCI) RB
RT

Example - Computing Units of Allocation

Round up to the next higher integer.

Computation of the units of allocation for the master / cylinder index, general overflow, and

one data unit for an indexed sequential file on a Type 258 or 259 Disk Pack Drive follows.

Assume the following values.

IL = 121 characters per item
I = 10, 000 items

K = 16 characters per key
MBL = 605 characters per block (maximum)

T = 10 tracks per cylinder
OT = o tracks for cylinder overflow

C-25 #5-618

APPENDIX C. FILE DESIGN AND ALLOCATION

Data Cylinders Required (C)

1. Assume that the following values are chosen to optimize direct access
time:

IB = 5 items per block
BS = 2 blocks per string

2. BL = (5) (121) = 605

3. The following values can be obtained from Table C-l:

4.

5.

6.

7.

8.

9.

BC =

lSI =

SC =

7

RT 7
RB = 1

x pO
1

605
2(16) + 8

70
2 + 1/15

0) = 70

= 15 (remainder dropped)

= 33

Assume that approximately 10 percent of the data area is to be reserved
via imbedded overflow. Then IBD = 1, since the number of item positions
per string is (BS) (IB) = 2 x 5 = 10. Thus, IS = (5 x 2) - 1 = 9.

IC

C

= 9 x 33 = 297

= 10,000 34 cylinders. (33.67 expressed as next higher integer)
297

Tracks Required for Master / Cylinder Index

1.

2.

3.

4.

IBC = 605 = 25 (remainder dropped)
24

BCI 34 = 2 (1. 36 expressed as next higher integer)
25

BMI = 2 = 1 (0.08 expressed as next higher integer)
25

TMC = P + 2) 1
7

1 track. (0.43 expressed as next higher integer)

Thus, to allocate this file, a unit of allocation consisting of one track is required for the

master / cylinder index; a second unit is required for general overflow; and a third unit of 34

cylinders is required for data. The units of allocation for this file can be specified in the units

statement of the allocate function as follows (see pages 4-17 through 4-19).

CARD H LOCATION
OPERATION

OPERANDS NUMBER CODE
, 2 3 4 5 6 7 • 1415 2021 , " I ,!.."

'-,~------

.!,t.'. .. "'=--'----==~~~h....~""'_~
I ~C.I Nl),El(: (F,~OM· (,~.,...9) "lOs' 9!,.~J . .-._~.L~~.........-..L
I

I OVE~F,LOW='50MsM ¢-l".TO: (,i •. 2.~.~ .. -,~~ .. 1.

I I iF.ROM=,(2 .0.), TO.~~5 ~,+,-.~--"-'-~~_~L...!...~ .• _.L":"""~~. L

I I
~ ---1-___ """""--'- _j_-l-.-_~~L ----L ~ _L __ J.._~_' .1-, J.. .. L 1 _-'- -' _L' I

~.j :~~.:~.~ ,:~.~~ .. :.: -~:~~:
....... .J...... 1_ I... .J_ ••• _ ~ L ••••

'. _ __ 1_ ~J.. 1. J.. _1 _.

C-26 #5-618

APPENDD{ D

PHYSICAL I/O C

The Physical I/O C progranl serves as the interface between the user progranl and the

nlass storage device, elinlinating the need for the progranlnler to refer to the device directly.

In nlost cases, the progranlnler uses Logical I/O C- (described in Section ill), which in turn,

refers to Physical I/O C whenever access to the mass storage device is required.

Physical I/O C consists of a set of nlacro routines which provides a sinlple nleans of pro

cessing data stored on nlass storage devices. These routines fall into four categories:

1. Input/ output control,

2. COnlnlunication area,

3. COnlnlunication area service, and

4. Action.

To retrieve an area of the storage device, the progranlnler issues an action nlacro call

which refers to the relevant cOnlnlunication area and links to the input/ output control routine.

The input/output control routine, in turn, initiates the required action according to the current

contents of the comnlunication area.

NOTE: The use of Physical I/O C in place of Logical I/O C renloves the user
fronl the Data Managenlent Subsystenl rules and conventions. All such
users should be careful to follow the data nlanagenlent conventions if
it is desired to use the sanle volUnle with Logical I/O C, File Support
C, Mass Storage Sort C, etc.

USE OF PHYSICAL I/O C

Physical I/O C provides the progranlnler with the capability of initiating several basic

processing functions for a nlass storage device. These functions are: read, write, wait, re

store, verify, and seek.

Each tinle Physical I/O C is entered for one of these functions, it perfornls all the opera

tions required to initiate the requested function. In addition, each tinle a read or write function

is specified, the previous data transfer is checked for successful cOnlpletion. If any type of

error is recognized, Physical I/O C attenlpts to correct the error whenever correction is

feasible. If any error is uncorrectable, an exit to the progranlmer's coding occurs with an in

dication of the type of error.

D-l #5-6.18

APPENDIX D. PHYSICAL I/O C

Read Action

Any type of read instruction
1

Inay be requested by the prograInIner, but it is his responsi

bility to set the liInits of the data transfer. He can do this either by specifying a nonextended

read or by setting a record Inark in Inain IneInory.

Write Action

Any type of write instruction
1, except those specifying fOrInat writing, Inay be requested

by the prograInIner. However, it is the prograInIner's responsibility to liInit the data transfer

as in the read action above, when necessary.

Wait Action

The wait action is requested when the prograInIner requires the assurance that the last

data transfer initiated for a particular file has been cOInpleted successfully. NorInal return to

the prograInIner's coding occurs only upon successful cOInpletion, but that does not guarantee

that the last data transfer for any other file has been checked. An error exit occurs only if an

uncorrectable error condition was encountered in the file in question.

Restore Action

The restore action is requested when the prograInIner desires to restore the device to its

initial state. The initial state for a device is defined in the hardware bulletin Disk Pack Drives

and Control (Order Num.ber 514).

Verify Action

The verify action is requested when the prograInIner desires to verify that the area last

written is error free.

Seek Action

The seek action is requested when the prograInIner wishes to position the read/write heads

of a disk device to a specified cylinder. When the seek action is initiated, the read/write heads

are positioned to the cylinder currently specified in the CYL field of the cOInInunication area.

When the seek action is requested, the prograInIner should specify paraIneters which load the

desired inforInation into C YL or other relevant fields of the cOInInunication area.

The seek action does not cause the disk control to becoIne busy; therefore, a seek can be

perforIned on a non-busy disk device while the disk control unit for that device is busy with

IThe Extended MultiprograInIning and 8-bit Transfer (Feature 1120, 1121, or 1118) is not
supported by Physical I/O C. Therefore, the 8-bit transfer capability cannot be used.

D-2 #5-618

.. --.-/

APPENDIX D. PHYSICAL I/O C

activities of another disk device connected to it. The seek action, however, does not provide

any error checking of a previously initiated read or write action.

DETAILED DESCRIPTION OF PHYSICAL I/O C MACRO ROUTINES

Four types of macro routines are available to simplify the task of utilizing the mass storage

device. Each type is described in the following paragraphs.

Control Macro Routine (MPIOC)

The control macro routine, MPIOC (mass storage physical input/output control), is acti

vated each time there is a request for one of the actions previously described. One MPIOC can

control actions on' both class A and class C devices used concurrently. The device types are

shown below:

Class Device Type

A 258, 259, 273, 259A, 259B
B 155
C 261, 262

If at any time during processing an error is detected, an error analysis and correction

routine is entered. This rOl,ltine determines the type of error and, if possible, attempts to

correct the error. If the error is corrected, processing continues. Otherwise, control is re

turned to the programmer's coding at a location specified by him, and an indication of the type

of error is made available.

Communication Area Macro Routine (MPCA)

The communication area macro routine, MPCA (mass storage physical communication

area), provides an area which contains a series of fields in which all information pertinent to a

particular file is stored. This area allows MPIOC to specialize itself to accomplish peripheral

actions on various devices and files. These fields are available to the programmer and to the

control macro routine (MPIOC). The programmer can change or interrogate the values of these

fields as required. The control routine uses the current values of these fields in initiating its

mass storage instructions. It also maintains values in the communication area of interest to

the programmer.

A separate communication area must be used for each set of data being processed con

currently. For example, Logical I/O C requests the generation of a communication area for

each separate file specified.

Communication Area Service Macro Calls (MLCA and MUCA)

The macro routines to service the communication area, MLCA and MUCA, are used to

1/05/70 D-3 #5-618

I

APPENDIX D. PHYSICAL I/O C

load information into certain fields of the communication area and to interrogate certain fields.

Using these macro routines, the programmer can alter the contents of certain fields of the

communication area without knowing the structure of the area.

Action Macro Routines

There is a separate action macro routine for each of the actions previously described.

Each of these effects an entrance to the proper routine of the control macro routine. The com

munication area referred to by the action macro routine provides the information neces sary to

perform the requested function. The read, write, and seek action macro routines also provide

certain communication area service functions, as described previously.

LANGUAGE ELEMENTS OF PHYSICAL I/O C

For a program to use Physical I/O C, the programmer need only insert a library call in

the program where required for the appropriate macro routine. Control macro calls and com

munication area macro calls are placed in a subroutine portion of the program. Action macro

calls and communication area service macro calls go into tbe program's main line coding. Each

such call causes the related coding to be inserted at that point.. The language for calling the

various routines is defined in the following paragraphs.

Control Macro Call (MPIOC)

The example below illustrates the method of coding the MPIOC macro call.

CARD H ! OPERATION OPERANDS
NUMBER n LOCATION CODE

12345 6 7 • 1415 2021 6263

1 i (tOQ, l~p 1 OC IDa y arne+ 4, .. ,.01 .D,Cl.Y.o.m.z..t 4, ..!liZ ... ", .. a,met 4, r ~,~
I

1 l I 1,,"'l"a 4.+ e.!" !lI4 ... ~

Parameters of MPIOC Macro Call

Table D-l lists the parameters of the MPIOC macro call. The function of some MPIOC

parameters is to include or eliminate certain subroutines or instructions. Thus, a given

specialization of MPIOC occupies as little memory as possible.

Table D-l. Parameters of MPIOC Macro Call

Number Name Value Function Comments

00 Base Anytag Tag is equated with the lowest
memory location occupied by
MPIOC.

80

D-4 #5-618

Number

01

02

..

03

04

.,

05

Name

Unique
character

Periph-
eral con-
trol ad-
dress

Write
veri-
fication

Control
of more
than one
periph-
eral con-
trol

RWC
definition

APPENDIX D. PHYSICAL If 0 C

Table D-I (cont). Parameters of MPIOC Macro Call

Value

See "Com
ments"
column for
valid
characters

A

:xx (octal)

A

V

A

M

A

Function

A single character appended
to each tag used by this spe
cialization of MPIOC. Used
to achieve tag uniqueness
when more than one special
ization of MPIOC is being
used in a single program and
to ensure that a user's tag
does not duplicate any tag in
MPIOC.

Honeywell-recommended ad-
dress assignment for the
mass storage control (048).

Peripheral address assign-
ment to which the mass
storage control applicable
to this MPIOC is attached.

Automatic verification cod-
ing is not included.

The verify routine is to be
included in this MPIOC.

The peripheral address as-
signment and RWC configura-
tion are specialized at assem-
bly time as specified by pa-
rameter 2 and 5 and cannot be
changed without reassembly.

The peripheral addres s as-
signment and RWC configura-
tion are specialized at ex-
ecution time whenever the
control unit number in the
current MPCA differs from
that used in the last operation
performed by this MPIOC.

Automatic specialization is
performed at assembly time,
according to the value of
parameter 02. When param-
eter 02 is blank or is equal
to or les s than 07, 56 is
generated. When parameter
02 is greater than 07, 76 is
generated.

D-5

Comments

Required for each MPIOC.
Valid characters are
shown below.
Key Punch Print Symbol

(+,8,5) 0/0
(+,8,6) •
(-,8,3) $
(-,8,5) II

(0, I) /
(0,8,5) C R

This parameter has no
meaning if parameter 04
is as signed the value M •

When the peripheral ad-
dress assignment is spec-
ified, the I/O bit, (high-
order bit) must be zero.

The verify action macro
call is valid only when V
is the specified value of
this parameter.

This parameter has no
significance if param-
eter 04 is as signed the
value M.

#5 -618

APPENDIX D. PHYSICAL I/O C

Table D-I (cont). Parameters of MPIOC Macro Call

Number Name Value Function Comments

05 xx (octal) Read/write channel to be When this entry is us ed,
(cont) used for all data transfers. it must be a variant

Cannot be changed without which includes read/write
reas sembly. channel 3 of the I/O sec-

tor corresponding to the
PUC assignment speci-
fied by paramete r 02.

06 Seek ~ The seek action macro rou-
indicator tine is not to be included in

this specialization of MPIOC
and cannot be called by the
program.

SEEK The seek action macro call is
to be a valid call for the pro-
gram.

07 LOKDEV ~ The LOKDEV action is not
called.

See "De-
vice Pro- LOKDEV The LOKDEV action is
tection" called.
later in
this appen-
dix.

Communication Area Macro Call (MPCA)

This macro call sets up a communication area in a specific format which MPIOC refers to

as required. If an optional parameter is omitted from the call, an area is still reserved for the

corresponding field. These fields may be specialized at execution time when an MLCA macro

call is used. See Section III of this manual for a description of the MLCA macro call.

The following example illustrates the method of coding the MPCA macro call.

CARD
LOCATION

OPERATION OPERANDS NUMBER ~ COOE

123456 7 • .415 2021 ... 3 .1tJ

I +QO. MPt!A I~.," ame.+ c..r. .G1 . .. ~O",A_A...l..A.1'" .\"\
I

i i

Parameters of the MPCA Macro Call

Table D-2 lists the parameters of the MPCA macro call.

8/29/69 D-6 #5-618

..

APPENDIX D. PHYSICAL I/O C

Table D-2. Parameters of MPCA Macro Call

NUInber Name Value Function Comments

00 Prefix 1, 2, or 3 Tag prefix for all MPCA Must be specified.
characters entries. All action macro

calls refer to this prefix in
their calling sequences.

01 Suffix x Same as character specified Must be specified.
as parameter 01 of MPIOC .

...

8/29/69 D-6.1 #5-61,8

j

j

j

~"'-' j

j

j

j

j

j

j

• j

j

, j

j

j

j

'-'" j

j

j

:::; j

j

~
j

j

j

Number Name

02 Buffer

03

04

address

Error
exit

C3
Variant

APPENDIX D. PHYSICAL I/O C

Table D-2 (cont). Parameters of MPCA Macro Call

Value

Tag

Tag

xx (octal)

Function

Location of the leftmost
character of an area to or
from which data is trans
ferred. Buffer must be as
long as longest block of data
transferred. There must
be three available charac
ter positions to right of this
buffer when input data trans
fers are executed.

Address of a user-provided
routine to which MPIOC
branches in case of an un
corrected error condition.

The value of C3 is 04 (octal).

Octal value defining the type
of data transfer to be exe
cuted by MPIOC.

D-7

Comments

Must be specified.

Must be specified.

This parameter is nor
mally left blank, since
the programmer normally
alters its field in the com
munication area with the
MLCA macro routine.

Permissible values in
octal are:

04 = Load/unload ad
dres s register,

02 = Search and read/
write,

22 = Extended search
and read/write,

03 = Search and read/
write next,

23 = Extended search
and read/write next,

00 = Read initial,
20 = Extended read

initial,
01 = Read, and
21 = Extended read.

NOTE: When verifica-
tion is desired,
set the third bit
form the left (in
the 6-bit variant)
to 1, e. g. ,

o 11 / 0 / 0 / 0 /1 / = Extended
read

o 11 I 1 I 0 I 0 11 I = Extended
read and
verify

#5 -61.8

Number

05

06

07

APPENDIX D. PHYSICAL I/O C

Table D-2 (cont). Parameters of MPCA Macro Call

Name Value Function

Protection 6. The initial value is OO(octal).
bits r---------~-A~n-o--c~ta~l~v-a~l-u-e~in-d~ic-a-t~i~n-g~th~e-;

xx(octal)

RWC 6.
configura
tion

xx(octal)

Peripheral 6.
control
address

xx(octal)

protection bits to be loaded
into the control unit address
register.

Automatic specialization is
performed at assembly time,
according to the value of
parameter 07. If parameter
07 is blank or is less than
or equal to 07, 56 is gen
erated. Otherwise, 76 is
generated.

Read/write channel to be
used for data transfers.

Honeywell- recommended
address assignment for
mass storage control
(04

8
).

Peripheral address assign
ment to which the mass
storage control to be used
for data transfers is
attached.

D-8

Comments

Permissible values in octal
are:

00 = Permit no writing,
02 = Permit writing to

records that do not
have A- or B-protec
tion bits set in the
record headers,

06 = Permit A-file writing,
12 = Permit B-file writing,

and
16 = Permit A- and B-file

writing.

NOTE: When any type of
writing is permitted,
the writing s peci
fied by 02 is also
permitted.

This parameter is significant,
only if parameter 04 of the
MPIOC macro call is assigned
the value M (more than one
PCU is specified for MPIOC).

This single-character field
must be a variant which
includes read/write channel
3 (for I/O sector 0) or channel
6 (for I/O sector 1). This
as signment can also be made
through use of MLCA.

This parameter has signifi
cance only if parameter 04
of the MPIOC maCro call is
assigned the value M.

This single-character field
can be modified at execution
time whenever another PCU
is to be addressed.

When the peripheral address
assignment is specified, the
I/O bit (high-order bit) must
be zero.

#5-618

;:;

APPENDIX D. PHYSICAL I/O C

Communication Area Service Macro Calls (MLCA and MUCA)

The method of coding the MLCA and MUCA macro calls is the same as that illustrated in

Section III. The mnemonic designators to be used with MLCA and MUCA for Physical I/O Care

not the same as those for Logical I/O C. The mnemonic designators for MLCA and MUCA macro

calls when using Physical I/O C are listed in Table D- 3.

Table D-3. Mnemonic Designators for MLCA and MUCA

Mnemonic Description

CYL This designator refers to a 4-character field containing the de-
vice, pack, and cylinder number (in binary) for any future action
related to the file table referred to by parameter 01. The leftmost
character of this field must contain a word mark.

CAD This designator refers to an 8-character field containing CYL
as its high-order characters. The remaining four characters are
the 2-character track and the 2-character record number (in
binary). Note that CAD and CYL can overlay each other. The
final value of this field is loaded into the control unit address reg-
ister by MPIOC whenever required. The leftmost character of this
field must contain a word mark.

PRT This designator refers to the right end of a la-character
field whose high-order eight characters are defined by CAD. The
character to the right of CAD must be O. The tenth character
corresponds to parameter 05 of MPCA. MPIOC will load the ad-
dress register of the control unit with the current value of these
ten characters. Note that the ten characters include CAD, which
in turn, includes CYL.

TRW This designator refers to a single character corresponding to pa-
rameter 04 of MPCA (C3 variant).

AAD This designator corresponds to the buffer address, as defined for
parameter 02 of the MPCA macro call.

EAD This designator refers to the entrance address to a user's error
routine. Refer to parameter 03 of the MPCA macro call.

RWC This designator refers to the read/write channel(sJ being used
for data transfer and is significant only if parameter 04 of the
MPIOC macro call is M. It must be a variant which includes
read/write channel 3 if I/O sector a is being used or channel 6
if I/O sector 1 is being used.

CPU This designator refers to the peripheral address assignment and is
significant only if parameter 04 of the MPIOC macro call is M.
The I/O bit (high-order bit) must be zero.

LAD* This designator refers to an 8-character field designating the
address of the last record involved in the previous data transfer
initiated via the related communication area. Its format is
"DPCCTTRR" (device, pack, cylinder, track, and record numbers).

ECT* This designator refers to a I-character field containing a binary
count of the number of rereads or rewrites executed by MPIOC in
attempting to correct read and write errors detected in executions
for the designated MPCA table.

D-9 #5-618

APPENDIX D. PHYSICAL I/O C

Table D-3 (cont). Mnemonic Designators for MLCA and MUCA

Mnemonic Description

ERI* This designator refers to a I-character field containing an indication
of the type of uncorrectable error condition which was last encountered
in executions for the designated MPCA table.

EDF* This designator refers to a 14-character field containing the contents
of the control unit address register at the time the last error condi-
tion was detected in executions for the designated MPCA file table.
The rightmost four characters are unspecified.

LRT* This is a field containing the address of the last return to the user
from the initiation of an action referring to the designated MPCA table.

*These designator~ can be used only with MUCA.

Action Macro Calls

Action macro calls provide the programmer with the capability of initiating the following

actions: read, write, wait, restore, verify, and seek. Each time one of these action macro

calls is entered, the corresponding function is initiated or executed by MPIOC. MPIOC refers

to the indicated communication area as required for these actions.

READ AC TION MACRO CALL

The call for this macro routine is inserted in the programmer's coding whenever a data

transfer from the mass storage device to main memory is required. MLCA functions can also

be accomplished by this action. The example below illustrates the method of coding the read

action macro call.

CARO lI~ LOCATION
OP£RATION OPERANDS NUMBER coot:

I Z 1 4 5 • 7 • 1415 2021 ~

I Ie anO(,tac3 IREAD F'L1 CHGRWC R.~

I I Il (J r-t'lPRT PRT
In this example, the value of parameter 01 is FLI. This corresponds to the value assigned to

parameter 00 of the MPCA macro call. The remaining parameters shown in this example, 02,

03, 04, and 05, correspond to the similarly numbered parameters of the MLCA macro call de

scribed in Section m. This macro call can have up to 63 parameters.

WRITE ACTION MACRO CALL

The call for this macro routine is inserted in the programmer's coding whenever a data

transfer from main memory to ma::;s storage is required. MLCA functions can also be accom

plished by this function. The method of coding the write action macro call is the same as that

shown for coding the read action macro call, except that the word "WRITE" is placed in the

operation code field.

D-IO #5-618

."-'.

APPENDIX D. PHYSICAL I/O C

WAIT ACTION MACRO CALL

The call for this macro routine is inserted in the programmer's coding whenever the pro

grammer desires to wait for the completion of, and check for errors on, the last function for

the MPCA specified. If the normal return to the programmer's coding occurs after this macro

routine is entered, the programmer is guaranteed that the data transfer is completed success

fully. The following example illustrates the coding for the wait action macro call.

CARD II LOCATION
OPERATION

OPERANDS NUMBER CODE

I 2 3 4 !!o • T • 1415 202'"'
I on :t"oct IWA I,. FLZ

I
II

In this example, the value of parameter 01, i. e., FL2, is the value assigned parameter 00 of

the MPCA macro call.

RESTORE ACTION MACRO CALL

The call for this macro routine is inserted in the programmer's coding whenever he de

sires to restore the device associated with a specific MPCA to its initial state. The method of

coding the restore action macro call is the same as that shown above for the wait action macro

call, except that "RESTOR" is written in the operation c ode field.

VERIFY ACTION MACRO CALL

The call for this macro routine is inserted in the programmer's coding whenever he de

sires to initiate a read (in the write verify mode) from the last area written onto the mass stor

age device. The write macro and the verify macro calls may be separated by main line coding

if a mass storage device on the same control unit is not referred to in this interval. The method

of coding the verify action macro call is the same as that shown above for coding the wait action

macro call except that "VERIFY" is written in the operation code field.

SEEK ACTION MACRO CALL

The call for this action macro routine is inserted in the programmer's coding whenever he

wishes to position the read/write heads of a disk device to a specified cylinder.

Parameter 01 of the seek action macro call identifies which communication area Physical

I/O C is to refer to for execution of this macro routine. The remaining parameters correspond

to similarly numbered parameter pairs of an MLCA macro call (02 and 03, 04 and OS, etc.) and

are used to load the communication area fields with appropriate values for the seek routine.

An example of seek coding follows:

CARD I~II LOCATION
OPERATION OPERANDS NUMBER CODE

I 2 3 4 5 • T 8 1415 202. 10

I : L on",toa S,EE.I'. i I t. -1".Q.Q. ~.".I. - toQQ. e,YL
w

D-ll #5-618

APPENDIX D. PHYSICAL I/O C

In the above example, file-tag corresponds to parameter 00 of the MPCA macro call.

and cyl-tag is a user-supplied tag for a 4-character field in memory containing data to be loaded

into the C YL field of the MPCA communication area. C YL is one of the MLCA mnemonics listed

in Table D- 3.

If the programmer prefers to write a separate MLCA call prior to the seek call, or to

seek to the cylinder currently specified in MPCA. only parameter 01 of the seek call need be

specified. The following two examples, then. perform identical functions:

CARD
~ LOCATION

OP£RATION OPERANDS NUMBER CODE

12145. 7 • 1415 zoz, IZU

I qnv,+.Qa SEEK ~ '-I.i-. -:to.a. eod.-.toOa .c.Ah
I I

...
i I Or
! I C\n~+.ac. ML.eA t.i.l £.-:\-aQ .t'.o.d-+.lJ.n ~Ab
i !

..,
S.E~ ,it i \~-tQa

...,

I I
~

I I
i I

• I I

10 Ii

.-

In the two examples above, the full mass storage address for an item to be read or written

is loaded into the communication' area. CAD is the mnemonic for a communication area field

comprising CYL plus four characters which specify track and record. Parameter 02, cad-tag.

would therefore be the address of an 8-character field in memory containing the information to

be loaded into CAD.

PROGRAMMER'S PREPARATION INFORMATION FOR PHYSICAL I/O C

The following paragraphs describe pertinent programming considerations for Physical

I/O C.

Address Mode

The coding generated as a result of a Physical I/O C macro call is in either 3- or 4-

character address mode, corresponding to the mode of the user's program.

Read/Write Channel Utilization

Two data transfer rates are applicable to mass storage devices. When a Type 258, 259,

or 273 Disk Pack Drive, or a Type 261 or Type 262 Disk File is used, data transfer rates

accomplished by interlocking at least 1-1/2 channels (such as lA and 3 or 4A and 6) are

I required. When a Type 155, 259A, or 259B Disk Pack Drive is used, a single interlocked

channel suffices.

1/05/70 D-12 #5-618

,.

APPENDIX D. PHYSICAL I/O C

In the absence of any other directive, Logical I/O C utilizes channels 2 and 3 or channels

5 and 6 (depending upon the I/O sector) when operating with Type 258, 259, or 273 Disk Pack

Drives; alternatively, it utilizes channel 3 or 6 when operating with Type 155, 259A, or 259B I
Disk Pack Drives.

The user can change this assu:mption by setting para:meter 04 of the MPIOC :macro call to

M and by specifying RWC as the cOITlITlunication area field designator of an MLCA :macro call

(see Table D-3). This assign:rnent can also be :made by:means of the MPCA :macro call.

Special Considerations for Specifying Para:meters

USE OF INDEX REGISTERS

Physical I/O C uses index registers X5 and X6 but restores the:m to their original values

before returning to the user's progra:rn, regardless of whether the return is in the nor:mal :mode

or is an uncorrectable error exit. Index registers X5 and·X6, therefore, :may be e:mployed by

the user-written progra:m and can be used in conjunction with the MLCA and MUCA :macro

functions.

PERIPHERAL ADDRESS ASSIGNMENT AND RWC CONFIGURATION
CONSIDERA TIONS

Physical I/O C can control one or :more peripheral control units as described below.

Fixed Peripheral Address Assign:rnent

When para:meter 04 of the MPIOC is blank, the peripheral control unit nu:rnber and read/

write channel configuration are specialized at asse:mbly ti:me and cannot be changed without re

asse:mbly. The peripheral control unit nu:mber and read/write channel configuration are speci

fied by para:meters 2 and 5 of the MPIOC :macro call.

Variable Peripheral Address Assign:rnent

When :more than one peripheral control unit is to be controlled, or when the particular unit

to be controlled is deter:mined at execution ti:me, para:meter 04 of the MPIOC :macro call :must

contain M.

MPIOC is specialized at execution ti:me according to the peripheral control unit nu:mber

and read/write channel configuration values specified in the MPCA :macro call. This speciali

zation occurs only in the peripheral control unit nu:mber specified in the current MPCA :macro

call differs fro:m that specified for the preceding operation. Within one progra:m, all MPCA's

containing the sa:me peripheral control unit nu:mber :must be able to operate with the read/write

channel configuration specified for any other MPCA containing that nu:mber. Specialization also

occurs when MPIOC is initially entered during execution.

1/05/70 D-13 #5-618

APPENDIX D. PHYSICAL I/O C

The peripheral control unit number and read/write channel configuration can be set at

assembly time through use of parameters 6 and 7 of MPCA. The values can be set or changed

during execution through use of MLCA. However, the read/write channel configuration can be

changed only when the peripheral control unit number specified by the MPCA is also changed.

The RWC value must include channel 3 for I/O sector 0 or channel 6 for I/O sector 1. Permis

sible values are listed below.

I/O Sector 0 I/O Sector I

53 73
54 74
55 75
56 76

When the peripheral address assignment is variable, the sector bits of the RWC value are

updated in the specialized MPIOC instructions to correspond to the I/O sector specified by the

peripheral control unit number. Therefore, the read/write channel configuration need not be

set or modified to correspond to the sector specified by the peripheral control unit number.

Considerations for MPIOC Parameter Specification

SUFFIX CHARACTER

The suffix character specified in parameter 01 is used as the last character of all tags in

MPIOC. For this reason, any tag written in the program by the user should not end with this

character. When a program contains more than one MPIOC, each call must be assigned an

individual suffix character.

PERIPHERAL ADDRESS ASSIGNMENT

When the peripheral address assignment is specified by the user, it must be expressed as

an output assignment (00 through 07 or 20 through 27). When the user intends to change the

peripheral address assignment during the execution of the program, parameter 04 of MPIOC

must be assigned the value M. For considerations related to variable peripheral address assign

ments, refer to "Variable Peripheral Address Assignment" in this appendix.

DEVICE PROTECTION

If feature 079 is available to the disk peripheral control unit and parameter 07 is specified

as LOKDEV, it is possible to power down a device through MPIOC. This feature permits pro

tection of a volume after the user has finished processing it.

Considerations for MPCA Parameter Specification

An area in memory which is specialized in a fixed format is provided by MPCA for

communication. The area is specialized according to the values assigned to the MPCA ----'~

1/05/70 D-14 115-618

------"

APPENDIX D. PHYSICAL I/O C

parameters. A separate MPCA macro call must be in the program for each set of data (e. g.,

a file) for which separate communication values are to be established. Each Physical I/O C

action macro call is linked by the file prefix parameter of MCA to a specific MPCA and by the

MPIOC suffix character to the MPIOC. The MPIOC performs the action required by the Physical

I/O C action macro call, obtaining the required values from the related MPCA.

8/29/69 D-14.1 #5-61~

'" ..

I

APPENDIX D. PHYSICAL I/O C

FILE PREFIX

The file prefix is established by assigning one, two, or three characters to parameter 00

of MPCA and is used to identify the tags used by the MPCA from all other tags in the program.

When the program contains more than one MPCA, each file prefix value must be different.

Also, each character used as a file prefix must be valid in a tag, according to the rules of Mass

Storage Easycoder Assembler C.

SUFFIX OF RELATED MPIOC

Because it is possible for a program to contain more than one MPIOC, the value assigned

the suffix parameter (MPCA parameter 01) must be the same character assigned as the value

of MPIOC parameter 01 to which the MPCA is linked. This ensures that the Physical I/O C

action macro calls link to the appropriately specialized MPIOC.

BUFFER ADDRESS (AAD) ,

An address constant (DSA) is generated by the buffer address parameter (MPCA parameter

02). Except for indexing with index registers X5 and X6, any form of addressing can be used.

Also, the value of the address constant may be changed prior to execution of any Physical I/O C

action macro routine except the verify macro routine.

USER'S UNCORRECTABLE ERROR ROUTINE ENTRANCE (EAD)

Parameter 03 of MPCA contains the symbolic address (tag) of the user-supplied uncor

rectable error routine. Any form of addressing can be used, except for indexed addressing using

index registers X5 and x6. This symbolic address can be changed at any tinle.

TYPE OF READ OR WRITE (TRW)

When a read or a write action is initiated, MPIOC interrogates the value assigned to pa

rameter 04 of MPCA to determine the type of read or write desired. This value is changed

frequently during the execution of the program through the read, write, or MLCA macro routine.

Frequently, therefore, no value is assigned to parameter 04. The value that can be assigned to

parameter 04 is a 2-digit octal character. These characters are listed below, along with the

type of read or write action that will be performed.

D-15 #5-6}8

Value of
Parameter 04

or
04

02

22

03

23

00

20

01

21

APPENDIX D. PHYSICAL I/O C

Type of Read or Write Performed

Load/unload address register.

Search and read/write.

Extended search and read/write.

Search and read/write next.

Extended search and read/write next.

Read initial.

Extended read initial.

Read.

Extended read.

NOTE: The values 02,' 22, and 03 may be specified as 12, 33, 13
if a verify operation is desired. The use of these values
also requires that a write action is being performed. This
is not to be confused with the Physical I/O C verify action
macro routine which automatically initiates write verify
operations.

CONTROL UNIT CURRENT ADDRESS AND STATUS

In each MPCA, a 10-character field (word-marked at its left end) contains the current pe

ripheral address assignment and the status of the control unit for the actions being issued

through that MPCA. The field is not an exact image of the control unit address register, par

ticularly when more than one MPCA is included in the program. The field does, however, in

dicate the status of one set of operations being issued through that MPCA.

The field is shown in Figure D-l and the three mnemonics (CYL, CAD, or PRT) can be in

cluded in a read, write, or MLCA macro call to change the contents of the applicable portion of

the field. The contents of each character in the field are in binary form.

DPCCTTRRSS

--CYL--

CAD----i~

PRT-----I~

The significance of the characters in the field is as follows:

D = Device number,
P = Pack number (must be zero),
CC = Cylinder number,
TT = Track number,
RR = Record number, and
SS = Status.

Figure D-l. MPCA Control Unit Current Address and Status Field

D-16 #5-618

..

APPENDIX D. PHYSICAL I/O C

The rightmost two characters (55) of the 10-character field in Figure D-I represent the

following: the leftmost eight bits represent the type of error condition, and the rightmost four

bits represent the type of file protection. Whenever the mnemonic BR T is used in an MLCA

macro call to load this 10-character field, the leftmost character position of the status portion

of the field must be zero. The file protection character can be set to any of the following octal

character s:

00 = Permit no writing,

02 = Permit writing when there is no A-
or B-file protection,

06 = Permit A-file writing,

12 = Permit B-file writing, and

16 = Permit A- and B-file writing.

Notice that if a file does not have A- or B-file protection, the 06 or 12 values, respectively, also

permit writing. A write operation cannot be performed if the corresponding switch is not set at

the control unit. Also, the data write permit bit must be I to allow any type of write operation.

Considerations for Action Macro Routines

Normally, return from an active macro routine is to the location following the generated

coding. When an uncorrectable error is' caused by the action, however, return is made at the

address specified by the EAD (parameter 03) field of the associated MPCA. In the action macro

call, parameter 00 (written in the location field on the coding form) may be used as a tag re

ferring to the first (high-order) character of the generated coding. Parameter 01 of the action

macro call, starting in column 21 on the coding form, must be assigned the same value as the

unique prefix specified as parameter 00 of the related MPCA.

READ ACTION MACRO ROUTINE

After ensuring the error-free completion of the previous read or write function, the read

macro routine initiates a data transfer from mass storage to main memory and may perform

MICA macro functions. The type of read operation performed depends on the TRW field (see

page D-15) of the as s ociated MPCA.

WRITE ACTION MACRO ROUTINE

After ensuring error-free completion of the previous read or write function, the write

macro routine operates like the read routine, except that the data transfer is in the opposite

direction, i. e., from main memory to mass storage. Note, however, that if the verify bit is

set in the TRW, no data transfer occurs; only the readability of the data is checked.

D-17 #5-618

APPENDIX D. PHYSICAL I/O C

VERIFY ACTION MACRO ROUTINE

The verify macro routine is used to read the data recorded by the last write action. There

is no data transfer associated with the verify operation, but this is not the same as specifying

a read action with the TRW bit set to verify in the MPCA. When desired, the verify macro call

must be issued after a write is to be checked and before any other action call is issued.

WAIT ACTION MACRO ROUTINE

Whenever the programmer intends to check the last action initiated by MPIOC (via the

appropriate MPCA) for error-free completion, he issues a wait action macro call. If the MPCA

indicated in the call was not the last MPCA to be active, there is no guarantee that any other

action initiated by MPIOC is completed successfully. If the action is completed successfully, a

normal return to the user is made. If the action is not completed successfully, the error de

tection and correction action is performed automatically. If the error is corrected, a normal

return to the user is made at this time; if not, the user's uncorrectable error routine is entered.

RESTORE ACTION MACRO ROUTINE

Whenever the programmer intends to restore a device to its initial state, he issues a

restore action macro call. When the MPIOC is entered from a restore action macro call, the

last action for this MPCA is checked for error-free completion, a restore operation is initiated,

and a normal return to the user's coding is made.

LOKDEV ACTION MACRO ROUTINE

To power down a device, a LOKDEV action macro call is issued. The following events

occur when the MPIOC is entered from a LOKDEV action macro call: (1) the last action for this

MPCA is checked for error-free completion, (2) a LOKDEV action is initiated, and (3) a normal

return to the user's coding is made.

HANDLING TRACK LINKING RECORDS

A read or read initial operation (extended or not extended) or a search and read/write

operation which encounters a track linking record (TLR) handles the TLR as anormal data record.

A search and read/write operation (extended and/or next) which encounters a TLR continues

the operation on the record specified by the TLR. The search for the record specified by the

T LR is done on the current cylinder, and the instruction is not completed if the T LR links to

another cylinder. A subsequent READ, WRITE, or VERIFY operation to any file or a WAIT

operation to a specific file detects the instruction-incomplete condition. MPIOC then seeks the

cylinder specified by the TLR and performs the original read/write operation (starting at the

8/29/69 D-18 #5-618

APPENDIX D. PHYSICAL I/o C

address specified by the TLR) prior to continuing with the subsequent action macro routine.

The above description indicates why a block may not span cylinders.

User's Uncorrectable Error Routine

When MPIOC returns control to the user at the address specified in EAD (see page D-IS)

of a specific MPCA table, the user's program must direct the actions to be taken for the con

dition which has occurred. The MPCA involved in the condition contains information which

enables the user's error routine to determine which path to follow at this point. The user may

return to MPIOC to: (I) try again to execute the instruction sequence which precipitated the

error, (2) bypass the offending instruction and continue with the requested action, or (3) issue a

new action macro call.

The following paragraphs describe the types of conditions which may occur and the various

corrective actions (both programmed and manual) which may be attempted.

ERROR TYPE INDICATOR (ERI)

The designator "ERI" refers to a single-character field which indicates the type of error

last encountered while processing with this MPCA. The possible values and their meanings are

listed below.

Octal Value

8/29/69

00
01
02
03
04
05
06

07

10
11

12

No errors.
Device inoperative.
Protection violation.

Meaning

Device error (after five attempts at positioning).
Formatting error (format violation or track overflow).
Addressed record not located (after five attempts).
Uncorrectable read error; data transfer was completed

(after ten rereads).
Same as 06 above, except that data transfer is not completed

(header may contain a read error).
Automatic verification failed (after ten reverify attempts).
Track-linking record was read into core or rewritten from core

(this is not necessarily an error).
Read error in track-linking record while attempting to link.

Contents of current CCTTRR are invalid (after ten attempts
to reread).

D-19 *5-618

APPENDIX D. PHYSICAL I/O C

ADDRESS REGISTER CONTENTS AT TIME OF ERROR EXIT (EDF)

The designator EDF refers to a 14-character field that reflects the contents of the control

unit address register at the time the last error condition was recognized by MPIOC for this

MPCA. The format of this field is shown below.

D P

Device~ I
pack~

C C

last
record
accessed

T T R R S S

status
field

The format of the status field (SS) is shown below.

r Sl

0 0 0 0 0 0

1 I I I I I

Device inoperative I ·

Device error

Protection violation
·

Read error
·
Instruction incomplete

Track linking

RE-EXECUTION OF CORRECTION PROCEDURE

X X X X

unspecified

I S2---1

NO 0 0 X X X X

I
Protection

YES I I Bits

Track overflow

Format violation

At the time of return to the user's error routine, the B-address register contains the ad

dress at which MPIOC may be reentered for further re-execution of the instruction sequence in

error. This return is especially valuable if ERI contains one of the values 01 through 04, since

these types of errors may possibly be corrected by manual action. Suggested manual operations

to be performed in these cases are listed in Table D-4.

8/29/69 D-20 #5-618

APPENDIX D. PHYSICAL I/O C

Table D-4. Corrective Action for User's Error Routine

Value of
Condition Suggested Cause/Manual Action

ERI

01 Device inoperable 1. Device may not be turned on.
2. Device may be cycled down.

Stop the device, if necessary,
and cycle it up.

02 Protection 1. Manual protection switches
violation may be set incorrectly.

Set protection switches as directed
by operating instructions of program.

03 Device error Clear the error condition at the
device.

04 Format violation Same as "Protection Violation" above.
or track overflow

NOTE: All other conditions, except that .epresented by an ERI value
of octal 11, may possibly be corrected by re-execution. Note
that MPIOC has already made a number of attempts at correction.

B YP ASS ERROR CONDITION

If the user desires to accept the last execution as correct, he may re-enter MPIOC to by

pass the error condition. This may have some value in certain cases (e. g., a read error) but

is dangerous in others (e. g., a seek error).

The user must add one (plus the current address mode) to the value in the B-address

register at the time of the uncorrectable exit to compute the MPIOC bypass re-entry address.

For example, if Physical I/O C is being executed in 3-character addressing mode, four is

added to the B-address register value in order to bypass the error condition.

ISSUE NEW ACTION MACRO CALL

If the user decides to discontinue the previous path of processing, he may issue any desired

action macro call. Physical I/O C permits the user to issue any action call; however, the type

of error encountered may make certain actions inadvisable.

OPERATING PROCEDURES FOR PHYSICAL I/O C

Physical I/O C does not communicate directly with the operator in the case of unusual

conditions. Rather, it exits to the user with a code indicating a specific condition. It is the

responsibility of the user of Physical I/O C to provide operator notification of conditions which

cannot be corrected under program control.

8/29/69 D-21 #5-618

•

RANDOMIZING ADDRESSING

APPENDIX E

RANDOMIZING TECHNIQUES

Randomizing is the process of transforming the key of an item into a valid address. This

usually consists of obtaining a relative bucket address (e. g., the 204th bucket of the file), which

is then converted by Logical I/O C into a valid mass storage bucket address consisting of cylin

der, track, and record designation). This enables the user to retain his present item numbering

system, and yet have full online processing capability.

There are many randomizing methods, each one being somewhat better suited to a parti

cular application than another. All have the same objective - to produce a valid address for

each item from its item key (control field) in such a way that the items are evenly distributed.

Depending on the randomizing technique employed, storage utilization can reach between 80 and

90 percent efficiency. Generally speaking, a technique that achieves high mass storage utili

zation generates more synonyms (duplicate bucket address) and thus increases access time.

Therefore, the randomizing technique chosen depends on the relative importance of mass storage

""'--"" utilization versus access time. In addition, the input/output buffer size of the file is important

and affects the access time. For instance, if several items are blocked together, then synonyms

would have a less serious effect on access time.

Once a randomizing technique has been selected for possible use, the technique should be

evaluated with a sample selection of actual item keys. This evaluation should provide infor

mation on the efficiency of mass storage utilization, the frequency and distribution of synonyms,

the processing time required for the calculation, and how evenly the generated addresses are

distributed. The results enable the user to select the technique most suited to his particular

requirements and data pattern.

The following paragraphs outline a few of the most commonly used key transformation

methods. They have the advantage of being economical in processing time and core memory

requirements. There are many possible variations of these methods, in addition to far more

complicated methods not covered in this manual.

Prime Number Division

Division of the item key field by a prime number (a number divisible only by itself or one)

is a widely accepted method of transforming a key into a mass storage address. The prime

E-l #5-6\8

APPENDIX E. RANDOMIZING TECHNIQUES

number divisor should be slightly less than the number of buckets allocated to the data area of

the file. but it should be as large as possible. The larger the prime number divisor, the

smaller the chance of generating synonyms.

The prime number division method consists of dividing the item key by the selected prime

number divisor, discarding the quotient. and using the remainder as the basis for the address.

Example - Prime Number Division

A file of 5,000 items on a Type 259 Disk Pack Drive stores five items per bucket, one

bucket per track, with item keys ranging from 000,000,000 to 999,999,999. Space is allocated

to this file for 1,000 buckets. The file is to start on cylinder 50, track O. The prime number

divisor chosen is 997, which leaves three buckets unused in the 1,000 allocated.

Suppose that 777.775,925 is the key of the item to be processed.

777,775.925
997

= 780. 116, with a remainder of 268.

Then:

Thus. this item is to be placed in the 268th bucket from the beginning of the file.

Using this relative bucket address. Logical I/O C then computes that the actual address is

26 cylinders and 8 tracks after the starting location of the file (cylinder 50. track 0). which in

this case would be cylinder 76, track 8.

It has been assumed in this example that a unit of allocation is made up of a whole cylin

der (ten tracks) and that there are no cylinder overflow tracks. However. if overflow exists.

Logical I/O C makes the necessary adjustments.

In cases where purely alphabetic or mixed alphabetic/numeric item keys are concerned,

the item key can be treated as a binary field to be binarily divided by the binary form of the

prime number. The final calculations are also performed binarily so that the relative address

is produced in a usable form.

Table E-l is a list of prime numbers. It is divided into two parts: part A contains every

third prime between 2 and 2. 939. and part B contains every fifth prime between 2. 953 and 8. 039.

Square Enfold and Extract

In this randomizing technique. the item key field is squared. the result is split in half, and

the two halves are added together. Then the required number of digits needed for an address is

extracted from the middle of the result. Normally, the two low-order characters are ignored

and the extraction is made from the third low-order character and above.

E-2 #5-618

APPENDIX E. RANDOMIZING TECHNIQUES

Table E-l. Prime Numbers

A. Primes (Every Third Prime 2-2,939)

5 137 307 487 677 883 1093 1303 1543 1753 1999 2239 2447 2707
13 151 317 503 701 911 1109 1321 1559 1783 2017 2267 2473 2719
23 167 347 523 727 937 1129 1367 1579 1801 2039 2281 2531 2741
37 181 359 557 733 953 1163 1399 1601 1831 2069 2297 2549 2767
47 197 379 571 761 977 1187 1427 1613 1867 2087 2333 2579 2791
61 223 397 593 787 997 1213 1439 1627 1877 2111 2347 2609 2803
73 233 419 607 811 1019 1229 1453 1663 1901 2131 2371 2633 2837
89 251 433 619 827 1033 1249 1481 1693 1931 2143 2383 2659 2857

103 269 449 643 853 1051 1279 1489 1709 1951 2179 2399 2677 2887
113 281 463 659 863 1069 1291 1511 1733 1987 2213 2423 2689 2909

B. Additional Primes (Every 5th Prime - 2,953-8,039)

2957 3343 3697 4073 4457 4861 5233 5641 6029 6373 6803 7211 7603
3001 3373 3733 4111 4507 4909 5281 5659 6067 6427 6841 7243 7649
3041 3433 3779 4153 4547 4943 5333 5701 6101 6481 6883 7307 7691
3083 3467 3823 4211 4591 4973 5393 5743 6143 6551 6947 7349 7727
3137 3517 3863 4241 4639 5009 5419 5801 6199 6577 6971 7417 7789
3187 3541 3911 4271 4663 5051 5449 5839 6229 6637 7001 7477 7841
3221 3581 3931 4327 4721 5099 5501 5861 6271 6679 7043 7507 7879
3259 3617 4001 4363 4759 5147 5527 5897 6311 6709 7109 7541 7927
3313 3659 4021 4421 4799 5189 5573 5953 6343 6763 7159 7573 7963

Example 1 - Square Enfold and Extract

The following values are assumed in this example: a file of 10,000 items; item keys of

nine digits; ten items per bucket; one bucket per track. Therefore, there are 1,000 buckets.

A total of 100 cylinders is required (exclusive of overflow).

Control number:

Squared:

Enfolded:

Extracted result:

493,725,816

243, 765, 181, 384, 865, 856

243,765,181
384,865,856

628,631,037

310 relative bucket address.

Logical I/O C computes: 310 = Cylinder 31, track 0 (added to the starting
10 address of the file)

E-3 #5 -6l8~

APPENDIX E. RANDOMIZING TE~HNIQUES

Since the field extracted ranges over some power of 10 (depending on the number of digits

extracted), and unless the number of buckets available is some whole multiple of 10, the result

of this calculation is not suitable. The extracted number can be compressed by multiplying the

result by a percentage. If a 3-digit field is extracted, this gives a range of 1,000 numbers

which may be multiplied by 70 percent if there are only 700 buckets available.

Example 2 - Square Enfold and Extract

If the file consisted of 600 buckets instead of 1,000 buckets with the same control number

range:

Control number:

Squared:

Enfolded:

Extracted result:

569, 183, 582

323, 969, 950, 018, 350, 724

323,969,950
018,350,724

342,320,674

206

X206 = 123.60 (.60 discarded)

This gives a relative bucket address of 123.

Radix Conver sion

When this method is applied to purely numeric item keys, each decimal digit is inter

preted as if it were a radix-ll digit instead of the actual radix-l0 and is then converted back to

radix-l0. When applied to alphabetic or alphanumeric item keys, each character is treated as

two octal digits. Each digit is then interpreted as if it were a radix-9 digit instead of the actual

radix-8 and is then converted back to radix-8. In this case, the numbers can range only from 0

to 7, whereas in the numeric case, the numbers could range from 0 to 9.

The normal procedure after the radix conversion, is to truncate the result by discarding

high-order digits until a field of the desired length is obtained. Note that compression of the

resultant number can be done by multiplying it by a percentage, as in the square enfold and ex

tract method.

Example 1 - Radix Conversion (from Radix-ll to Radix-lO)

The item key in this example is 301, 283 and is treated as radix-II as follows:

Radix-II = (3xl1 5)+(Oxll 4)+(lxl1 3)+{2xl1 2)+(8xll 1)+(3xll 0)

= 483, 153+0+1,331+242+88+3

= 484, 817 , leaving 817 as the truncated addre s s
(cylinder 81, track 7 on Type 259).

NOTE: The arithmetic is done in the radix being converted to, i. e., radix-l0.

E-4 #5-618

APPENDIX E. RANDOMIZING TECHNIQUES

Radix conversion is a better :method than truncation alone, since it tends to disperse

~. troubleso:me runs of keys differing in the nu:meric case by so:me power of 10 (e. g., 02309 and

12309) or in the alphanu:meric case by so:me power of 8 (e. g., 02478 and 12478). The :main

advantage of this :method is the si:mplicity of calculation. The conversion fro:m radix-II to

radix-l0, or fro:m radix-9 to radix-8 :may be acco:mplished without :multiplication. It can be

done si:mply by a series of deci:mal additions and shifts, or binary additions and shifts. Radix

conversion does tend, however, to produce :more synony:ms than pri:me nu:mber division.

Exa:mple 2 - Radix Conversion (fro:m Radix-ll to Radix-lO. Using Addition and Shifting)

Using the for:mula in exa:mple 1 above, the ite:m key 301,283 can be reduced to:

««3xll+0)xll+l)xll+2)xll+8)xll+3)

3
+ 30
+ 0

33
+ 330
+ 1

364
+ 3640
+ 2

4006
+ 40060
+ 8

44074
+ 440740
+ 3

484817
10

Exa:mple 3 - Radix Conversion (fro:m Radix-9 to Radix-B)

The ite:m key 2478 in this exa:mple is treated as radix-9:

(2x9+4)9+7

2
20

4
26

260
7

3158

NOTE: The arith:metic in this exa:mple is done in radix-8.

Nonnu:meric Ite:m Keys

Where ite:m key fields co:mprise purely alphabetic or special characters or a :mixture of

alphanu:meric characters, one :method of rando:mizing is to treat the field as a binary nu:mber

E-5 #5-618. I

APPENDIX E. RANDOMIZING TECHNIQUES

and perform binary arithmetic on it. This has the advantage of retaining zone bits and. there-

fore. avoiding unnecessary synonyms. .~

Another method of randomizing is to consider each 6-bit character as two octal digits

which are extracted by means of binary addition and extraction to form two decimal digits in the

range 0 to 7. The resultant key is then manipulated by decimal arithmetic according to the

particular method employed. This method is useful where binary arithmetic is impracticable.

but it does result in doubling the length of the item keys.

Example - Nonnumeric Item Keys

810
8246 Y2-951-7
84l5RST
84X113-177-16
(13 character s)

Decimalized Octal

100100
100204067002401105014007
10040105516263
10046701010340010707400106

(26 digits)

NOTE: One common misconception in converting alphabetic keys is that the zone
bits should be dropped before converting. This. however. immediately
produces three groups of synonyms:

G. H. I p. Q. R X. Y. Z

Zone suppression (with the consequent advantages of decimal arithmetic)
may be an acceptable method. however. for cases where the item keys
are largely numeric with only a few nonnumeric characters scattered
through them.

Multifield Keys

Up to this point. only item keys with a single field have been considered where the range

of key numbers is broadly sequential. no matter whether continuous or not. It is. however.

fairly common for item keys to be divided into definite fields where each field has a range which

is quite independent of the other fields. To treat such keys as a single field may be wasteful un

less each field has a maximum value such that the entire key forms a continuous series. as follows:

00 0 000 00

to to to to

77 9 999 99

Apart from cases like the above example. it is generally desirable to manipulate each field

independently. Otherwise. an unduly large number of synonyms would be generated. Unless a

weighting factor is applied to the most significant keys. most of the methods previously dis

cussed would generate too many synonymous addresses. One such technique has been developed

by Honeywell. It has the advantage of being readily adaptable to other multifield key applications.

and it generates no synonyms.

E-6 #5 -618

,..

APPENDIX E. RANDOMIZING TECHNIQUES

Suppose, for example, that the file contains 30,000 items and that each item contains 100

characters which are to be blocked six items to a block, one block per bucket, on a Type 259

Disk Pack Drive. Each item has a 6 digit item key cOInprising three fields:

Division No.

(1 char.)

1 to 5

Page No.

(3 chars.)

1 to 120

The calculations are as follows:

1. Subtract 1 from division number;

Line No.

(2 chars.)

1 to 50

2. Multiply the resulting division number by the sum of the maximum number of
pages multiplied by the maximum number of lines, i. e., 120 x 50 = 6,000,
and place the result in final result X;

3. Subtract 1 from page number;

4. Multiply the resulting page number by the maximum number of lines, i. e. ,
50, and add the result to final result X;

5. Subtract 1 from line number;

6. Add the resulting line number (1) into final result X; and

7. Divide final result X by the num.ber of item.s per bucket. The quotient is
the relative bucket number.

Thi s method converts each 6 -digit key field into a unique num.ber in the range from. 1 to

30,000. If the field num.bers ranged from zero instead of one, the subtractions in stages I, 3,

and 5 would be omitted, since their only function is to convert each field to a range beginning

with zero.

Exam.ple - Multifield Keys

In this example, the following values are assum.ed: division num.ber = 5, page number =
120, line number = 50. The calculations are perform.ed as follows:

1. 5-1 = 4,

2. 4x120x50 = 24,000,

3. 120-1 = 119,

4. 119x50 = 5,950+24,000 29,950,

5. 50-1 = 49,

6. 49+29,950 = 29,999, and

7. 29, 999 = 4, 999, with a remainder of 5. The rem.ainder is discarded, giving

a r~lative bucket address of 4, 9~9.

Frequency Analysis

This method consists of analyzing the keys of all the item.s in the file to determine the

E-7 #5-618~

APPENDIX E. RANDOMIZING TECHNIQUES

frequency that any digit appears in anyone position of the iteIn key. For each digit position of

the iteIn key, exaInine all the iteIns to deterInine the nUInber of tiInes anyone digit (0 through 9),t

appears. For exaInple, if there were 16,045 iteIns in the file, a 0 Inight occur in the fifth key

position··for 5, 168 different iteIns, a 1 Inight occur in the fifth key position for 5, 138 different

iteIns, a 2 Inight occur in that position for 4,958 iteIns, a 3 Inight occur for 281 iteIns, and the

nUInbers 4 through 9 Inight not occur in this position for any iteIn. This count gives the actual

distribution of digits occurring in each key position. If the distribution were perfectly even,

each of the ten digits would occur the saIne nUInber of tiInes as any other digit; thus, each digit

would occur 1/10th of the tiIne. With 16,045 iteIns, each digit should occur approxiInately

1,605 tiInes in anyone key position.

To deterInine the deviation froIn this ideal distribution, take the difference between the

actual nUInber of tiInes a digit occurs in the key position and the ideal nUInber of tiInes it should

occur (in this case, 1,605). Thus, if 0 actually occurs in the fifth key position of 5,168 different

iteIns, the deviation would be 5,168 Ininus 1,605 = 3,563. This is done for each digit that ap

pears in that key position and then all the results are sUInIned to find the total deviation for that

key position. The total deviation could then be expressed as a percentage of the total nUInber of

iteIns. The lower the SUIn is, the Inore even the distribution is. The pattern of distribution

indicates which positions are best to use when truncating or extracting addresses froIn the

iteIn keys.

ExaInple I - Frequency Analysis

16,045 iteIns

Variance factor = 1,605, i. e., 10 percent of nUInber of iteIns.

Digit Key Position NUInber

1 2 3 4 5 6

0 16045 0 0 1852 5168 1807
1 0 0 4408 3147 5638 2120
2 0 2198 3792 1174 4958 1745
3 0 576 2231 2724 281 1684
4 0 1195 2459 1194 0 1378
5 0 12076 3155 1267 0 1647
6 0 0 0 1243 0 1560
7 0 0 0 1228 0 1329
8 0 0 0 1227 0 1415
9 0 0 0 989 0 1360

Total
28885 22133 16045 5821 21903 1961

Variance

0/0 file 180 138 100 36 137 12
Least even
distribution

E-8

7

1738
1748
1743
1610
1617
1688
1606
1450
1411
1434

1035

6
Most even
distribution

#5-618

.~

APPENDIX E. RANDOMIZING TECHNIQUES

A method of utilizing a frequency analysis to obtain an address is to express each digit

count in an item key field position as a percentage of the number of file items. A cumulative

total is formed for each digit to which is added half of the actual percentage for that digit to give

an adjusted constant for each digit in every item key position. The constants for every digit in

an item key are accumulated and the total (excluding the whole number carry) is multiplied by

the number of storage locations allocated. The whole-number product is then converted to a

cylinder and track address in the normal manner.

Example 2 - Method of Using Frequency Analysis

File of 20,000 items. Storage allocated, 25,000 locations.

Key position 1 is illustrated.

Digit Count Percentage Cumulative
Total

0 6,400 .32000 .00000
1 300 .01500 .32000
2 1,300 .06500 .33500
3 800 .04000 .40000
4 1,200 .06000 .44000
5 0 .00000 -
6 0 .00000 -
7 4,800 .24000 .50000
8 1,200 .06000 .74000
9 4,000 .20000 .80000

Adjusted
Constant

.16000

.32750

.36750

.42000

.47000

-
-

.62000

.77000

.90000

The above process is repeated for every key position, and a table of adjusted constants

is built up as follows, illustrating just the constants required for item 13,689:

Digit Item Key Position

1 2 3 4

0

1 .32750 - r---
2 ----t-

3 .39875 ---- --
4 ---5

6 • 59327

7

8 .83125 -

9

25,000 x • 11327 = 2,831. 75000

02831 = Relative bucket address.

E-9

5

.96250 -

Value f rom
stable previou

.32750

.39875

.59327

.83125

.96250

.11327

-P'

~

#5-618

APPENDIX E. RANDOMIZING TECHNIQUES

The table of adjusted constants has to be set up initially, but the actual key transformation

can be done quickly. Such a table would have to be recalculated when sufficient changes have

occurred to affect materially the frequency distribution. The table itself requires 50 locations

for every item key field position, i. e., 250 locations for a S-digit item.

E-IO ItS-bI8

I

APPENDIX F

MASS STORAGE FILE PROTECTION

FILE PROTECTION

The introduction of mass storage devices into data processing brings additional considera

tions into the area of dctta file protection. In magnetic tape processing, several methods of

protection against inadvertent destruction have been in use for some time. With the Type 204B

Magnetic Tape Units, a user may put any drive in protect by using a manual switch on that drive.

He may also remove the plastic ring on the back of the tape itself. Finally, in common practice,

each file is contained on a separate reel of tape. These three methods of protection are gen

erally adequate. In addition, if a particular tape file is confidential, its owner (for example,

a payroll department) can keep that reel in its own restricted area of storage. This guarantees

that no unauthorized persons have access to this file.

On mass storage, however, it is conunon for more than one file to exist on a single volume.

When this is true, the tape-oriented methods of protection are not adequate. To provide the user

with maximum data protection, the Mod 1 (MSR) Operating System offers two types of protection:

(1) a hardware/software protection against inadvertent data destruction and (2) a software pro

tection against unauthorized access to a confidential file.

These two features are explained in detail below.

WRITE PROTECTION

There are four classes of write protection offered through a combination of hardware and

software features. These classes are:

1. Format write protection,

2. Data write protection,

3. A-file write protection, and

4. B -file write protection.

Corresponding to these four classes of write protection are four hardware switches.

For example, to do any formatting, the FORMAT WRITE PERMIT switch must be ON.

In terms of this operating system, formatting would occur during any run of Volume Prepara

tion C or File Support C which is performing allocation.

F-l

APPENDIX F. MASS STORAGE FILE PROTECTION

Any program which is directing any form of writing (e. g., an update, an assembly, or

a sort) requires that the control unit to which the write is being directed must have the DATA

WRITE PERMIT switch ON. In addition, if it is a user I s pr ogram, parameter 31 in MCA of

Logical I/O C must be 02 (i. e., permit data write).

The use of these two switches is not optional. When formatting is in progress, the

FORMAT WRITE switch must be in PERMIT. When writing is in progress, the DATA WRITE

switch must be in PERMIT.

The use of A-file and B-file protection, however, is optional. For example, if there

is a master file which may be written on only by a limited, well-defined number of programs,

it may be desirable to give this file further protection. To illustrate, let us suppose that

FILE-X is a payroll master file which may be updated by only one program. In addition to the

payroll file, however, there may be, from time to time, one or two other files on the same

volume. To protect FILE-X from inadvertent destruction, it is decided to give this file B

file protection.

When allocating FILE-X, the parameter PROT := B is used. If the file is being loaded by

the File Support C load function, the PROT := B parameter must be used again. In addition, the

B-FILE WRITE PERMIT switch and DATA WRITE PERMIT switch must both be ON during

this load process.

The program written to update this file must include the value 12 in parameter 31 of

Logical I/O CiS MCA macro call. (B-FILE WRITE PERMIT switch and the DATA WRITE

PERMIT switch must both be ON.)

The possible combinations of file write protection are:

Combination of Protection

NONE.

A-file.

B-file.

A-file and B-file.

PASSWORD PROTECTION

Switches in Permit When Writing

Data Write.

Data Write and A-file.

Data Write and B-file.

Data Write, A-file, and B-file.

I

In addition to guaranteeing that a file will not be improperly destroyed, it is often important

to guarantee that a file is not read by unauthorized personnel. Thus, in the preceding example,

it is important to be able to know that the other users of the volume containing FILE-X, the

payroll master file, cannot open, read, or write to FILE-X. To effect this type of protection,

this operating system provides the use of a password.

8/29/69 F-2 #5-618

..

APPENDIX F. MASS STORAGE FILE PROTECTION

Thus, in the above exarnple, a password of PA Y66164 rnight be used. During allocation,

the pararneter PW = PA Y66164 is entered. If using the load function, PW = PA Y66164 is used

again. Any prograrn processing FILE-X must have as parameter 21 of Logical 1/0 CIS MCA

rnacro call a tag pointing to a field in rnernory which contains PA Y66164.

For exarnple:

C

C

PWORD

MCA

21

Jcw
.....
PWORD

@PAY66164@.

F-3 #5-618

APPENDIX G

TERMINAL FILES

Card-image and print-image files (terminal files) can be placed temporarily on mass

storage files to be punched or printed at a later time. These files can be created by means of

a user routine executed with Logical I/O C. File Support C can be used to process either card

image or print-image files as a part of the unload function. (See "Unloading Print-Image Files

to Printer" in Section IV.)

CREATION OF TERMINAL FILES

To create a terminal file, the user must perform the following actions.

1. Allocate the file as a sequential file or a partitioned sequential
file.

2. Specify output processing by means of parameter 02 of the MIOC
macro call.

3. Specify parameter 40 of the MCA macro call (volume directory
exit).

4. When the volume directory exit is taken (exit code 01), modify
character position 56 and possibly character position 57 of the
VOLDESCR entry for the file to one of the following values:

Col. 56 Value

41 8

other

= Print-image file with n control characters per item.
Position 57 contains the number of control characters
per item.

= Print-image file with n control characters per item
and report numbers with form adjustment. Position
57 contains the number of control characters per item.

= For Mod 8 use only. Card-image file with no control
characters and any number of characters per item.
Column 57 is ignored.

= Standard data file.

Characters 56 and 57 of the *VOLDESCR* item cannot be set by using File Support C.

See Logical I/O C, Table 3-11, for information on own-coding exit 01.

Field APD of the communication area contains the address of the *VOLDESCR* item.

See Table 3-8.

5. Place print or punch items in the file by means of PUT action
macro calls.

G-1 #5-618

APPENDIX G. TERMINAL FILES

CARD-IMAGE FILES

Any Inass storage file, regardless of file organization, can be treated as a card-iInage

file siInply by specifying a card punch as the output device type.

Each iteIn of the file is punched in a IniniInUIn nUInber of 80-colUIn.n cards; control charac

ters are not recognized as such and are treated as part of the data iteIn. For cOInpatibility with

the Mod 8 Operating SysteIn, a sequential or partitioned sequential file can be identified as a

card-iInage file by placing a value of 418 in character position 56 of *VOLDESCR*.

PRINT -IMAGE FILES

A print-iInage file is identified by a value of 408 or 428 in field 18 (character position 56)

of *VOLDESCR*, depending upon the nUInber and use of control characters in each iteIn.

file Inay be a sequential or partitioned sequential file.

The

If character position 56 contains 408, the nUInber of control character positions in each

iteIn (as specified in character position 57 of *VOLDESCR*) can be 018, 048, or 108. The first

character of the iteIn Inust be the C3 variant of a PDT instruction to the Type 222 Printer to be

used in printing the iteIn. All iteIns of the file are printed. Report nUInber is not applicable,

nor is forIn adjustInent. The total nUInber of characters in the iteIn is given in character posi

tions 2 and 3 of *VOLDESCR*. The forInats of print-iInage iteIns are illustrated below.

Character 57 = 018 Character 57 = 048 Character 57 = 108

Position Use Position Use Position Use

1 Type 222 control 1 Type 222 control 1 Type 222 control

2-133 print image 2-4 unused 2-8 unused

5-137 print image 9-141 print image

NOTES: 1. These values apply when a 132-character printer is being used.

2. Any additional characters beyond the indicated InaxiInum values
are ignored.

Character position 57 of;~ VOLDESCR* contains the 'number of control character s per

item. The total number of characters per item is given in character positions 2 and 3 of

* VOLDESCR*.

G-2 #5-618

,-

APPENDIX G. TERMINAL FILES

If character position 56 contains 428. two additional control characters are used for each

'---' item to specify a report number. Print form adjustment is also permissible. The format of an

item is illustrated below.

Position

1

2-3

4

5-8

9-140

141-144

Use

Type 222 control character.

Report number (see "Report Number
Parameter" in Section IV.)

If the bit configuration of this field is
xxxlxx, a halt occurs after printing of
this item. Use of this option, in con
junction with File Support C, enables
'the operator to align forms.

If the bit configuration of this field
is xxxOxx, no halt occurs.

Reserved (see note).

Print image.

Reserved (see note).

NOTE: This field is reserved to provide compatibility
with the Mod 8 Operating System. If compatibility
with Mod 8 is not desired, this field can be deleted.

G-3 #5-618

AAD
BUFFER ADDRESS (AAD). 0-15

ACCESS
CLOSING INDEXED SEQUENTIAL AND

DIRECT ACCF.SS fiLES. 3-10
COMPRISING BETWEEN ACCESS TIME AND

STORAGE CAPACITY. C-22
CUMuLATIVE LOADING Of A DIRECT

ACCESS FILE. 2-25
DIRECT ACCESS. 3-71
DIRECT ACCESS ADDRESSING. 3-70
DIRECT ACCESS FILE

CONSIDERATIONS. C-IO
DIRECT ACCESS FILE

ORGANIZATION. 2-20
DIRECT ACCESS FILES. 5-57
DIRECT ACCES~ FILES ANO KEYS. 2-24
INSERTING ITEMS IN DIRECT ACCES~
FILES. 3-21

LOADING A DIRECT ACCESS FILE. 5-~7
OPENING DIRECT ACCESS FILES. 3-~
OPTI~IZING ACCESS TIME. C-18
REPLACING ITEMS'IN DIRECT ACCESS

FILES. 3-16
RETRIEViNG ITEMS IN OI~ECT ACCESS

FILES. 3-13
SUMMARY OF MSGET MACRO FUNCTION~

FOR DIRECT ACCESS fiLES. 3-15
UNLOADING A DIRECT ACCESS

FILE. 5-57

ACTION
ACTION MACRO CALLS. 3-54. 0-10
ACTION MACRO CALLS FOR EACH FILt

TYPE IN EACH PROCESSING ~ODE. ~-6
ACTION MACRO CALLS (FOR PARTITIUNED

SEQuENTIAL FILES ONLY). 3-17
ACTION MACRO pROCESSING

FUNCTIONS. 3-4
ACTION MACRO ROUTINES. 3-2. 0-4
CONSIDERATIONS FOR ACTION MAC~O

ROUTINES. 0-17
CORRECTIVE ACTION FOR USER'S ER~OR

ROulI NE. 0-21
ISSUE NEW ACTION MACRO CALL. 0-£1
LOKDEV ACTION MACRO ~OUTINE. D-Id
READ ACTION. 0-2
READ ACTION MACRO CALL. 0-10
READ ACTION MACRO POUTINE. 0-17
RESTORE ACTION. 0-2
RESTORE ACTION MACRO CALL. 0-11
RESTORE ACTION MACRO ROUTINE. 0-18
SEE(ACTION. 0-2
SEE(ACTION MACRO CALL. 0-11
SUMMARY OF ACTiON MACRO CALL

CODING. 3-63
VERIFy ACTION. 0-2
VERIFy ACTION MACRO CALL. 0-11
VERIFY ACTION MACRO ROUTINE. 0-18
WAIT ACTION. 0-2
WAIT ACTION MACRO CALL. 0-11
WAIT ACTION MACRO ROUTINE. 0-18
WRITE ACTION. 0-2
WRITE ACTION MACRO CALL. 0-10
WRITE ACrlON MACRO ROUTINE. 0-11

ADDI T10NAL
ADOI TlONALUSABLE EQUIPMENT. 1-'

ADDITIONS
FILE ADDITIONS. C-l

ADDRESS
ADDRESS MODE. 3-69. 0-12
ADDRESS REGISTF.R CONTENTS AT TIME

OF ERROR EXIT (EDF). 0-20
BUFFER ADDRESS (AAD). D-l~
CONTROL UNIT CURRENT ADDRESS ANu

STATUS. 0-16
FIXED PERIPHERAL ADDRESS

ASSIGNMENT. 0-13

INDEX

MPCA CONTROL UNIT CURRENT ADDRESS
AND STATUS FIELD. 0-16

PERIPHERAL ADDRESS
ASSIGNMENT. 0-14

PERIPHERAL ADDRESS ASSIGNMENT AND
RWC CONFIGURATION
CONSIDERATIONS. 0-13

VARIABLE PERIPHERAL ADDRESS
ASSiGNMENT. 0-13

ADDRESSES
INVALID BUCKET ADDRESSES. 4-62

ADDRESSING
DIRECT ACCESS ADDRESSING. 3-70
RANDOMIZiNG ADDRESSING. E-I

ALLOCATE
ALLOCATE. 4-2
ALLOCATE FUNCTION. 4-9
JOB CONTROL LANGUAGE EXAMPLE FO~

ALLOCATE FUNCTION. 4-21
JOB CONTROL LANGUAGE FOR ALLOCATE

FUNCTION. 4-10
PROTECTION DURING ALLOCATE. 4-70
SUM~ARY OF JOB CONTROL STATEMENTS

FOR ALLOCATE FUNCTION. 4-24

ALLOCATING
ALLOCATING AN INDEXED SEQUENTIAL
FlU. 4-51/

ALLOCATiON
ALLOCATION. 2-9. 2-10. 2-23. C-4.
C-12. C-24

ALLOCATION CONVENTIONS. 2-6
ASSIGNMENT OF UNITS OF

ALLOCATION. C-3
OATA UNIT OF ALLOCATION. 4-19
FAILURE DURING ALLOCATION. 4-93
FAILJRE DURING ALLOCATION AND

DEALLOCATION. 4-93
FILE DESIGN AND ALLOCATION. C-I
ILLUSTRATION OF UNITS OF ALLOCATION
- TYPE 261 OR TYPE 262 DISK
FILE. 2-7

JOB CONTROL STATEMENTS FOR
ALLOCATION OF FILES. 4-10

SUMMARY OF JOB CONTROL STATEMENTS
FOR ALLOCATION FUNCTION. 4-25

UNITS OF ALLOCATION. 2-6

ALTER
ALTER MEMBER (MALTER). 3-60
ALTER STATUS OF MEMBER

(MALTER). 3-19

ANALYSIS

ANC

FREQuENCY ANALYSIS. E-7

COMMJNICATION AREA SERVICE MACRO
ROUTINES (MLCA ANC MUCA). 3-50

AREA
COMMUNICATION AREA SERVICE ~ACRO

ROuTINES (MLCA ANC MUCA). 3-50
COMMJNICATION AREA SERVICE ~ACRO

ROUTINES (MLCA AND MUCA). 3-2
COMMuNICATION AREA FIELD

DESIGNATORS. 3-52
COMMUNICATION AREA MACRO CALL

(MPCA).D-6
COMMuNICATION AREA MACRO ROUTINE

(MPCA).D-3
COMMuNICATION AREA SERVICE MACRu

CALLS (MLCA AND MUCA). 0-3. 0-1/
CYLINDER OVERFLOW AS PERCENTAGE OF

DATA AREA. C-13
DATA AREA. 2-23
MASS STORAGE LOAD COMMUNICATiON

AREA MACRO CALL (MLCA). 3-51

...

MASS STORAGE UNLOAD COMMUNICATION
AREA MACRO CALL (MUCAI, 3-51

MNEMONIC DESIGNATORS FOR
COMMUNICATION AREA FIELDS, 3-52

PRIME DATA AREA. 2-11
RELATIONSHIP BETWEEN STRING INDEX
ITE~S AND THE DATA AREA OF A
CYLINDER. 2-15

AREAS
INDEX AREAS. 2-11
MAP UNUSED AREAS. 4-6
OVERFLOW AREAS. 2-12. 2-23

ASSIGNMENT
ASSIGNMENT OF FILES TO BE PROCESSED

CONCURRENTLY. C-4
ASSIGNMENT OF UNITS OF

ALLOCATION. C-3
FIX~D PERIPHERAL ADDRESS

ASSIGNMENT. 0-13
PERIPHERAL ADDRESS

ASSIGNMENT. 0-14
PERIPHERAL ADDRESS ASSIGNMENT ANO

RWC CONFIGURATION
CONSIDERATIONS. D-13

VARIABLE PERIPHERAL ADDRESS
ASSIGNMENT. D-13

BACKUP
BACKUP PROCEDURES. 2-27
LOGICAL BACKUP. 2-27
PHYSICAL BACKUP. 2-27

BANNER-CHARACTER
BANNER-CHARACTER PARAMETER. 4-40

BLOCK
BLOCK AND RECORD SiZES WITHIN 12K

MEMORY. 4-6
BLOC(SIZE. C-2

BLOCK-SIZE
BLOCK-SIZE PARAMETER. 4-16

BLOCKS
RELATIONSHIP BETWEEN ITEMS RECORDS

AND BLOCKS. 2-5
RELATIONSHIP BETWEEN ITEMS RFCORDS

BLOCKS AND BUCKETS. 2-24

BOOTSTRAP
BOOTSTRAP RECORDS. Z-3

BUCKET
BUCK~T SIZE AND OVERFLOW. C-I0
INVALID BUCKET ADDRESSES. 4-62

BUCKET-ADDRESSING
BUCKET-ADDRESSING pARAMETER. 4-42

BUCKET-SIZE
BUCKET-SIZE PARAMETER. 4-16

BUCKETS
RELATIONSHIP BETWEEN ITEMS RECORDS

BLOCKS AND BUCKETS. 2-24

BUFFER
BUFFER ADDRESS (AADI' 0-15

BYPASS
BYPASS ERROR CONDITION. 0-21

CALL
COMMUNICATION AREA MACRO CALL

(MPCA). D-6
CONTROL MACRO CALL (MPIOC). 0-4
ISSUE NEW ACTION MACRO CALL. 0-21
MASS STORAGE LOAD COMMUNICATION

AREA MACRO CALL (MLCA). 3-51
MASS STORAGE UNLOAD COMMUNICATION

INDEX

AREA MACRO CALL (MUCA). 3-51
MCA MACRO CALL. 3-18
MIOC MACRO CALL. 3-26
OMISSION OF CONSFCUTIVE PARAMETERS

FROM MACRO CALL. 3-25
OMISSION OF SINGLE PARAMETER FROM

MACRO CALL. 3-25
PARAMETERS OF MCA MACRO CALL. 3-39
PARAMETERS OF MIOC MACRO CALL.

3-27. 3-36
PARAMETERS OF MPCA MACRO

CALL. 0-6.1
PARAMETERS OF MPIOC MACRO

CALL. 0-4
PARAMETERS OF THE MPCA MACRO

CALL. 0-6
READ ACTION MACRO CALL. 0-10
RESTORE ACTI~N MACRO CALL. D-l1
SEEK ACTION MACRO CALL. 0-11
SUMMARY OF ACTION MACRO CALL

CODING. 3-63
VERIFY ACTION MACRO CALL. D-l1
WAIT ACTION MACRO CALL. 0-11
WRITE ACTION MACRO CALL. 0-10

CALLS
ACTION MACRO CALLS. 3-54. 0-10
ACTION MACRO CALLS FOR EACH FILE

TYPE IN EACH pROCESSING MODE. 3-6
ACTION MACRO CALLS (fOR PARTITIONED
SE~JENTIAL FILES ONLY). 3-17

COMMUNICATION AREA SERVICE MACRO
CALLS (MLCA AND MUCA). 0-3' 0-9

CAPACITY
COMPRISING BETWEEN ACCESS TIME AND

STORAGE CAPACITY, C-22
OPTIMIZING STORAGE CAPACITY. C-20

CARD
CARD FILE FORMATS. 4-66
TAPE AND CARD FILE

CONSIDERATIONS. 4-63

CARD-IMAGE
CARD-IMAGE FILES. G-2

CHANNEL
READ/WRITE CHANNEL UTILIZATION.

3-70. 0-12

CHARACTER
DATA ITEM STATUS CHARACTER.

2-20. 2-25
SUFFIX CHAR"ACTER. 0-14

CHECK
EXPIRATION-DATE CHECK

PARAMETER. 4-29

CLOSE
CLOSE (MSCLO~). 3-56

CLOSING
CLOSING FILES. 3-10
CLOSING INDEXED SEQUENTIAL AND

DIRECT ACCESS FILES. 3-10
CLOSING SEQUENTIAL AND PARTITIO~ED

SEQUENTIAL FILES. 3-10

CODES
CONSOLE TYPEWRITER PAUSE CODES AND
M~SSAGES FOR LOGICAL I/O C. 3-ij3

EXiT AND RETURN CODES FOR DATA
EXITS. 3-75

EXIT AND RETURN CODES FOR DEVICt
EXITS. 3-76

EXIT AND RETURN CODES FOR ~EMBE~
INDEX EXITS. 3-75

EXIT AND RETURN CODES FOR VOLU~t
DIRECTORy ExiTS. 3-73

HALT CODES FOR LOGICAL I/O C. 3-18

JOB CONTROL HALT CODES. 4-73

CODING
SUMMARY OF ACTION MACRO CALL

CODING. 3-63

COMMUN ICATION
COMMUNICATION AREA SE~VICE MAC~O

ROUTINES (MLCA ANC MUCA). 3-~0
COMMUNICATION AREA SE~VICE MACRO

ROUTINES (MLCA AND MUCA). 3-2

COMMUNICATION
COMMuNICATION AREA FIELD

DESIGNATORS. 3-52
COMMUNICATION ARFA MACRO CALL

(MPCA).D-6
COMMJNICATION AREA MAC~O ROUTIN~

(MPCA).D-3
COMMUNICATION AREA S~RVICE MACRO

CALLS (MLCA AND MUCA). 0-3' 0-9
MASS STORAGE LOAD COMMUNICATION

AREA MACRO CALL (MlCAI. 3-51
MASS STORAGE UNLOAD COMMUNICATION

AREA MACRO CALL (MUCA). 3-51
MNEMONIC DESIGNATORS FOR

COMMUNICATION AREA fIELDS. 3-5l
OWN-COOING COMMUNICATION WITH

LOAD-UNLOAD FUNCTION. 4-62

CONCEPT
DISK PACK CYLINDER CONCEPT - TYPE

259 DISK PACK DRIVES. 2-2

CONCURRENTLY
ASSIGNMENT OF FILES TO BE PROCE~SED

CONCURRENTLY. C-4

CONDITION
eYPASS ERROR CONOITION. 0-21

CONDITIONS
CONOITIONS RELATEO TO NON-MASS

STORAGE FILE. 4-71
CONDITIONS SPECiFiC TO FILE SUPPORT

C. 4-77
FILE RELATED CONDITIONS. 4-72
FILE-RELATED CONDITIONS. 4-84
JOB CONTROL FILE CONDITIONS.

4-72. 4-84
PERIPHERAL CONDITIONS. 4-71. 4-d3
TYP~wRITER MESSAGES FOR CONDITlvNS

RELATED TO NON-MASS STORAGE
FlUS. 4-83

CONF I GJR A TI ON
AVAILABLE MEMORY PER I/O MEDIA FOR

121(CONFIGURATION. 4-7
PERIPHERAL AODRESS ASSIGNMENT AND

RwC CONFIGURATION
CONSIDERATIONS. 0-13

CONSECUTIVE
oMISSION Of CONSECUTIV~ PARAMETL~S

FROM MACRO CALL. 3-l5

CONSOLE
CONSOLE TYPEWRITER OPERATING

PROCEDURES. 3-82
CONSOLE TYPEWRITER PAUSE coorS AND

MESSAGES FOR LOGICAL I/o C. 3-83
Joe CONTROL FILf CONSOLE TYPEWRlrER

MESSAGES. 4-85
OPERATOR CONTROL WITH CONSOLE

TYPEWRITER. 4-83

CONTROL
CONTROL MACRO CALL (MPIOC). 0-4
CONT~OL MACRO ROUTH;E (MPIOC)·. "'-3
CONlROL PANEL OPERATING

PROCEDURES, 3-77
CONTROL UNIT CURRENT ADDRESS ANu

INDEX

STATUS. 0-16
INPUT/OUTPUT CONTROL MACRO ROUTINE

(MIOc). 3-26
JOB CONTROL FILE CONDITIONS.

4-72. 4-84
JOR CONTROL FILE CONSOLE TYPEwRitER

MESSAGES. 4-85
JOB CONTROL FOR A SEQUENCE Of

OPERATIONS. 4-9
JOB CONTROL FOR A SINGLE

OPERATION. 4-8
JOB CONTROL HALT COD~S. 4-73
JOB CONTROL LANGUAGE EXAMPLE FO~

ALLOCATE FUNCTION. 4-21
JOB CONTROL LANGUAGE EXAMPLE FOK

DEALLOCATE FUNCTION. 4-31
JOB CONTROL LANGUAGE EXAMPLES FOR

LOAD ANO UNLOAD FUNCTIONS. 4-4~
JOB CONTROL LANGUAGE EXAMPLES FUR

MAP FUNCTION. 4-54
JOB CONTROL LANGUAGE FOR ALLOCATE

FUNCTION. 4-10
Joe CONTROL LANGUAGE FOR DATA

MANAGEMENT SURSYSTEM. 1-6
JOB CONTROL lANGUAGE FOR DEALLOCATE

FUNC TI ON. 4-28
JOB CONTROL LANGUAGE FOR FILE

SUPPORT C. 4-8
JOB CONTROL LANGUAGE FOR LOAD AliD

UNLOAD FUNCTIONS. 4-3~
JOB CONTROL LANGUAGE FOR MAP

FUNCTION. 4-51
JOB CONTROL STATEMENTS FOR

ALLOCATION OF FILFS. 4-10
Joe CONTROL STATEMENTS FOR

DEALLOCATE FUNCTION. 4-28
JOB CONTROL STATFMENTS FOR LOADING

AND UNLOAOING FILES. 4-35
MASS STORAGE INPUT/OUTPUT CONTROL

MACRO ROUTINE (MIOC). 3-2
MPCA CONTROL UNIT CURRENT ADDRE~S

AND STATUS FIELD. 0-16
OPERATOR CONTROL AND MESSAGES FOR

FILE SUPPORT C. 4-70
OPERATOR CONTROL WITH CONSOLE

TYPEWR ITER. 4-83
OPERATOR CONTROL WITH CONTROL

PANEL. 4-70
SUMMARY OF JOB CONTROL STATEMENtS

FOR ALLOCATE FUNCTION. 4-24
SUMMARY OF JOB CONTROL STATEMENtS

FOR ALLOCATION FUNCTION. 4-25
SUMMARY OF JOB CONTROL STATEMENTS

FOR DEALLOCATE FUNCTION.
4-33. 4-34

SUMMARY OF JOB CONTROL STATEMENTS
FOR LOAD AND UNLOAD
FUNCTIONS. 4-48

SUMMARY OF JOB CONTROL STATEMENtS
FOR LOAD/UNLOAD FUNCTIONS. 4-49

SUW"ARY OF JOB CONTROL S TATEMEN' S
FOR MAP FUNCTION. 4-5~. 4-56

CONVENTIONS
ALLOCAllON CONVENTIONS. 2-6
DATA CONVENTIONS. 2-4
DATA MANAGEMENT CONVENTIONS.

1-1. 2-1
FILE ORGANIZATION CONVENTIONS. l-8
PROC~SSING CONVENTIONS. 7.-26
VOLJ~E CONVENTIONS. l-l

CONVERSION
RADIX CONVERSION. E-4

CORRECllON
RF-EXECUTION OF CORRECTION

PROCEDURE. 0-20

CURRECTIVE
CORRECTIVE ACTION FO~ USER'S ER~UR

ROJTlNE. 0-21

..

-i:

CREATION
CREATION OF TERMINAL FILE5. G-l

CRITERIA
FILE DESIGN CRITERIA. C-l

CUMULATIVE
CUMULATIVE LOADING OF A DIRECT

ACCl55 FILE. 2-25

CURRENT
CONTROL UNIT CURRENT ADDRE55 AND

5TATU5. 0-16
END PROCE5SING OF CURRENT MEMEB~R

(ENDM). 3-18
MPCA CONTROL UNIT CURRENT ADDRE~5

AND STATU5 FIELD. 0-16

CYLINDER
CYLINDER OVERFLOW A5 PERCENTAGE OF

DATA AREA. C-13
CYLINDER OVERFLOW-5IZE

PARAMETER. 4-16
DI5K PACK CYLINDER CONCEPT - TYPE

259 DI5K PACK DRIVE5. 2-2
RELATION5HIP BETWEEN ITEM5 OF THE
~A5TER AND CYLINDER INDEX. 2-14

RELATION5HIP BETWEEN 5TRING INDEX
ITE~S AND THE DATA AREA OF A
CYLI NDER. 2-15

5EEKING A DESIRED CYLINDER. 3-22

CYLINDER5
DATA CYLINDERS REQUIRED. C-24

DATA

DAY

CYLINDER OVERFLOW AS PERCENTAGE OF
DATA AREA. C-13

DATA AREA. 2-23
DATA CONVENTIONS. 2-4
DATA CYLINDERS REQUIRED. C-24
DATA ITEM 5TATu5 CHARACTER.

2-20. 2-25
DATA ITEMS. 4-67
DATA MANAGEMENT CONVENTIONS.

1-1. 2-1
DATA RECORDS. 4-65
DATA STRUCTURE. 2-9
DATA UNIT OF ALLOCATION. 4-19
EQUIPMENT REQUIREMENTS FOR DATA

MANAGEMENT SUB5Y5TEM. 1-7
EXIT AND RETURN CODE5 FOR DATA

EXIT5. 3-75
FILE-EXPIRATION DATA

PARAMETER. 4-14
JOB CONTROL LANGUAGE FOR DATA

MANAGEMENT SUBSYSTEM. 1-6
PRIME DATA AREA. 2-11
RELATIONSHIP BETWEEN 5TRING IND~x
ITE~S AND THE DATA AREA OF A
CYLINDER. 2-15

DAY 5TATEMENT. 4-21. 4-31. 4-53

DEALLOCATE
DEALLOCATE. 4-2
DEALLOCATE FUNCTION. 4-28
JOB CONTROL LANGUAGE EXAMPLE FOR

DEALLOCATE FUNCTION. 4-31
JOB CONTROL LANGUAGE FOR DEALLOCATE

FUNCTION. 4-28
JOB CONTROL STATEMENTS FOR

DEALLOCATE FUNCTION. 4-28
PROTECTION DURING DEALLOCATE. 4-70
5UMMARY Of JOB CONTROL 5TATEMENT5

FOR DEALLOCATE FUNCTION.
4-33. 4-34

DEALLOCATION
FAILURE DURING ALLOCATION AND

DEALLoCATION. 4-93
FAILURE DURING DEALLOCATION. 4-94

INDEX

DELETE
DELETE IM5DEL). 3-59

DELETED
U51NG THE ITEM P05ITION OF A

DELETED ITEM. 2-22

DELETING
DELETING ITEM~ fROM FILES. 3-21

DELETION
DELETION O~ AN ITEM FROM A

5TRING. 2-21

DE51GN
DE51GN CON5IDERATION5. C-17
FILE DE51GN AND ALLOCATION. C-l
FILE DE51GN CRITERIA. C-l
GENERAL FILE DE5IGN

CON5IDERATION5. C-2

DE51GNATORS
COMMUNICATION AREA FIELD

DE5IGNATOR5. 3-52
MNEMONIC DE5IGNATOR5 FOR
COM~UNICATION AREA FIELDS. 3-52

MNEMONIC DE5IGNATOR5 FOR MLCA AND
MUCA. 0-9

DEVICE
DEVICE PROTECTION. 0-14
EXIT AND RETURN CODE5 FOR DEVIcE

EXIT5. 3-76
MINIMUM DEVICE REQUIREMENT5 fOR

MA55 5TORAGE FILE
ORGANIZATION5. 4-39

DEVICE-ADDRES5
DEVICE-ADDRE55 PARAMETER. 4-14.
4-30. 4-38. 4_52. 4-54

DEVICE-ADDRE55 PARAMETERS. 4-20

DEVICE-TYPE
DEVICE-TYPE PARAMETER. 4-37. 4-~4

DIAGNOSTICS
FILE SUPPORT DIAGNOSTICS FOR 5040

HALT. 4-74

DISK
DISK PACK CyLINDER CONCEPT - TyPE

259 DISK PACK DRIVES. 2-2
ILLU5TRATION OF UNITS OF ALLOCATION
- TYPE 261 OR TYPE 262 DISK
FILE. 2-7

OPTIMUM RECORD 5IZE - TYPE 261 OR
TYPE 262 DISK FILES. C-7

OPTIMUM RECORD SIZE - TYPE5 258 259
OR 259A DISK PACK DRIVES. C-5

DISTRIBUTION
DISTRIBUTION AND VOLATILITY. C-17

DIVISION
PRIME NUMBER DIVISION. E-l

DRIVES
DISK PACK CYLINDER CONCEPT - TYPE

259 DISK PACK DRIVE5. 2-2
OPTIMUM RECORD SIZE - TYPES 258 259

OR 259A DI5K PACK DRIVES. C-5

EAD

EDF

USER'5 UNCORRECTABLE ERROR ROUTINE
ENTRANCE (EAD). D-l~

ADDRE5S REGISTER CONTENTS AT TIME
OF ERROR EXIT IEDF). 0-20

ELEMENTS
LANGUAGE ELEMENTS FOR LOGICAL 1/0

C. 3-23
LANGUAGE ELEMENTS OF PHYSICAL 1/0
C. 0-4

END
END ~EMBER IENDMI. 3-60
END PROCESSING OF CURRENT MEMEB~R

IENDMI. 3-18

ENDM
END MEMBER IENDMI. 3-60
END PROCESSING OF CURRENT MEMEBE~

IENDMI. 3-18

ENFOLD
SQUARE ENFOLD AND EXTRACT. E-2

EQUIPMENT

ERI

ADDITIONAL USABLE EQUIPMENT. 1-1
EQUIPMENT REQUIREMENTS FOR DATA
~ANAGEMENT SUBSYSTEM. 1-1

REQUIRED EQUIPMENT. 1-1

ERROR TYPE INDICATOR IERII. 0-19

ERROR
ADDRESS REGISTER CONTENTS AT TlMoE

OF ERROR EXIT IEDFI. 0-20
BYPASS ERROR CONDITION. 0-21
CORRECTIVE ACTION FOR USER'S ER~OR

ROuTI NE. 0-21
ERROR TYPE INDICATOR IERII. 0-19
USER'S UNCORRECTABLE ERROR

ROuTINE. 0-19
USER'S UNCORRECTABLE ERROR ROUTINE

ENTRANCE IEADI. 0-15

EXAMPLE
JOB CONTROL LANGUAGE EXAMPLE FOH

ALLOCATE FUNCTION. 4-21
JOB CONTROL LANGUAGE EXAMPLE FOR

DEALLOCATE FUNCTION. 4-31

EXAMPLE-OPTIMIZATION
EXAMPLE-OPTIMIZATION FOR AN INDExED

SEQUENTIAL FILE. C-23

EXAMPLE-SUMMARY
EXAMPLE_SUMMARY OF OPTIMUM

POI lilTS. C-23

EXAMPLES
JOB CONTROL LANGUAGE EXAMPLES FO~

LOAD AND UNLOAD FUNCTIONS. 4-4~
JOB CONTROL LANGUAGE EXAMPLES FOR

MAP FUNCTION. 4-54

EXECUTE
EXECUTE STATEMENT. 4-8' 4-11.
4-28. 4-36. 4-51

FORMAT OF FILE SUPPO~T C EXECUTE
STATEMENT. 4-8

EXECUTION
PROTECTION OF MASS STORAGE DURING

EXECUTION OF FILE SUPPORT C. 4-10

EXIT
ADDRESS REGISTER CONTENTS AT TIME

OF ERROR EXIT IEOFI. 0-20
EXIT AND RETURN CODES FOR DATA

EXITS. 3-15
EXIT AND RETURN CODES FOR DEVICE
ExIlS. 3-16

EXIT AND RETURN CODES FOR MEMBEH
INDEX EXITS. 3-15

EXIT AND RETURN CODES FOR VOLUME
DIRECTORY EXITS. 3-13

EXITS
EXIT AND RETURN CODE~ FOR DATA

EXITS. 3-15
EXIT AND RETURN CODES FOR DEVICE

EXITS. 3-16
ExiT AND RETURN CODES FOR MEMBEH

INDEX FXITS. 3-75

INDEX

EXIT AND RETURN CODES FOR VOLU~E
DIRECTORY EXITS. 3-13

EXITS AND HALTS. 3-72
ExITS STATEMENT. 4-44

EXPIRATION-DATE
EXPIRATION-DATE CHECK

PARAMETER. 4-29

EXPIRED
MAP ExPIRED FILES. 4-6

EXTRACT
SQUARE ENFOLD AND EXTRACT. E-2

FAILURE
FAILURE DURING ALLOCATION. 4~93
FAILURE DURING ALLOCATION AND

DEALLOCATION. 4-93
FAILURE DURING DEALLOCATION. 4-94

FIELD
COMMUNICATION AREA fiELD

DESIGNATORS. 3-52
MPCA CONTROL UNIT CURRENT ADDRE~S

AND STATUS FIELD. 0-16

FIELDS
FIELDS OF FIRST ITEM IN MEMBER

INDEX. B-2
FIELDS OF LAST ITEM IN MEMBER

INDEX. B-3
fIELDS OF MEMBER INDEX ITEMS. B-2
MNEMONIC DESIGNATORS FOR

COMMUNICATION AREA FIELDS. 3-52

FILE
ACTION MACRO CALLS FOR EACH FILE

TYPE IN EACH PROCESSING MODE. 3-6
ALLOCATING AN INDEXED SEOUENTIAL

FILE. 4-59
CARD FILE FORMATS. 4-66
CONDITIONS RELATED TO NON-MASS

STORAGE FILE. 4-11
CONDITIONS SPECIFIC TO FILE SUPPORT

C. 4-77
CUMULATIVE LOADING OF A DIRECT

ACCESS FILE. 2-25
DIRECT ACCESS FILE

CONSIDERATIONS. C-l0
DIRECT ACCESS FILE

ORGANIZATION. 2-20
DIRECTLY PROCESSING AN INDEXED

SEQUENTIAL FILE. 2-13
EXAMPLE-OPTIMIZATION FOR AN INDEXED

SEQUENTIAL FILE. C-23
FILE ADDITIONS. C-1
FILE CONSIDERATIONS. 5-51
FILE DESCRIPTION MAC~O ROUTINE

IMCA I. 3-2. 3-38
FILE DESIGN AND ALLOCATION. C-1
FILE DESIGN CRITERIA. C-1
FILE INQUIRIES. C-1
FILE ORGANIZATION. 2-23
FILE ORGANIZATION CONVENTIONS. ~-8
FILE PREFIX. 0-15
FILE PROCESSING FUNCTIONS. 2-21
FILE PROCESSING MODES. 3-4
FILE PROTECTION. F-1
FILE RELATED CONDITIONS. 4-12
FILE STATEMENT. 4-12. 4-29. 4-53
FILE STATEMENT FOR THE LIST fIL~.

4-20. 4-53
FILE STATEMENTS. 4-36
FILE STRUCTURE. 2-11
FILE SUPPORT C. 4-1
FILE SUPPORT C HALTS. 4-18
FILE SUPPORT DIAGNOSTICS FOR 5040

HALT. 4-14
FILE SUPPROT C PROGRAM. 1-5
FOREGROUND/BACKGROUND PROCESSINu OF

FILE SUPPORT C. 4-1

)

,*

FOR~AT OF ~ILE SUPPORT C EXECUTE
STATEMENT. 4-8

FUNCTIONS OF FILE SUPPORT C. 4-~
GENERAL DESCRIPTION OF FILE SUPPORT

C. 4-1
GENERAL FILE DESIGN

CONSIDERATIONS. C-2
ILLUSTRATION OF UNIT~ OF ALLOCATION
- TYPE 261 OR TYPE 262 DISK
FILEt 2-7

INDEXED SEQUENTIAL FILE
CONSIDERATIONS. C-17

INDEXED SEQUENTIAL FILE
ORGANIZATION. 2-9

JOB CONTROL FILE CONDITIONS.
4-72. 4-84

JOB CONTROL FILE CONSOLE TYPEwRITER
MESSAGES. 4-85

JOB CONTROL LANGUAGE FOR FILE
SUPPORT C. 4-8

LOADING A DIRECT ACCESS FILE. 5-57
LOADING A PARTITIONED SEQUENTIAL

FILE. 4-58
LOADING AN INDEXED SEQUENTIAL

FILE. 4-59
LOADING BY FILE. 4-58
LOADING FILE SUPPORT C. 4-68
MAP DESCRIPTION OF A FILE. 4-2
MASS STORAGE FILE PROTECTION. F-1
MINI~UM DEVICE REQUIREMENTS FOR

MASS STORAGE FILE
ORGANIZATIONS. 4-39

MIXED FILE ORGANIZATIONS. 4-60
MULTIVOLUME FILE PRoCESSING. C-3
O~ITTING ITEMS FROM THE OUTPUT

FILE. 4-62
OPENING AN INDEXEO SEQUENTIAL

FILE. 3-8
OPERATING PROCEDURES FOR FILE

SUPPORT C. 4-68
OPERATOR CONTROL AND MESSAGES FOR

FILE SUPPORT C. 4-70
PARTITIONING A SEQUENTIAL
FILb B-1

PROCESSING A PARTITIONED SEQUENTIAL
FILE BY MEMBER NAMES. 4-58

PROGRAMMER'S PREPARATION
INFORAMTION FOR FILE SUPPORT
C. 5-57

PROTECTION OF MASS STORAGE DURING
EXECUTION OF FILE SUPPORT C. 4-70

RELEASE COMPLETE FILE TO UNUSED
STATE (MSREL). 3-19

SEQUENTIAL FILE
CONSIDERATIONS. C-4

SEQUENTIAL FILE ORGANIZATION. 2-8
SEQUENTIAL FILE USING PARTITIONING

OPTION. B-1,
TAPE AND CARD FILE

CONSIDERATIONS. 4-63
TYPEWRITER MESSAGES SPECIFIC TO

FILE SUPPORT C. 4-86
UNLOADING A DIRECT ACCESS
FILb 5-57

UNLOADING A PARTITIONED SEQUENTIAL
FILE. 4-58

UNLOADING AN INDEXED SEQUENTIAL
FILE. 4-60

UNLOADING BY FILE. 4-58

FILE-EXPIRATION
FILE-EXPIRATION DATA

PARAMETER. 4-14

FILE-NA~E
FILE-NAME PARAMETER. 4-12.
4-29. 4-37

FILE-OR~ANIZATION
FILE-ORGANIZATION PARAMETER. 4-12

INDEX

FILE-RELATED
FILE-RELATED CONDITIONS. 4-84

FILES
ACTION MACRO CALLS (FOR PARTITIONED

SEQUENTIAL FILES ONLY). 3-17
ASSIGNMENT OF FILES TO BE PROCESSED

CONCURRENTLY. C-4
CARD-IMAGE FILES. G-2
CLOSING FILES. 3-10
CLOSING INDEXED SEQUENTIAL AND

DIRECT ACCESS FILES. 3-10
CLOSING SEQUENTIAL AND PARTITIONED

SEQUENTIAL FILES. 3-10
CREATION OF TERMINAL FILES. G-l
DELETING ITEMS FROM FILES. 3-21
DIRECT ACCESS FILES. 5-57
DIRECT ACCESS FILE~ AND KEYS. 2-24
INDEXED SEQUENTIAL FILES. 4-59
INSERTING ITEMS IN DIRECT ACCES~
FILES. 3-21

INSERTING ITEMS IN FILES. 3-20
INSERTING ITEMS IN INDEXED
SEQUENTIAL FILES. 3-20

JOB CONTROL STATEMENTS FOR
ALLOCATIoN OF FILES. 4-10

JOB CONTROL STATEMFNTS FOR LOADING
AND UNLOADING FILES. 4-35

MAP EXPIRED FILES. 4-6
OPENING DIRECT ACCESS FILES. 3-9
OPENING FILES. 3-6
OPENING PARTITIONED SEQUENTIAL

FILES. 3-8
OPENING SEQUENTIAL FILES. 3-6
OPTI~M RECORD SIZE - TYPE 261 OR

TYPE 262 DISK FILES. C-7
PARTITIONED SEQUENTIAL FILES. 4-58
PRINT-IMAGE FILES. G-2
PUTTING ITEMS TO SEQUENTIAL AND

pARTITIONED SEQUENTIAL
FILES. 3-17

RANDOM PLUS SEQUENTIAL FILES. C-2
RANDOM VERSUS SEQUENTIAL

FILES. C-2
REPLACING ITEMS IN DIRECT ACCES~

FILES. 3-16
REPLACING ITEMS IN FILES. 3-15
REPLACING ITEMS IN INDEXED

SEQUENTIAL FILES. 3-16
REPLACING ITEMS IN SEQUENTIAL A~D

PARTITIONED SEQUENTIAL
FILES. 3-16

RETRIEVING ITEMS IN DIRECT ACCESS
FILES. 3-13

RETRIEVING ITEMS IN FILES. 3-11
RETRIEVING ITEMS IN INDEXED

SEQUENTIAL FILES. 3-12
RETRIEVING ITEMS IN SEQUENTIAL AND

PARTITIONED SEQUENTIAL
FILES. 3-11

SEOUENTIAL FILES. 5-57
SUMMARy OF MSGET MACRO FUNCTIONS

FOR DIRECT ACCESS FILES. 3-15
TERMINAL FILES. G-l
TYPEWRITER MESSAGES FOR CONDITIONS

RELATED TO NON-r~A5S STORAGE
FILES. 4-83

UNLOADING ~ASS STORAGE FILES ONTO
PRINTER. 4-67

FIXED
FIXED PERIPHERAL ADDRESS

ASSIGNMENT. D-13

FOREGROUND/BACKGROUND
FOREGROUND/BACKGROUND PROCESSING OF

FILE SUPPORT C. 4-1

FORMAT
FORMAT OF FILE SUPPORT C EXECUTe

STATEMENT. 4-8

FORMATS
l/2-INCH TAPE FORMATS. 4-63
CARD FILE FORMATS. 4-66

FORMATTING
FORMATTING AND VOLUME

PREPARATION. 2-3

FUNCTION
ALLOCATE FUNCTION. 4-9
DEALLOCATE FUNCTION. 4-28
FUNCTION STATEMENT. 4-12. 4-29.

4-36. 4-51
JOB CONTROL-LANGUAGE EXAMPLE FOR

ALLOCATE FUNCTION. 4-21
JOB CONTROL LANGUAGE EXAMPLE FOR

DEALLOCATE FUNCTION. 4-31
JOB CONTROL LANGUAGE EXAMPLES FOR

MAP FUNCTION. 4-54
JOB CONTROL LANGUAGE FOR ALLOCATE

FUNCTION. 4-10
JOB CONTROL_ LANGUAGE FOR DEALLOCATE

FUNCTION. 4-28
JOB CONTROL LANGUAGE FOR MAP

FUNCTION. 4-51
JOB CONTROL STATEMENTS FOR

DEALLOCATE FUNCTION. 4-28
LISTING OF SAMPLE UNLOAD-TO-PRINTER

FUNCTION. 4-69
MAP fUNCTION. 4-51
OWN-CODING COMMUNICATION WITH

LOAD-UNLOAD FUNCTION. 4-62
SUMMARY OF JOB CONTROL STATEMENT5

FOR ALLOCATE FUNCTION. 4-24
SUMMARY OF JOB CONTROL STATEMENTS

FOR ALLOCATION FUNCTION. 4-25
SUMMARY OF JOB CONTROL STATEMENTS

FOR DEALLOCATE FUNCTION.
4-33. 4-34

SUMMARY OF JOB CONTROL STATEMENTS
FOR MAP FUNCTION. 4-55. 4-56

FUNCTIONS
ACTION MACRO PROCESSING

FUNCTIONS. 3-4
FILE PROCESSING FUNCTIONS. 2-27
FUNCTIONS OF FILE SUPPORT C. 4-2
JOB CONTROL LANGUAGE EXAMPLES FOR

LOAD AND UNLOAD FUNCTiONS. 4-45
JOB CONTROL LANGUAGE FOR LOAD AND

UNLOAD FUNCTIONS. 4-35
LAOD AND UNLAOD FUNCTIONS. 4-33
NUMBER OF FUNCTIONS PERFORMED. 4-6
SUMMARY OF JOB CONTROL STATEMENTS

FOR LOAD AND UNLOAD
FUNCTIONS. 4-48

SUMMARY OF JOB CONTROL STATEMENTS
FOR LOADIUNLOAD FUNCTIONS. 4-49

SUMMARY OF MSGET MACRO FUNCTION5
FOR DIRECT ACCESS FILES. 3-15

GENERAL

GET

ENTRANCE TO GENERAL OVERFLOW. 4-63
GENERAL DESCRIPTION OF FILE SUPPORT

C. 4-1
GENERAL FILE DESIGN

CONSIDERATIONS. C-2
GENERAL OVERFLOW PARAMETER. 4-13

GET (MSGET). 3-56

HALT
FILE SUPPORT DIAGNOSTICS FOR 5040

HALT. 4-74
HALT CODES FOR LOGICAL 1/0 C. 3-78
JOB CONTROL HALT CODES. 4-73

INDEX

HALTS
EXITS AND HALTS. 3-72
FILE SUPPORT C HALTS. 4-78

HEADER
HEAD~R LABEL. 4-63. 4-66

ILLUSTRATION
ILLUSTRATION OF UNITS of ALLOCATION
- TypE 261 OR TypE 262 DlSK
FILE. 2-7

IMBED
IMBED PARAMETER. 4-43

INDEX
ExIT AND RETURN CODFS FOR MEMBER

INDEX EXITS. 3-75
FIELDS OF FIRST ITEM IN MEMBER

INDEX. B-2
FIELDS OF LAST ITEM IN MEMBER

INDEX. A-3
FIELDS OF MEMBER INDEX ITEMS. B-2
INDEX AREAS. 2-11
INDEX REGISTERS. 3-69
MASTERICYLINDER INDEX

PARAMETER. 4-18
RELATIONSHIP BETWEEN ITEMS OF THE

MASTER AND CyLINDER INDEx. 2-14
RELATIONSHIP BETWEEN STRING INDEX

ITEMS AND THE DATA AREA OF A
CYLI NDER. 2-15

TRAC(S REQUIRED FOR MASTER/CYLI~DER
INDEx. C-25

USE OF INDEX REGISTERS. 0-13

INDEXED
ALLOCATING AN INDEXED SEQUENTIAL

FILE. 4-59
CLOSING INDEXED SEQUENTIAL AND

DIRECT ACCESS FILES. 3-10
DIRECTLy PROCESSING AN INDEXED

SEQUENTIAL FILE. 2-13
EXAMPLE-OPTIMIZATION FOR AN INDeXED

SEQJENTIAL FILE. C-23
INDEXED SEQUENTIAL. 3-72
INDEXED SEQUENTIAL FILE
CONSIDERATIONS. C-17

INDEXED SEQUENTIAL FILE
ORGANIZATION. 2-9

INDEXED SEQU£NTIAL FILES. 4-59
INSERTING ITEMS IN INDEXED

SEQUENTIAL FILES. 3-20
LOADING AN INDEXED SEQUENTIAL
FILE. 4-59

OPENING AN INDEXFD SEQUENTIAL
FILE. 3-8

REPLACING ITEMS IN INDEXEO
SEQUENTIAL FILES. 3-16

RETRIEVING ITEMS IN INDEXED
SEQUENTIAL FILES' 3-12

UNLOADING AN INDEXED SEQUENTIAL
FILE. 4-60

INDEX-SIZE
INDEX-SIZE PARAMETER. 4-16

INDICATOR
ERROR TYPE INDICATOR (ERI). 0-19

INFORAMTION
PROGRAMMER'S PREPARATION

INFORAMTION FOR FILE SUPPORT
C. 5-57

INFORMATION
PROGRAMMER'S PREPARATION

INFORMATION FOR LOGICAL 1/0
C. 3-64

PROGRAMMER'S PREPARATION

INFORMATION FOR PHYSICAL I/O
C. 0-12

INPUT-ONLY
INPUT-ONLY PROCESSING MODE. 3-4

INPUT/OUTPUT
INPUT/OUTPUT CONTROL MACRO ROUTINE

(MIDCI. 3-26
INPUT/OUTPUT PROCESSING MODE. 3-4
MASS STORAGE INPUT/OUTPUT CONTROL

MACRO ROUTINE (MIOC)' 3-2

INQUIRIES
FILE INQUIRIES. C-l

IN/OUT
INIOJT PARAMETER. 4-37

INSERT
INSERT (MSINS). 3-58

INSERTING
INSERTING ITEMS IN DtRECT ACCESS
FILES. 3-21

INSERTING ITEMS IN FILES, 3-20
INSERTING ITEMS IN INDEXED

SEQUENTIAL FILES. 3-20

INSERTION
INSERTION OF ITEMS INTO A
STRING. 2-16

INSUFFICIENT
INSUFFICIENT SPACE. 4-62

INTRODUCTION
INTRODUCTION. 1-1

INVALID

1/0

INVALID BUCKET ADORESSES. 4-62

AVAILABLE MEMORY PER 1/0 MEDIA FOR
12K CONFIGURATION. 4-7

CONSOLE TYPEWRITER PAUSE CODES AND
MESSAGES FOR LOGICAL 1/0 C. 3-83

OETAILED DESCRIPTION OF PHYSICAL
1/0 C MACRO ROUTINES. D-3

HALT CODES FOR LOGICAL 1/0 C. 3-78
LANGUAGE ELEMENTS FOR LOGICAL I/O

C. 3-23
LANGUAGE ELEMENTS OF PHYSICAL 1/0

C. 0-4
LOGICAL 1/0 C. 3-1
LOGICAL 1/0 C MEMORY

REQUIREMENTS. 3-64
LOGICAL I/O C PROGRAM. 1-4
OPERATING PROCEDURES FOR LOGICAL

1/0 C. 3-77
OPERATING PROCEDURES FOR PHYSiCAL

1/0 C. 0-21
PHYSICAL 1/0 C. 0-1
PHYSICAL I/O C RELATIONSHIPS WITH

MCA. 3-69
pHYSICAL 1/0 C RELATIONSHIPS wITH

MIOC. 3-69
.PROGRAMMER'S PREPARATION

INFORMATION FOR LOGICAL 1/0
C. 3-64

PROGRAMMER'S PREPARATION
INFORMATION FOR PHYSICAL 1/0
C. 0-12

SUMMARY OF LOGICAL 1/0 C MACRO
ROUTINES. 3-2. 3-3

USE OF PHYSICAL I/O C. D-l

ISSUE
ISSUE NEW ACTION MAC~O CALL. O-Zl

ITEM
DATA ITEM STATUS CHARACTER.

INDEX

2-20. 2-25
DELETION OF AN ITEM fROM A

STRING. 2-21
FIELDS OF FIRST ITEM IN MEMBER

INDEX, B-2
FIELDS OF LAST ITEM IN MEMBER

INDEX. B-3
ITEM KEY SPECIFICATION. 3-71
ITEM SEQUENCE. C-17
NONNUMERIC ITEM KEYS, E-5
USING THE ITEM POSITION OF A

DELETED ITEM. 2-22

ITEM-KEY
ITEM-KEY PARAMETER. 4-13

ITEM-LENGTH
ITEM-LENGTH PARAMETER, 4-15. 4-39

ITEMS

JOB

DATA ITEMS. 4-67
DELETING ITEMS FROM FILES. 3-21
FIELDS OF MEMBER INDEX ITEMS, B-2
INSERTING ITEMS IN DIRECT ACCES~
FILES. 3-21

INSERTING ITEMS IN FILES. 3-20
INSERTING ITEMS IN INDEXED

SEQUENTIAL FILES. 3-20
INSERTION OF ITEMS INTO A
STRING. 2-16

OMITTING ITEMS FROM THE OUTPUT
FILE. 4-62

PADDING ITEMS. 4-66
PUTTING ITEMS TO SEQUENTIAL AND

PARTITIONED SFQUENTIAL
FILES. 3-17

RELATIONSHIP BETWEEN ITEMS AND
RECORDS. 2-5

RELATIONSHIP BETWEEN ITEMS OF THE
MASTER AND CYLINDER INDEX. 2-14

RELATIONSHIP BETWEEN ITEMS RECORDS
AND BLOCKS. 2-5

RELATIONSHIP BETWEEN ITEMS RECO~DS
BLOCKS AND BUCKETS, 2-24

RELATIONSHIp BETWEEN STRING INDEX
ITEMS AND THE DATA AREA OF A
CYLINDER. 2-15

REPLACING ITEMS IN DIRECT ACCESS
FILES, 3-16

REPLACING ITEMS IN FILES. 3-15
REPLACING ITEMS IN INDEXED

SEQUENTIAL FILES. 3-16
REPLACING ITEMS IN SEQUENTIAL AND

PARTITIONED SEQUENTIAL
FILES. 3-16

RETRIEVING ITEMS IN DIRECT ACCESS
FILES. 3-13

RETRIEVING ITEMS IN FILES, 3-11
RETRIEVING 1TEMS IN INDEXED

SEQUENTIAL FILES. 3-12
RETRIEVING ITEMS IN SEQUENTIAL AND

PARTITIONED SEQUENTIAL
FILES. 3-11

JOB CONTROL FILE CONDITIONS.
4-72. 4-84

JOB CONTROL FILE CONSOLE TYPEWRITER
MESSAGES. 4-85

JOB CONTROL FOR A SEQUENCE OF
OPERA TI ONS. 4-9

JOB CONTROL FOR A SINGLE
OPERA TI ON.' .4-8

JOB CONTROL HALT CODES. 4-73
JOB CONTROL LANGUAGE EXAMPLE FO~

ALLOCATE FUNCTION. 4-Z1
JOB CONTROL LANGUAGE EXAMPLE FO~

DEALLOCATE FUNCTION, 4-31
JOB CONTROL LANGUAGE EXAMPLES FOR

LOAD AND UNLOAD FUNCTIONS. 4-45
JOB CONTROL LANGUAGE EXAMPLES FOR

MAP FUNCTION. 4-54

KEY

JOB CONTROL LANGUAGE FOR ALLOCATE
FUNCTION. 4-10

JOB CONTROL LANGUAGE FOR DATA
MANAGEMENT SURSYSTEM. 1-6

JOB cONTROL LANGUAGE FOR DEALLOCATE
FUNCTION. 4-Z8

JOB CONTROL LANGUAGE FOR FILE
SUPPORT C. 4-8

JOB CONTROL LANGUAGE FOR LOAD AI~O
UNLOAD FUNCTIONS. 4-3~

JOB CONTROL LANGUAGE FOR ~AP
FUNCTION. 4-51

JOB CONTROL STATEMENtS FOR
ALLOCATION OF FILFS. 4-10

JOB CONTROL STATEMFNTS FOR
DEALLOCATE FUNCTION. 4-Z8

JOB CONTROL STATfMENTS FOR LOADING
AND UNLOADING FILES. 4-35

SUMMARy OF JOA CONTROL STATE~ENTS
FOR ALLOCATE FUNCTION. 4-Z4

SUMMARY OF JOB CONTROL STATEMENT5
FOR ALLOCATION FUNCtiON. 4-Z5

SUMMARY OF JOB CONTROL STATEMENTS
FOR 'bEALLOCATE FUNCTION.
4-33. 4-34

SUMMARY OF JOB CONTROL STATEMENtS
FOR LOAD AND UNLOAD
FUNCTIONS. 4-48

SUMMARY OF JOB CONTROL STATE~EN15
FOR LOAD/UNLOAD FUNCTIONS. 4-4~

SUMMARY OF JOB CONTROL STATEMENTS
FOR MAP FUNCTION. 4-55. 4-56

ITEM KEY SPECIFICATION. 3-71
KEY OUT OF SEQUENCF. 4-63

KEYS
DIRECT ACCESS FILES AND KEYS. Z-24
MULTIFIELD KEYS. E-6
NONNJMERIC ITEM KEYS. E-5

LABEL
HEADER LABEL. 4-63. 4-66
TRAILER LABEL. 4-66. 4-67
VOLUME LABEL. Z-3. A-Z
VOLU~E LABEL AND VOLUME

DIRECTORY. A-I

LANGUAGE
JOB CONTROL LANGUAGE EXAMPLE FO~

ALLOCATE FUNCTION. 4-Z1
JOB CONTROL LANGUAGE EXAMPLE FOH

DEALLOCATE FUNCTION' 4-31
JOB CONTROL LANGUAGE EXAMPLES FUR

LOAD AND UNLOAD FUNCTIONS. 4-45
JOB CONTROL LANGUAGE EXAMPLES FOH

MAP FUNCTION. 4-54
JOB CONTROL LANGUAGE FOR ALLOCATE

FUNCTION. 4-10
JOB CONTROL LANGUAGE FOR DATA

MANAGEMENT SURSYSTEM. 1-6
JOB CONTROL LANGUAGF FOR DEALLOCATE

FUNCTION. 4-28
JOB CONTROL LANGUAGE FOR FILE

SUPPORT C. 4-8
JOB CONTROL LANGUAGE FOR LOAD AND

UNLOAD FUNCTIONS. 4-35
JOB CONTROL LANGUAGE FOR MAP

FUNCTION. 4-51
LANGUAGE ELEMENTS FOR LOGICAL I/O

C. 3-23
LANGUAGE ELEMENTS OF PHYSICAL I/O

C. D-4

LOAD
LOAD AND UNLAOD FUNCTIONS. 4-33

LINKING
HANDLING TRACK LINKING

RECORDS. D-18

INDEX

LIST
FILE STATEMENT FOR THE LIST FILE.

4-Z0. 4-53

LISTING
LISTING OF SAMPLE UNLOAD-TO-PRII-ITER

FUNCTION. 4-69

LOAD
JOB CONTROL LANGUAGf EXAMPLES FOR

LOAD AND UNLOAD FUNCTIONS. 4-4~
JOB CONTROL LANGUAGE FOR LOAD AI~D

UNLOAD FUNCTIONS. 4-35
LOAO. 4-Z
MASS STORAGE LOAD COMMUNICATiON

AREA MACRO CALL (MLCA). 3-51
SUMMARY OF JOB CONTROL STATEMENTS

FOR LOAD AND UNLOAD
FUNCTIONS. 4-48

LOADING
CUMULATIVE LOADING OF A DIRECT

ACCESS FILE. 2-25
JOB CONTROL STATEMENTS FOR LOADING

AND UNLOADING FILES. 4-35
LOADING A DIRECT ACCESS FILE. 5-57
LOADING A PARTITIONED SEQUENTIAL

FILE. 4-58
LOADING AN INDEXED SEQUENTIAL

FILE. 4-59
LOADING BY FILE. 4-58
LOADING FILE SUPPORT C. 4-68
LOADING FROM MASS STORAGE TO MA5S

STORAGE. 4-59
LOADING OR UNLOADING. 4-60
LOADING SELECTfD MEM~ERS. 4-58
PROGRAM SEGMENT LOADING. 3-68

LOAD-UNLOAD
OWN-CODING COMMUNICATION WITH

LOAD-UNLOAD FUNCTION. 4-6Z
PROTECTION DURING

LOAD-UNLOAD. 4-70

LOAD/UNLOAD
SUMMARY OF JOB CONTROL STATEMENTS

FOR LOAD/UNLOAD FUNCTIONS. 4-4Y

LOCATION
SET LOCATION (SETL). 3-62
SETTING PROCfSSING TO A SPECIFltD

LOCATION. 3-22

LOGICAL
CONSOLE TY~EWRiTER FAUSE CODES AND

MESSAGES FOR LOGICAL I/O C. 3-63
HALT CODES FOR LOGICAL I/O C. 3-78
LANGUAGE ELEMENTS FOR LOGICAL I/u

C. 3-23
LOGICAL BACKUP. 2-27
LOGICAL I/O C. 3-1
LOGICAL I/O C MEMORY

REQUIREMENTS. 3-64
LOGICAL I/O C PROGRAM. 1-4
OPERATING PROCEDURES FOR LOGICAL

I/O C. 3-77
PROGRAMMER'S PREPARATION

INFORMATION FOR LOGICAL I/O
C. 3-64

SUMMARY OF LOGICAL I/O C MACRO
ROUTINES. 3-Z,)-)

LOKDEV
LOKDEV ACTION MACRO HOUTINE. D-16

LOW-MEMORY-ADDRESS
LOW.MEMORY_ADDRESS PARAMETER. 4-~5

MACRO
ACTION MACRO CALLS. 3-54. 0.10
ACTION MACRO CALLS FUR EACH FILE

TYPE IN EACH PROCfSSING MODE. 3-6

I

ACTION MACRO CALLS (FOW pARTITIONED
SE~JENTIAL FILES ONLYI. 3-17

ACTION MACRO PROCESSING
FUNCTIONS. 3-4

ACTION MACRO ROUTINES. 3-2. 0-4
COM~JNCATION AREA SEWVICE MACRO

ROuTINES (MLCA ANC MUCAI. 3-50
COM~JNCATION AREA SERViCE MACRO

ROUTINES (MLCA AND MUCAI. 3-2
COMMuNICATiON AREA MACRO CALL

(MPCAI. 0-6
COMMuNICATION ARFA MACRO ROUTINt

(MPCAI.D-3
COMMuNICATION AREA StRVICE MACRO

CALLS (MLCA AND MUCAI. 0-3. D-9
CONSIDERATIONS FOR ACTION MACRO

ROUTINES. 0-17
CONTROL MACRO CALL (MPIOCI. C-4
CONTROL MACRO ROUTINE (MPIOCI. ~-3
DETAILED DESCRIPTION OF PHYSICAL

1/0 C MACRO ROllTINES. 0-3
FILE DESCRIPTION MACRO ROUTINE

(MCAI. 3-2. 3-38
INPuTIOUTPUT CONTROL MACRO ROUTINE

(MIOCl.3-2"
ISSJE NEw ACTION MACRO CALL. 0-,1
LOKDEV ACTION MACRO ROUTINE. D-IH
~'ASS C;TORAGE INPUT IOUTPUT CONTROL

MACRO ROllTINE (MIOCI. 3-2
MASS STORAGF LOAD COMMUNICATiON

ARt A MACRO CALL (MLCAI. 3-51
MASS STORAGE UNLOAD COMMUNICATioN

AREA MACRO CALL (MUCAI. 3-51
MCA ~ACRO CALL. 3-38
MIOC MACRO CALL. 3-26
OMISSION OF CONSECUTIVE PARAMET~RS

FROM MACRO CALL. 3-25
O"lISSION OF SINGLE PARAMETER FRO~'

MACRO CALL. 3-25
PARA"IETERS OF MCA MACRO CALL. 3-39
PARAMETERS OF MIOC MACRO CALL.

3-27. 3-36
PARA~ETERS OF MPCA MACRO

CALL. 0-6.1
PARA~ETERS OF MPIOC MACRO

CALL. 0-4
PARA"IETERS OF THE MPCA MACRO

CALL. D-6
READ ACTION MACRO CALL. 0-10
READ ACTION MACRO ROUTINE. 0-17
RESTORE ACTION MACRO CALL' 0-11
RESTORE ACTION MACRO ROUTINE. 0-18
SEEK ACTION MACRO CALL. 0-11
SUMMARY OF ACTiON MACRO CALL

CODING. 3-63
SUMMARY OF LOGicAL 1/0 C MACRO

ROUTINES. 3-2. 3-3
SUMMARY OF MSGET MACRO FUNCTIONS

FOR DIRECT ACCESS FILES. 3-15
VERIFY ACTION MACRO CALL. 0-11
VERIFy ACTION MACRO ROUTINE. D-IH
WAIT ACTION MACRO CALL. 0-11
~AIT ACTION MACRO ROUTINE. 0-18
WRITE ACTION MACRO CALL. 0-10
WRITE ACTION MACRO ROUTINE. 0-17

MALTER
ALTER MEMBER (MALTERI. 3-60
ALTER STATUS OF MEMBER

(MALTERI. 3-19

MANAGEMENT

MAP

DATA MANAGEMENT CONVENTIONS.
1-1' 2-1

EQUIPMENT REQUIREMENTS FOR DATA
MANAGEMENT SUBSYSTEM. 1-7

JOB CONTROL LANGUAGE FOR DATA
MANAGEMENT SUBSYSTEM. 1-6

JOB CONTROL LANGUAGE EXAMPLES FOR
MAP FUNCTION. 4-54

INDEX

JOB CONTROL LANGUAGE FOR MAP
FUNCTION. 4-51

MAP. 4-2
MAP DESCRIPTION OF A FILE. 4-2
MAP EXPIRED FILES. 4-6
MAP FUNCTION. 4-51
MAP JNUSED AREAS. 4-6
PROTECTION DURING MAP. 4-70
SUMMARY OF JOB CONTROL STATEMENTS

FOR MAP FUNCTION. 4-55. 4-56

MARKS
TAPE MARKS. 4-66

MASS
LOADING FROM MASS STORAGE TO MA~S

STORAGE' 4-59
MASS STORAGE FILE PROTECTION. F-l
MASS STORAGF INPUTIOUTPUT CONTROL

MACRO ROUTINE (MIOCI. 3-2
MASS STORAGE LOAD COMMUNICATION

AREA MACRO CALL (MLCAI. 3-51
MASS STORAGE UNLOAD COMMUNICATION

AREA MACRO CALL (MUCAI. 3-51
MINI"IUM DEVICE REQUIREMENTS FOR

MASS STORAGE FILE
ORGANIZATldNS. 4-39

PROTECTION OF MASS STORAGE DURI,~G
EXECUTION OF FILE SUPPORT C. 4-70

UNLOADING MASS STORAGE FILES ONTO
PRINTER. 4-67

MASTER
RELATIONSHIP BETWEE~ ITEMS OF THE

MASTER AND CYLINDER INDEX. 2-14

MAS T ER !CYLJ NDER

MCA

MASTER/CYLINDER INDEX
PARAMETER. 4-18

TRACKS REQUIRED FOR MASTER/CYLINOER
INDEX. C-25

FILE DESCRIPTION MACRO ROUTINE
(MCAI. 3-2. 3-38

MCA MACRO CALL. 3-38
PARAMETERS OF MCA MACRO CALL. 3-39
PHYSICAL 1/0 C RELATIONSHIPS wllH

MCA. 3-69
SUMMARY OF MCA PARAMETER

VALuES. 3-49

MEDIA
AVAILABLE MEMORY PER 110 MEDIA fOR

12K CONFIGURATION. 4-7

MEMBER
ALTER MEMBER (MALTERI. 3-60
ALTER STATUS OF MEMBER

(MALTERI. 3-19
END MEMBER (ENOMI. 3-60
EXIT AND RETURN CODES FOR MEMBER

INDEX EXITS. 3-75
FIELDS OF FIRST ITEM IN MEMBER

INDEX. B-2
FIELDS OF LAST ITEM IN MEMBER

INDteX. B-3
FIELDS OF MEMBER INDEX ITEMS. B-2
MEMBER STATEMENT. 4-19
MEMBER STATEMENTS. 4-44
PROCESSING A PARTITIONED SEQUENTIAL

FILE BY MEMBER NAMES. 4-58
SET MEMBER (SETMI. 3-59
SET PROCESSiNG TO BEGINNING OF

SPECIFIED MEMBER (SETMI. 3-17

MEMBER-LENGTH
MEMBER-LENGTH PARAMETER. 4-20

MEMBER-NAME
MEMBeR-NAME pARAMETER. 4-19. 4-44

MEMBERS
LOADING SELECTED MEMBERS. 4-58
UNLOADING SELECTED MEMBERS. 4-5ij

MEMEBER
END pROCESSING OF CURRENT MEMEBER

(ENOM).3-18

MEMORY
AVAILABLE MEMORY PER I/O MEDIA fOR

lZK CONFIGURATION. 4-7
BLOCK AND RECORD SIZES WITHI~ lZK

MEMORY. 4-6
LOGICAL I/o C MEMORY

REQUIREMENTS. 3-64

MESSAGES
CONSOLE TYPEWRITER pAUSE CODES AND

MESSAGES fOR LOGICAL I/O C. 3-b3
JOB CONTROL FILE CONSOLE TYPEWRITER

MESSAGES. 4-85
OPERATOR CONTROL AND MESSAGES fOR

FILE SUPPORT C. 4-70
TYPEwRITER MESSAGES fOR CONDITIUNS

RELATED TO NON-MASS STORAGE
FILES. 4-83

TYPEWRITER MESSAGES SPECIFIC TO
FILE SUPPORT C. 4-86

MINIMUM
MINIMUM DEVICE REQUIREMENTS FOR

MASS STORAGE FILE
ORGANIZATIONS. 4-39

MIOC
INPUT/OUTPUT CONTROL MACRO ROUTINE

(MIOC). 3-Z6
MASS STORAGE INPUT/OUTPUT CONTROL

MACRO ROUTINE (MIOC). 3-Z
MIOC MACRO CALL' 3-Z6
MIOC RESTRICTIONS. 3-67
MIOC SEGMENTATION. 3-65. 3-66
PARAMETERS OF MIOC MACRO CALL.

3-Z7. 3-36
PHYSiCAL I/O C RELATIONSHIpS wiTH

MIOC. 3-69
SUMMARY Of MIOC PARAMETER

VALUES. 3-36

MIXED
MIXED FILE ORGANIZATIONS. 4-60

MLCA
COMMvNICATION AREA SERVICE MACRO

ROUTINES (MLCA ANC MUCA). 3-50
COMMUNICATION AREA SERVICE MACRO

ROUTINES (MLCA AND MUCA). 3-Z
COMMUNICATION AREA SERVICE MACRO

CALLS (MLCA AND MUCA). 0-3' 0-9
MASS STORAGE LOAD COMMUNICATiON

AREA MACRO CALL (MLCA). 3-51
MNEMONIC DESIGNATORS FOR MLCA AriD

MUCA. 0-9

MNEMONIC
MNEMONIC DESIGNATORS FOR

COMMUNICATION AREA FIELDS. 3-5Z
MNEMONIC DESIGNATORS FOR MLCA AND

MUCA. 0-9

MOD
MOD
MOD

MODE

(MSR) OPERATING SYSTEM. 4-68
(TR) OPERATING SYSTEM. 4-70

ACTION MACRO CALLS FOR EACH FILE
TYPE IN EACH PROCESSING MODE. 3-6

ADDRESS MODE. 3-69. D-IZ
INPvT-ONLY PROCESSING MODE. 3-4
INPUT/OUTPUT PROCESSING MODE. 3-4
MODE PARAMETER. 4-41
OUTPUT-ONLY PROCESSING MODE. 3-4

INDEX

MODES
fILE PROCESSING MODES. 3-4

MPCA
COMMUNICATION AREA MACRO CALL

(MPCA). 0-6
COMMUNICATION AREA MACRO ROUTINE

(MPCA). 0-3
CONSIDERATIONS FOR MPCA PARAMETEk

SPECIFICATION. 0-14
MPCA CONTROL UNIT CURRENT ADDRESS

AND STATUS FIELD. 0-16
PARAMETERS Of MPCA MACRO

CALL. 0-6.1
PARAMETERS Of THE MPCA MACRO

CALL. 0-6

MPIoe
CONSIDERATIONS FOR MPIOC PARAMETER

SPECIFICATION. 0-14
CONTROL MACRO CALL (MPIOC). D-4
CONTROL MACRO ROUTINE (MPIOC). U-3
PARAMETERS Of MPIOC MACRO

CALL. 0-4
SUffiX OF RELATED MPIOC. 0-15

MSCLOS
CLOSE (MSCLOS). 3-56

MSDEL
DELETE (MSDEL). 3-59

MSEEK
SEEK (MSEEK). 3-6Z

MSGET
GET (MSGET). 3-56
SUMMARY OF MSGET MACRO FUNCTIONS

FOR DIRECT ACCESS FILES. 3-15

MSINS
INSERT (MSINS). 3-58

MSOPEN
OPEN (MSOPEN). 3-55

MSPUT
PUT (MSPUT). 3-59

MSR
MOO 1 (MSR) OPERATING SYSTEM. 4-b6

MSREL
RELEASE COMPLETE FILE TO UNUSED

STATE (MSREL). 3-19
RELEASE (MSREL). 3-61

MSREP
REPLACE (MSREP). 3-58

MUCA
COMMUNCATION AREA SERVICE MACRO

ROUTINES (MLCA ANC MUtA). 3-50
COMMvNCATION AREA SERVICE MACRO

ROUTINES (MLCA AND MUCA). 3-2
COMMUNICATION AREA SERVICE MACRu

CALLS (MLCA AND MUCA). 0-3. 0-9
MASS STORAGE UNLOAD COMMUNICATluN

AREA MACRO CALL (MUCA). 3-51
MNEMONIC DESIGNATORS FOR MLCA AND

MUCA. 0-9

MULT IF I ELD
MULTIFIELD KEYS. E-b

MULTIVOLUME
MULTlvOLUMl FILE PROCESSING. C-j

NAMfS
PROCESSING A PARTITIONED SEQUENTIAL

FILE EY MEMBER NAMlS. 4-58

NON-MASS
CONDITIONS RELATED TO NON-MASS

STORAGE FILE. 4-71
TYPEwRITER MESSAGES FOR CONDITIONS

RELATED Tb NON-MASS STORAGE
FILES. 4-83

NONNUMERIC
NONNUMERIC ITEM KEYS. E-5

NUMBER
NUMBER OF FUNCTIONS PERFORMED. 4-6
PRIME NUMBER DIVISION. E-1

OMISSION
OMISSION OF CONSECUTIVE PARAMETERS

FROM MACRO CALL. 3-25
OMISSION OF SINGLE PARAMETER FRvM

MACRO CALL. 3-25

OMITTING
OMITTING ITEMS FROM THE OUTPUT

FILE. 4-62

OPEN
OPEN (MSOPEN). 3-55

OPENING
OPENING AN INDEXED SEQUENTIAL

FILE. 3-8
OPENING DIRECT ACCESS FILES. 3-Y
OPENING FILES. 3-6
OPENING PARTITIONED SEQUENTIAL

FILES. 3-8
OPENING SEQUENTIAL FILES. 3-6

oPERATING
CONSOLE TYPEWRITER OPERATING

PROCEDURES. 3-82
CONTROL PANEL OPERATING

PROCEDURES. 3-77
MOD 1 (MSR) OPERATING SYSTEM. 4-68
MOD 1 (TR) OPERATING SYSTEM. 4-70
OPERATING PROCEDURES FOR FILE

SUPPORT C. 4-68
OPERATING PROCEDURES FOR LOGICAL

1/0 C. 3-77
OPERATING PROCEDURES FOR PHYSICAL

1/0 C. 0-21

OPERATION
JOB CONTROL FOR A SINGLE

OPERATION. 4-R
OWN-CODING CONSIDERATIONS FOR

TAPE-RESIDENT OPERATION. 4-61

OPERATIONS
JOB CONTROL FOR A SEQUENCE OF

OPERATIONS. 4-9

OPERATOR
OPERATOR CONTROL AND MESSAGES FuR

FILE SUPPORT C. 4-70
OPERATOR CONTROL WITH CONSOLE

TYPEWRITER. 4-83
OPERATOR CONTROL WITH CONTROL

PANEL. 4-70

OPTIMIZATION
OPTIMIZATION. C-18

OPTIMIZING
OPTIMIZING ACCESS TIME. (-18
OPTIMIZING STORAGE CAPACITY. C-20

OPTIMUM
EXAMPLE-SUMMARY OF OPTIMUM
POINTS. C-23

OPTIMUM RECORD SIZE - TYPE 261 OR
TYPE 262 DISK FILES. C-7

OPTIMUM RECORD SIZE - TYPES 258 259
OR 259A DISK PACK DRIVES. C-5

INDEX

OPTION
SEQUENTIAL FILE USING PARTITIONING

OPTION. B-4

ORGANIZATION
DIRECT ACCESS FILE

ORGANIZATION. 2-20
FILE ORGANIZATION. 2-23
FILE ORGANIZATION CONVENTIONS. l-8
INDEXED SEQUENTIAL FILE
ORGANIZATION. 2-9

PROGRAM ORGANIZATION. 3-22. 3-64
SF.QU[NTIAL FILE ORGANIZATION. 2-8

ORGANIZATIONS
MINIMUM DEVICE REQUIREMENTS FOR

MASS STORAGE FILE
OR~ANIZATIONS. 4-39

MIXED FILE ORGANIZATIONS. 4-60

OUTPUT
OMITTING ITEMS FROM THE OUTPUT

FILE. 4-62

OUTPUT-ONLY
OUTP~T-ONLY PROCESSING MODE. 3-4

OVER FLO.,
BUCKET SIZE AND OVERFLOW. C-I0
CYLINDER OVERFLOw AS PERCENTAGE OF

DATA AREA. C-13
ENTRANCE TO GENERAL OVERFLOw. 4-63
GENERAL OVERFLOW PARAMETER. 4-1j
OVERFLOW AREAS. 7.-12. 2-23
OVERFLOW PARAMETER. 4-18
OVERFLOW PROBABILITIES. C-l1
TYPES OF OVERFLOW. C-17

OVERFLOw-SIZE
CYLINDER OVERFLOW-SIZE

PARAMETER. 4-16

OWN-CODING
OWN-COD I NG COMMUN I CA TI ON WITH

LOAD-UNLOAD FUNCTION. 4-62
OWN-CODING CONSIDERATIONS. 4-60
OWN-CODING CONSIDERATIONS fOR

TAPE-RESIDENT OPERAIJON. 4-61
STRUCTURE OF oWN-COeING

ROUTINE. 4-61

PACK
DISK PA(K CYLINDER CONCEPT - TYPE

259 DISK PACK DRIVES. 2-2
OPTIMUM RECORD SIZE - TYPES 258 l59

OR 259A DISK PACK DRIVES. C-5

PADDING
PADDING ITEMS. 4-66

PADDING-CHARACTER
PADDING-CHARACTER PARAMETER. 4-41

PANEL
CONTROL PANEL OPERATING

PROCEDURES. 3-77
OPERATOR CONTROL WITH CONTROL

PANEL. 4-70

PARAMETER
BANNER-CHARACTER PARAMETER. 4-40
BLOCK-SIZE PARAMETER' 4-16
BUCKET-ADDRESSING PARAMETER. 4-42
BUCKET-SIZE PARAMETER. 4-16
CONSIDERATIONS FOR MPCA PARAMETER

SPECIFICATION. 0-14
CONSIDERATIONS FOR MPIOC PARAMETER

SPECIFICATION. 0-14
CYLINDER OVERFLOW-SIZE

PARAMETER. 4-16
DEVICE-ADDRESS PARAMETER. 4-14'
4-30. 4-38. 4_52. 4-54

DEVICE-TYPE PARAMETEK. 4-37. 4-)4
EXPI~ATION-DATE CHECK

PARAMETER. 4-79
FIL~-EXPIRATION DATA

PARAMETER. 4-14
FILE-NAME PARAMETER. 4-12.
4-29. 4-37

FILE-ORGANIZATION PA~AMETER. 4-12
FROM PARAMETE~. 4-19
GENERAL OVERFLOW PA~AM~TER. 4-13
IMA~D PARAMETER. 4-43
INDEX-SIZE PARAMETFR. 4-16
INIOJT PARAMETER. 4-37
ITEM-KEY PARAMETER. 4-13
ITEM-LENGTH PARAMETER. 4-15. 4-J9
LOW-~EMORY-ADDRE55 PARAMETER. 4-4)
MA5TER/CYLINDER INDEX

PARAMETER. 4-18
MEMBER-LENGTH PARAMETER. 4-20
MEMBER-NAME PARAMETER. 4-19. 4-44
MODE PARAMETER. 4-41
OMI5510N OF 51NGLE PARAMETER FR0M

MACRO CALL. 3-25
OVERFLOW PARAMETfR. 4-18
PAD~ING-CHARACTER PARAMETER. 4-41
PARIIY PARAMETER. 4-40
PA55~ORD PARAMETER. 4-13.
4-30. 4-41

PROGRAM-5EGMENT-NAME
PARAMETER. 4-45

PROTECTION-5TATUS PARAMETER.
4-14. 4-42

RECORD-LENGTH PARAMETER.
4-1~. 4-39

RELEA5E PARAMETER. 4-43
REPORT-NUMBER PARAMETER. 4-43
5TRING-5IZE PARAMETEK. 4-17
5UMMARY OF MCA PARAM~TER

VALUE5. 3-49
5UMMARY OF MIOC PARAMETER

VALUES. 3-36
TO PARAMETER. 4-19
VOLU~E-NAME PARAMETE~. 4-17.

4-29. 4-52

PARAMETERS
DEVICE-ADDRE55 PARAMETER5. 4-20
OMI5510N OF CONSECUTIVE PARA~ETtK5

FROM MACRO CALL. 3-25
PARA~ETER5 OF MCA MACRO CALL. 3-39
PARAMETER5 OF MIOC MACRO CALL.

3-21. 3-36
PARAMETER5 OF MPCA MACRO

CALL. D-6.1
PARAMETER5 OF MPIOC MACRO

CALL. 0-4
PARAMETER5 OF THE MPCA MACRO

CALL. 0-6
5PECIAL CON51DERATION5 FOR

5PECIFYING PARAMETERS. 0-13

PARITY
PARITY PARAMETER. 4-40

PARTITIONED
ACTION MACRO CALLS (~OR PARTITluNED

5EQUENTIAL FILES ONLY). 3-17
CL05ING SEQUENTIAL AND PARTITIONED

SEQJENTIAL FILtS. 3-10
LOADING A PARTITIONED SEQUENTIAL

FILEt 4-58
OPENING pARTITIONED SEQUENTIAL

FILES. 3-8
PARTITIONED SEQUENTIAL FILES. 4-)8
PROCESSING A PARTITIONED SEQUENTIAL

FILE BY MEMRER NAMES. 4-58
PUTTING ITEMS TO 5EQUENTIAL AND

PARTITIONED SEQlIENTIAL
FILE5. 3-17

REPLACING ITEMS IN 5EQUENTIAL ANJ
PARTITIONED SFQUENTIAL
FILE5. 3-16

INDEX

RETRIEVING ITEMS IN SEQUENTIAL AND
PARTITIONED SEOUENTIAL
FILES. 3-11

UNLOADING A PARTITiONED SEQUENTiAL
FILEt 4-58

PARTITIONING
PARTITIONING A SEQUENTIAL

FILE. B-1
5EQJENTIAL FILE USING PARTITIONING

OPTION. B-4

PASSWORD
PASS~ORD PARAMETER. 4-13.

4-.30. 4-41
PASSwORD pROTECTION. F-2

PAUSE
CONSOLE TYPEWRITER PAUSE CODFS AND
M~SSAGES FOR LOGICAL 1/0 C. 3-ij3

PERCENTAGE
CYLINDER OVERFLOW AS PERCENTAGE WF

DATA AREA. C-13

PERIPHERAL
FIXED PERIPHERAL ADDRESS

ASSIGNMENT. 0-13
PERIPH~RAL ADDRE5S

ASSIe,NMENT. 0-14
PERIPHERAL ADDRESS ASSIGNMENT AND

RWC CONFIGURATION
CONSIDERATIONS. 0-13

PERIPHERAL CONDITIONS. 4-71. 4-ijj
VARIABLE PFRIPHERAL ADDRESS

ASSIGNMENT. 0-13

PHYSICAL
DETAILED DESCRIPTION OF PHYSICAL

1/0 C MACRO ROUTINES. 0-3
LAN~JAGE [LEMENTS OF PHYSICAL 1/0

C. [)-4
OPERATINe, PROCEDURES FOR PHYSICAL

II;:> c. D-Zl
PHYSICAL RACKUP. 2-27
PHYSICAL 1/0 C. 0-1
PHYSICAL I/O C RELATIONSHIpS wII,1

MCA. 3-69
PHYSICAL 1/0 C RELATIONSHIPS wllrl

MIOC. 3-69
PROGRAMMER'S PREPAPAIION

INFORMATION FOR PHYSICAL 1/0
C. 0-12

USE UF PHYSICAL 1/0 C. 0-1

PLUS
RANDOM PLUS SEQUENTIAL FILES. C-2

POIt-.TS
EXAMPLE-SUMMARY OF OPTIMUM

POINTS. C-2::1

POSITION
USIN~ THE ITFM POSITION OF A

DELETED ITEM, 2-21

PREFIX
FILE PREFIX. 0-15

PR~PARATION
FORMATTING AND VOLUME

PREPARATION. 2-3
PROGRAMMER'S PREPARATION

INFORMATION FOR FILE SUPPORT
C. 5-57

PROGRAMMER'S PREPARAIION
INFORMATION FOR LOuICAL 1/0
C. 3-64

PROGRAMMER'S PREPARATION
INFORMATION FOR PHYSICAL 1/0
C. D-12

.'

PRIME
PRIME DATA AREA. 2-11
PRIME NUMBER DiViSION. E-1

PRINTER
UNLOADING MASS STORAGE FILES ONTO

PRINTER. 4-67

PRINT-IMAGE
PRINT-IMAGE FILES. G-2

PROCEDURE
RE-EXECUTION OF CORRECTION

PROCEDURE. 0-20

PROCEDURES
BACKUP PROCEOURES. 2-27
CONSOLE TYPFWRITER OPERATING

PROCEDURES. 3-82
CONTROL pANEL OPERATING

PROCEDURES. 3-77
OPERATING PROCEDURES FOR FILE

SUPPORT C. 4-68
OPERATING PROCEDURES FOR LOGICAL

1/0 C. 3-77
OPERATING PROCEDURES FOR PHYSICAL

1/0 C. 0-21

PROCESSED
ASSIGNMENT OF FILES TO BE PROCESSED

CONCURRENTLY. C-4

PROCESSING
ACTION MACRO CALLS FOR EACH FIL~

TYPE IN EACH PROCESSING MODE. 3-6
ACTION MACRO PROCESSING

FUNCTIONS. 3-4
DIRECTLY PROCESSING AN INDEXED

SEQUENTIAL FILE. 2-13
END PROCESSING OF CURRENT MEMEB~R

(ENDMI. 3-18
FILE PROCESSING FUNCTIONS. 2-27
FILE PROCESSING MODES. 3-4
FOREGROUNDIBACKGROUND PROCESSINu OF

FILE SUPPORT C. 4-1
INPUT-ONLY PROCESSING MODE. ~-4
INPUT/OUTPUT PROCESSING MODE. 3-4
MULTIVOLUME FILE PROCESSING. C-l
OUTPUT-ONLY PROCESSING MODE. 3-4
PROCESSING A PARTITIONED SEQUENTIAL

FILE BY MEMBER NAMES. 4-58
PROCESSING CONVENTIONS. 2-26
SEQUENTIAL OR DIRECT

PROCESSING. 2-26
SET PROCESSING TO BEGINNING OF

SPECIFIED MEMBER (SETMI. 3-17
SETTING PROCESSING TO A SPECIFI~D

LOCATION. 3-22

PROGRAM
FILE SUPPROT C PROGRAM. 1-5
LOGICAL 1/0 C PROGRAM. 1-4
PROGRAM ORGANIZATION. 3-22. 3-64
PROGRAM SEGMENT LOADING. 3-68

PROGRAM-SEGMENT-NAME
PROGRAM-SEGMENT-NAME

PARAMETER. 4-45

PROGRAMMER'S
PROGRAMMER'S PREPARATION

INFORMATION FOR FILE SUPPORT
C. 5-57

PROGRAMMER'S PREPARAT10N
INFORMATION FOR LOGICAL 1/0
C. 3-64

PROGRAMMER'S PREPARATION
INFoRMATION FOR PHYSICAL 1/0
C. 0-12

PROTECTION
DEVICE PROTECTION. 0-14

INDEX

FILE PROTECTION. F-l
MASS STORAGE FILf PROTECTION. F-1
PASS~ORD PROTECTION. F-2
PROTECTION DURING ALLOCATE. 4-70
PROTE.CTlON DURING DEALLOCATE. 4-·'0
PROTECTION DURING

LOAD-UNLOAD. 4-70
PROTECTION DURING MAP. 4-70
PROTECTION OF MASS STORAGE DURIN~

EXECUTION OF FILE SUPPORT C. 4-10
WRITE PROTECTION. F-1

PROTECTION-STATUS
PROTECTION-STATUS PA~AMETER.

4-14. 4-42

RADIX
RADIX CONVERSION. E-4

RANDOM
RANDOM PLUS SEQUENTIAL FILES. C-2
RANDOM VERSUS SEQUENTIAL

FILES. C-2

RANDOMIZING
RANDOMIZING ADDRFSSING. E-l
RANDOMIZING TECHNIQUES. E-1

READ
READ ACTION. 0-2
READ ACTION MACRO CALL. 0-10
READ ACTION MACRO ROUTINE. 0-17
TYPE OF READ OR WRITE (TRWI. 0-15

READIWRITE
READ/WRITE CHANNEL UTILIZATION.

3-70. 0-12

RECORD
BLOCK AND RECORD SIZES WITHIN lZK

MEMORY. 4-6
OPTIMUM RECORD SIZE - TYPE 261 O~

TYPE 262 DISK FILFS. C-7
OPTIMUM RECORD SIZE - TYPES 258 259

OR 259A DISK PACK D~IVES. C-5

RECORD-LENGTH
RECORD-LENGTH PARAMETER.

4-15. 4-39

RECORDS
BOOTSTRAP RECORDS. 2-3
DATA RECORDS. 4-65
HANDLING TRACK LINKING

RECORDS. 0-18
RELATIONSHIP BETWEEN ITEMS AND

RECORDS. 2-5
RELATIONSHIP BETWEEN ITEMS ~ECO~OS

AND BLOCKS. 2-5
RELATIONSHIP BETWEEN ITEMS RECO~DS

BLOCKS AND BUCKETS. 2-24
TRACK-LINKING RECORDS. 2-8

REGISTER
ADDRESS REGISTER CONTENTS AT TIME

OF ERROR EXIT (EDFI' 0-20

REGISTERS
INDEX REGISTERS. 3-6Y
USE OF INDEX REGISTE~S. 0-13

RE-EXECUTION
RE-EXECUTION OF CORRECTION

PROCEDURE. 0-20

RELATED
CONDITIONS RELATED TO NON-MASS

STORAGE FILE. 4-71
FILE RELATED CONDITIONS. 4-72
SUFFIX OF RELATED MPIOC. 0-15
TYPEwRITER MESSAGES FO~ CONDITIONS

RELATED TO NON-MASS STORAGE

I~

FILES. 4-83

RELATIONSHIP
RELATIONSHIP BETWEEN ITEMS A~D

RECORDS. 2-5
RELATIONSHIP BEtWEEN ITEMS OF TnE

MASTER AND CYLINDER INDEX. 2-14
RELATIONSHIP BETWEEN ITEMS RECORDS

AND BLOCKS. 2-5
RELATIONSHIP BETWEE~ ITEMS RECO~DS

BLOCKS AND eUCKETSt,2-24
RELATIONSHIP BETWEEN ~TRING INDtX

ITEMS AND THE DATA ARhA OF A
CYLINDER. 2-15

RI:.LATIONSHIPS
PHYSICAL 1/0 C RELATIONSHIPS WiTH

MCA. 3-69
PHYSICAL 1/0 C RELATIONSHIPS WITH

MIOC. 3-69

RELEASE
RELEASE COMPLETE FILl:. TO UNUSED

STATE (MSREL). 3-19
RELEASE PARAMETER. 4-43
RELEASE (MSREL). 3-61

REPLACE
REPLACE (MSREP), 3-58

REPLACING
REPLACING ITEMS IN DIRECT ACCES~

FILES. 3-16
REPLACING ITEMS IN FILES. 3-15
REPLACING ITEMS IN INDEXED

SEQuENTIAL fiLES. 3-16
REPLACING ITEMS IN SEQUENTIAL AND

PARTITIONED SEQUENTIAL
fiLES. 3-16

REPORT-NUMBER
REPORT-NUMBER PARAMETER. 4-43

RESTORE
RESTORE ACTION. D-2
RESTORE ACTION MACRO CALL. D-11
RESTORE ACTION MACRO ROUTINE. D-18

RESTRICTIONS
MIOC RESTRICTIONS. 3-67

RETRIEVING
RETRIEVING ITEMS IN DIRECT ACCE~S

FILES. 3-13
RETRIEVING ITEMS IN FILES. 3-11
RETRIEVING ITEMS IN INDEXED

SEQUENTIAL FILES. 3-12
RETRIEVING ITEMS IN SEQUENTIAL AND

pARTITIONED SEQUENTIAL
fILES. 3-11

RETURN
EXIT AND RETURN CODES FOR DATA

EXITS. 3-75
EXiT AND RETURN CODES FOR DEViCE

EXITS. 3-76
EXIT AND RETURN CODES FOR MEMBER

INDEX EXITS. 3-75
EXIT AND RETURN CODES FOR VOLUME

DIRECTORY EXITS. 3-73

ROUTINE
COMMUNICATION AREA MACRO ROUTINt

(MPCA). D-3
CONTROL MACRO RoUTINE (MPIOC). D-3
CORRECTIVE ACTION FOR USER.S ERROR

ROUTINE, D-21
FILE DESCRIPTION MACRO ROUTINE

(MCA). 3-2. 3_38
INPUT/OUTPUT CONTROL MACRO ROUTINE

(MIOC), 3-26
LOKDEV ACTION MACRO ROUTINE. 0-18

INDEX

MASS STORA~E INPUTIOUTPUT CONTRUL
MACRO ROUTINE (MIOC)' 3-2

READ ACTION MACRO ROUTINE. D-17
RESTORE ACTION MACRO ROUTINE. D-18
STRUCTURE Of OWN-CODING

ROUTI NE. 4-61
USER'S UNCORRECTABLE ERROR

ROUTINE. D-19
USER'S UNCORRECTABLE ERROR ROUTINE

ENTRANCE (EAD). D-15
VERIFY ACTION MACRO ROUTINE. D-18
WAIT ACTION MACRO ROUTINE. D-18
WRITE ACTION MACRO ROUTINE. D-17

ROUTINES

RWC

ACTION MACRO ROUTINES. 3-2. D-4
COMMUNICATION AREA SERVICE MACRO

ROUTINES (MLCA ANC MUCA). 3-50
COMM~NICATION AREA SI:.RVICE MACRO

ROUTINES (MLCA AND MUCA). 3-2
CONSIDERATIONS FOR ACTION MACRO

ROUTINES. D-17
DETAILED DESCRIPTION OF PHYSICAL

1/0 C MACRO ROUTINES. D-3
SUMMARY OF LOGICAL I/O C MACRO

ROUTINES. 3-2. 3-3

PERIPHERAL ADDRESS ASSIGNMENT AND
RWC CONFIGURATION
CONSIDERATIONS. D-13

SAMPLE
LISTING OF SAMPLE UNLOAD-TO-PRI~TER

FUNCTI ON. 4-69

SEEK
SEEK ACTION. D-2
SEEK ACTION MACRO CALL. D-ll
SEEK (MSEEK). 3-62

SEEKING
SEEKING A DESIRED CyLINDER. 3-22

SEGMENT
-PROGRAM SEGMENT LOADING. 3-68

SEGMENTATION
MIOC SEGMENTATION. 3-65. 3-66

SELECTED
LOADING SELECTED MEMBERS. 4-58
UNLOADING SELECTED MEMBERS. 4-5~

SEQUENCE
ITEM SEQUENCE. C-17
JOB CONTROL FOR A SEQUENCE Of

OPERATIONS. 4-9
KEY OUT Of SEQUENCE. 4-63

SEQUENTIAL
ACTION MACRO CALLS (fOR PARTITIONED

SEQUENTIAL FILES ONLY). 3-17
ALLOCATING AN INDEXED SEQUENTIAL

FILE. 4-59
CLOSING INDEXED SEQUENTIAL AND

DIRECT ACCESS FILES. 3-10
CLOSING SEQUENTIAL AND PARTITIONED

SEQUENTIAL FILES. 3-10
DIRECTLY PROCESSING AN INDEXED

SEQUENTIAL FILE. 2-13
EXAMPLE-OPTIMIZATION FOR AN INDEXED

SEQUENTIAL fiLE. C-23
INDEXED SEQUENTIAL. 3-72
INDEXED SEQUENTIAL FILE
CONSIDERATIONS. C-17

INDEXED SEQUENTIAL FILE
ORGANIZATION. 2-9

INDEXED SEQUENTIAL FILES. 4-59
INSERTING ITEMS IN INDEXED

SEQUENTIAL FILES. 3-20
LOADING A PARTITIONED SEQUENTIAL

:.

I

FILE. 4-58
LOADING AN INDEXED SEQUENTIAL

FILE. 4-59
OPENING AN INDExeD S~QUENTIAl

FILE. 3-8
OPENING PARTITIONED SEQUENTIAL

FILES. 3-8
OPENING SEQUENTIAL FILES. 3-6
PARTITIONED SEQUENTIAL FILES. 4-~8
PARTITIONING A SEQUENTIAL

FILE. B-1
PROCESSING A PARTITIONED SEQUENIIAL

FILE BY MEMBER NAMES. 4-58
PUTTING ITEMS TO SEQUENTIAL AND

PARTITIONED SEQUENTIAL
FILES. 3-17

RANDOM PLUS SEQUENTIAL FILES. C-2
RANDOM VERSUS SEQUENTIAL

FILES. C-2
REPLACING ITEMS IN INDEXED

SEQUENTIAL FILES. 3-16
REPLACING ITEMS IN SEQUENTIAL AND

PARTITIONED SEQUENTIAL
FILES. 3-16

RETRIEVING ITEMS IN INDEXED
SEQUENTIAL FILES. 3-12

RETRIEVING ITEMS IN SEQUENTIAL AND
PARTITIONED SEQUENTIAL
FILES. 3-11

SEQUENTIAL FILE
CONSIDERATIONS. C-4

SEQUENTIAL FILE ORGANIZATION. 2-8
SEQUENTIAL FILE USING PARTITIONING

OPTION. B-4
SEQUENTIAL FILES. 5-57
SEQUENTIAL OR DIRECT

PROCESSING. 2-26
UNLOADING A PARTITIONED SEQUENT1AL

FILE. 4-58
UNLOAOING AN INDEXED SEQUENTIAL

FILEt 4-60

SERVICE

SET

COMMUNICATION AREA SERVICE MACRO
ROUTINES (MLCA ANC MUCA). 3-50

COMMUNICATION AREA SERVICE MACRO
ROuTINES (MLCA AND MUCA). 3-2

COMMUNICATION AREA SERVICE MACRO
CALLS (MLCA AND MUCA). 0-3. O-~

SET LOCATION (SETL). 3-62
SET MEMBER (SETM). 3-59
SET PROCESSING TO BEGINNING OF

SPECIFIED MEMBER (SETM). 3-17

SElL
SET LOCATION (SETL). 3-62

SElM
SET MEMBER (SETM). 3-59
SET PROCESSING TO BEGINNING OF
SP~CIFIED MEMBER (SETM). 3-17

SETTING
SETTING PROCESSING TO A SPECIFI~O

LOCATION. 3-22

SIZE
BLOCK SIZE. C-2
BUCKET SIZE AND OVERFLOW, C-I0
OpTIMUM RECORD SIZE - TypE 261 OR

TYPE 262 DISK FILES, C-7
OPTIMUM RECORD SIZE - TYPES 258 259

OR 259A DISK PACK DRIVES, C-5
SIZE STATEMENT, 4-15

SIZES
BLOCK AND RECORD SIZES wITHIN 12K

MEMORY, 4-6

INDEX

SPACE
INSUFFICIENT SPACE. 4-62

SPECIFIC
CONDITIONS SPECIFIC TO FILE SUP~ORT

C, 4-77
TYPEwRITER MESSAGES SPECIFIC TO

FILE SUPPORT C, 4-86

SPECIFICATION
CONSIDERATIONS FOR MPCA PARAMET~R

SPECIFICATION. D-14
CONSIDERATIONS FOR M~IOC PARAMEltR

SPECIFICATION. 0-14
ITEM KEY SPECIFICATION. 3-71

SPECIFIED
SET PAOCESSING TO eEGINNING of

SPECIFIED MEMBER (SETM). 3-17
SETTING PROCESSING TO A SPECIFI~D

LOCATION. 3-22

SPECIFYING
SP~CIAL CONSIDERATIONS FOR

SPECIFYING PARAMETEKS. 0-13

SQUARE
SQUARE ENFOLD AND EXTRACT. E-2

STATuS
ALTER STATUS OF MEMBER

(MALTER), 3-19
CONTROL UNIT CURRENi ADDRESS ANU

STATUS, D-16
DATA ITEM STATUS CHARACTER.

2-20, 2-25
MPCA CONTROL UNIT CURR~NT ADDRESS

AND STATUS FIELD. D-16

STORAGE
COMPRISING BETWEEN ACCESS TIME AND

STORAGE CAPACITY. C-22
CONDITIONS RELATED TO NON-MASS

STORAGE FILE, 4-71
LOADING FROM MASS STORAGE TO MASS

STORAGE' 4-59
MASS STORAGE FILE PROTECTION, F-1
MASS STORAGE INPUT/OUTPUT CONTROL

MACRO ROUTINE (MIDC). 3-2
MASS STORAGE LOAD COMMUNICATION

AREA MACRO CALL (MLCA), 3-51
MASS STORAGE UNLOAD COMMUNICATION

AREA MACRO CALL (MUCA), 3-51
MINIMUM DEVICE REQUIREMENTS FOR

MASS STORAGE FILE
ORGANIZATIONS, 4-39

OPTIMIZING STORAGE CAPACITY, C-20
PROTECTION OF MASS S rORAGE DUR II~lJ

EXECUTION OF FILE SUPPORT C. 4-10
TYPEwRITER MESSAGES FOR CONDITIONS

RELATED TO NON-MASS STORAGE
FILES, 4-83

UNLOADING MASS STORAGE FILES ONTO
PRINTER, 4-67

STRING
DELETION OF AN ITEM FROM A

STRING, 2-21
INSERTION OF ITEMS INTO A

STRING, 2-16
RELATIONSHIP BETWEEN STRING IND~X

ITEMS AND THE DATA AREA OF A
CYLINDER, 2-15

STRING-SiZE
STRING-SIZE PARAMETER. 4-17

STRUCTURE
DATA STRUCTURE. 2-9
FILE STRUCTURE, 2-11
STRUCTURE OF OWN-CODING

ROUTINE, 4-(,1

SUBSYSTI:M
(QUIPMPH RFOUIRFMf/HS FOR CATA
~ANAGEMENT SUPSYSTEM. 1-7

Joe CONTROL LANGUAGE FOR DATA
~ANAGEMENT SURSYSTEM. 1-6

SUFFIX
SUFFIX CHARACTER. 0-14
SUFFIX of KELATFD MPIOC. 0-15

SUMMARY
SUMMARY of ACTION MACRO CALL

CODING. 3-63
SUMMARY OF JOB CONTROL STATEMENI~
FO~ ALLOCATE FUNCTION. 4-24
SUM~ARY OF JOB CONTROL STATI:~ENIS
FG~ ALLOCATIoN FUNCTION. 4-25

SUMMARY OF JOB CONTROL STATEMENI~
FO~ v[ALLOCATE FUNCTION.
4-33. 4-34

SUMMARY or JOB CONTROL STAIEMENT~
FOil LOAD AfIoD UNLOAD
FUNCTIONS. 4-411

SUMMARY Of JOB CONTROL STATEMENI5
FOR LOAD/UNLOAD FUNCTIONS. 4-49

SUMMARY OF JOR CONT~OL STATEMENI~
FO~ MAP FUfIoCTION. 4-55. 4-56

SUMMARY of LoGICAL 1/0 C ~ACRO
ROuIINES. 3-2. 3-3

SUMMARy OF MCA PARAMI:TER
VALuES. 3-49

SUMMARY of MIOC PARAMETER
VALuES. 3-36

SUMMARY OF MSGET MACHO FUNCTION~
FOR DIRECT ACCFSS FILES. 3-15

SUPPORT
CONDITIONS SPECIFIC TO FILE SUP~URT

C. 4-77
FILE SUPPORT C. 4-1
FILE SUPPORT C HALTS. 4-78
fiLE SUPPORT DIAGNOSTICS FOR 5040

HALT. 4-74
FORECiROUND/BACKGROUt\D PROCESSINIJ OF

FILE SUPPORT C. 4-1r
FOR"IAT OF FILE suppa T C ExECUTt.

STATEMENT. 4-8
FUNCTIONS OF FILE SUPPORT C. 4-2
GENERAL DESCRIPTION uF FILE SUP~URT

C. 4-1
JOB CONTROL LANGUAGE FOR FILF

SUPPORT C. 4-8
LOADING FILE SUPPORT C. 4-68
OPERATING PROCEDURES FOR FILE

SUPPORT C. 4-68
OPERATOR CONTROL AND MESSAGES FUR

FILl: SUPPORT C. 4-70
PROGRAMMER'S PRfPAPATION
I~FORAMTION FOR FILE SUPPORT
C. 5-57

PROTECTION OF MASS STORAGE DURlll(j
EXECUTION OF FILE SUPPORT C. 4-(0

TYPE~RITER MESSAGES SPECIFIC TO
FILE SUPPORT C. 4-86

SUPPORT
FILE SUPPORT C PROGRAM. 1-5

SYSTEM
MOD
MOf)

TAPE

CMSR) OPERA"TING SYSTEM. 4-68
CTR) OPERATING SYSTEM. 4-10

1/2-INCH TAPE FORMAT~. 4-63
TAPE AND CARD FILE

CONSIDERATIONS. 4-63
TAPE MARKS. 4-66

TAPE-RESIDENT
OWN-CODING CONSIDERATIONS FOR

TAPE-RESIDENT OPERATION. 4-61

INDEX

TECHNI;.jJES
RAND:lMIZING TECHNIQUI:S. E-I

TERM IIIAL
CREATION OF TERMINAL FILES. ~-I
TERMiNAL FILES. G-I

TIME

TR

ADDRESS REGISTER CONTENTS AT TIME
OF ERROR [XIT CEOF). ~-20

COMPRISING AETwEEN ACCESS TIME AND
STO~AGE CAPACITY' C-22

OPTI~IZING ACCFSS TIME. C-18

MoD 1 CTH) OPERATING SY5Tl~. 4-70

TRACK
HANDL I NG TRACK LI NKI NG

RECORDS. 0-18

TRAC(-LIN~ING
TRACK-LINKING RlCORDS. 2-11

TRACKS
TRAC(S REQUIRED FOR MASTER/CYLI~OER

INDlX. C-25

TkAILER
TRAILER LABEL. 4-66. 4-61

TRw
TYPE OF READ OR WRIT~ CTRW). 0-15

TYPE
ACTION MACRO CALLS FOR EACH FIL~

TYPl IN EACH PROCFSSING MODE. ~-6
DIS(PACK CYLINDER CONCEPT - TY~E

259 ~ISK PACK DRIVES. 2-2
ERROR TYPE INDICATOR CI:RI). 0-19
ILLUSTRATION OF UNITS OF ALLoCAIION
- TYPE 261 OR TYPF l62 DISK
FILE. 2-7

OPTIMUM RECORD SllF - TYPE 261 uR
TYPl 262 DISK FILES. C-7

TYPE Of READ OR WRITE CTHW). D-1~

TYPES
OPTIMUM RECORD SIZE - TYPES 258 l59

OR 259A DISK pACK CHIVES. C-5
TYPES OF OVlRFLOW. C-17

TYPEWRITER
CONS:lLE TYPEWRITER OPERATING

PROCEDURES. 3-82
CONSOLE TYPEWRITER pAUSE CODES AND

MESSAGES FOR LOGICAL 1/0 C. 3-03
JOB CONTROL FILE CONSOLE TYPFWRITER

MESSAGES. 4-85
OPERATOR CONTROL WIlH CONSOLf.

TYPEWRITER. 4-83
TYPEwRITER MESSAGES FOH CONOITluNS

RELATED TO NON-MASS STORAuE
FILI:S. 4-83

TYPEwRITER MESSAGES SPECIFIC TO
FILE SUPPORT C. 4-86

UNCORRECTABLE
USER'S UNCORRECTABLE ERROR

ROUTINE. 0-19
USER'S UNCORRECTARIE ERROR ROUTINE

ENTRANCE CEAD). 0-15

UNIT
CONTROL UNIT CURRENT ADDRESS ANv

STATuS. 0-16
DATA UNiT OF ALLOCATION. 4-19
MPCA CONTROL UNIT CURRI:NT AOORE~S

AND STATUS FIELD. D-16

UNITS
ASSIGNMENT OF UNITS OF

'" .. ;

, ..

ALLOCATlO~, C-3
ILLJST~ATION OF UNITS OF ALLOCATION
- TYPE 261 OR TYPE 262 DISK
FlU:., 2-7

UNITS OF ALLOCATION, 2-6
UNITS STATEMENT, 4-11

UNLOAD
LOAD AND UNLOAD FUNCTIONS' 4-33

UNLOAD
JOB CONTROL LANGUAGE EXAMPLES Fu~

LOAD AND UNLOAD FU~CTIONS, 4-45
JOR CONTROL LANGUAGE FOR LOAD AND

UNLOAD FUNCTIONS, 4-35
MASS STORAGE UNLOAD COMMUNICATIJN

AREA MACRO CALL (MUCA), 3-51
SUMMARY OF JOB CONTROL STATEMENTS

FOR LOAD AND UNLOA&
FUNC TI ONS, 4-48

UNLOAD, 4-2

UNLOADI~G
JOB CONTROL STATEMENTS FOR LOADING

AND UNLOADING FILES, 4-35
LOADING OR UNLOADING, 4-60
UNLOADING A DIRECT ACCESS

FILE, 5-57
UNLOADING A PARTITIONED SEQUENTIAL
FILt. 4-58

UNLOADING AN INDEXED SEQUENTIAL
FILl, 4-60

UNLOADING BY FILE, 4-58
UNLOADING MASS STORAGE FILES ONT0

PRII'lTER. 4-67
UNLOADING SF.LECTED ~EMBERS. 4-5~

UNLOAD-TO-PRINTER
LISTING OF SAMPLE UNLOAD-TO-PRI.;JER

FUNCTION. 4-69

UNUSED
MAP JNUSED AREAS. 4-6
RELEASE COMPLETE FILl TO UNUSED

STAlE (MSR[L). 3-19

USABLE
ADDITIONAL USABLE EQUIPMENT. 1-1

USER'S
CORRECTIVE ACTION FO~ USER'S ERHOR

ROJTlNE, D-21
USER'S UNCORRECTABLE ERROR

ROJT! NE, 0-19

IUDEX

USER'S UNCORRECTABLE ERROR ROUTINE
ENTRANCE (EAD), D-l~

UlILlZAlION
READ/WRITE CHANNEL UTILIZATION,

3-70, D-12

VALUES
SUMMARY OF MCA PARAMlTER

VALJES, 3-49
SUMMARY OF MIOC PARAMETER

VALUES. 3-36

VARIABLE
VARIABLE PERIPHERAL ADDRESS

ASSIGNMENT, D-13

VE:RIFY
VERI~Y ACTION, D-2
VERIFY ACTION MACRO lALL, D-ll
VERIFY ACTION MACRO ROUTINE, D-18

VOLATILI TV
DISTRIBUTION AND VOLATILITY, C-17

VOLUME
ExiT AND RETURN CODES FOR VOLUM~
DI~ECTORY EXITS, 3-13

FORMATTING AND VOLUME
PREPARATION, 2-3

VOLJME CONVENTIONS, 2-1
VOLuME DIRECTORY, 2-3, A-3
VOLJME LABEL. 2-3, A-2
VOLJME LABEL AND VOLUME:

DIRECTORY, A-I
VOLJME STATEMENT, 4-29. 4-52

VOLUME-NAME
VOLUME-NAME PARAMETEH, 4-17.

4-29, 4-52

WAIT
WAIT ACTION. 0-2
WAIT ACTION MACRO CALL, 0-11
WAIT ACTION MACRO ROUTINE. 0-18

wRITE
TYPE OF READ OR WRITE (TRW), 0-15
WRITE ACTION, 0-2
WRITE ACTION MACRO CALL. 0-10
WRITE ACTION MACRO ROUTINE, 0-17
WRITE PROTECTION, F_I

•

I

Honey~ell

, ,.

.~
\

,.... . .. \

-

l.

HONEYWELL
TECHNICAL PUBLICATIONS REMARKS FORM *

TITLE: MOD 1 (MSR)
DATA MANAGEMENT SUBSYSTEM

ERRORS NOTED IN PUBLICATION:

DATED: DECEMBER, 1968

FILE NO: 123.6005. 141C. 5-618

Fe'oI

L~-r+

I

~ I
::il

~I
~ 1---
~ I SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION:
3,

l
.'-1

Fo'oI

(Please Print)
FROM: NAME ___________________________________ ___ DATE _________ _

COMPANY __________________________________ __

TITLE ____________________________________ _

ADDRESS __________________________________ _

\..(
-'I

, * Your comments will be promptly investigated by appropriate technical personnel, action will be taken as I req uired, and you will receive a written reply. If you do not require a written reply, please check here O. •
I

------------- .----........ -... ',.,.,--,.--,.--~ ..
I
I
I
I
I
I
.-"

--------------------------------------~--------------

ATT'N: MARKETING INFORMATION SERVICES, MS 251

Honey",ell

PERMIT NO. 39531

NEWTON HIGHLANDS

' /

I--
I
I
I~

I
I
I

.~ - '

,.

--

