¢

Con Sdan)

- HONEYWELL

GENERAL SYSTEM:

SUBJECT:

SPECIAL
INSTRUCTIONS:

SOFTWARE

MOD 1 (MSR)

DATA MANAGEMENT
SUBSYSTEM

SERIES 200/OPERATING SYSTEM - MOD 1
(MASS STORAGE RESIDENT)

Programming and Operating Procedures for
the Data Management Subsystem of the Mod 1
(MSR) Operating System.

This edition completely supersedes the manual
of the same name dated May 31, 1968, It is
one of a series of manuals describing the Mod 1
(MSR) Operating System. Refer to the Preface
for other related information, The portions of
this publication containing new and changed in-
formation are indicated on page iii.

INCLUDES UPDATE PAGES PUBLISHED AS ADDENDUM NO. 1 ON"
AUGUST 29, 1969, AND ADDENDUM NO. 2 ON JANUARY 5, 1970.

DATE: December 3, 1968

N 0644

10M
10170
Printed in U.S. A,

*
FILE NO,: 123.6005.141C.5-618

* Underscoring denotes Order Number.

PREFACE

This manual describes the Data Management Subsystem of the Series 200/Operating
System - Mod 1 (Mass Storage Resident). Besides this manual, other pertinent publications
include the following:

Mod 1 (MSR) Operating System Summary Description (Order No. 615);

Supervisor (Order No. 616);
Program Development Subsystem (Order No. 617);

Utility Routines (Order No. 619); and

Operating Procedures (Order No. 620).

The introductory bulletin cited above is prerequisite reading to this manual and the other
manuals listed, In addition, a publications guide is provided in the introductory bulletin to aid

the reader in his study of the system.

Section I describes the basic elements of the Data Management Subsystem. Section II
gives the concepts relating to data and volume conventions and the rules of file organization.
Section III describes the input/output routines associated with data files, and, finally, Section
IV describes the file support routines. A series of appendices offers other topics of related

interest to the reader.

Mod 1 (MSR) Data Management Subsystem is a coded system
designed to extend the power of Series 200 in the area of data
control. It is supported by comprehensive documentation and
training; periodic program maintenance and, where feasible,
improvements are furnished for the current version of the
system, provided it is not modified by the user.

Copyright 1970
Honeywell Ing.
Wellesley Hills, Massachusetts 02181

#5-618

Cadt .

e gt e

o NEW AND CHANGED INFORMATION

This edition incorporates a number of additions and changes reflecting the added capability

of the Mod 1 (MSR) Operating System to process volumes containing bad tracks., (This capability

is fully described in the Utility Routines manual,) These changes occur for the most part in

Sections III and IV, particularly in tables listing halt codes, console messages, and exits.

Because of the addition of this capability, it has also been necessary to expand the entries in

Tables A-1 and A-2, Volume Label and Volume Directory.

Besides the informationnoted above, the following changes have also been made:

Sectign ITT, Logical I/O0 C,

A supplementry list is typed out at the console giving information relevant
to device condition messages and file I/O condition messages,

PUCS

Section IV, File Support C.
The ability to load or unload a sequential file to a direct access file on
mass storage.
File Support diagnostics for the 5040 halt have been expanded.

A number of minor corrections have been made to the text, and, wherever necessary,

explanations have been clarified or expanded.

iii #5-618

Section I

Section IT

Section III

TABLE OF CONTENTS

Introduction........coivuuns cecirieerae e Geeneans
Data Management Conventions......eveeveeesacss esecaancans
Logical I/O C Program.......

File Support C Programeeceesosescsscssssssssosesccns
Job Control Language for Data Management Subsystem.,......
Equipment Requirements for Data Management Subsystem.,...
Required Equipment . .ececesesescscasssssscsssescasesnsss
Additional Usable Equipment .eeeseeesseessscscscosancsnas

Data Management Conventions...cceeeececcoccencescncseosssans
Volume ConventionsS.eeceseseeesssscoccsssccscsssssssssssss
Formatting and Volume Preparation..cececececsesecsssconcs

Bootstrap Records ..ccecesescecccssonesan cestesesnansens
Volume Label.ceecscsoccrssocsocscsoscssnssassossecsssonns
Volume Directory covoeeceecssrecsocasesseosocnsnons
Data Conventions «..e.0ececcess cesesanes cerecsercescsanns .o

Allocation Conventions. .cceeceseesecessaccccscsoossvnooccessns
Units of Allocation..cceeeeeeocsecesososasocccscssosccsnvanns
Track-Linking Records «.coceeeeencncocanns cetevasareene

File Organization Conventions ..c.eoeveeescsseccrsesssasasocos
Sequential File Organization..eceeceseesseossaccsosssoscnns

Allocation.eeeeeeeoesosscesasccscossssssssacsssocasons
Data Structure,.ccceeesccecossssccenscssscsasscccsonsas
Indexed Sequential File Organization cssceseesesssccccsces

Allocation...«.. cesssesasa eesssaseesacanans esecereea .
File Structure.....ce... searesesns crecs et asasens .
Prime Data Areacecececccese cesensnee
Index ATeas cvveeeecncsocasenes seeseasesusassssncn

Overflow AreasS .ccscecesecsccsssssssenscoscnsasoonns
Directly Processing an Indexed Sequential File.e.ooossse
Data Item Status Character cecsecsersercesosns

Direct Access File Organization cc.ceeecoescescsocnsvocse
AlloCation.sosecsscsccsccscossccsoncocsncsssnssassscsos
File Organization..ceeceeveveccscsscsccassssscscocsose

Data AT cseecesssscscsssssonsosssssssnssscsssansse

Overflow Areas.es.-o. ceceessenartoneeseste e oans
Direct Access Files and KeySeeoevesoesaoes cerecvsosne
Data Item Status Character «ce.veeee crecscsneenstenns
Cumulative Loading of a Direct Access File seeeeevnnsen

Processing Conventions ..eeoeese cesesescssesessecsssssnnes
Sequential or Direct Processinge.c.cecececesccscesssccsccnsnse
Volume Processing Functionscceceececcoccccacsaces
File Processing FunctionS:esececocscccoscsocsssvccecsons
Backup ProceduresS.esescscscecsessessssescscnsscsscsnocns

Logical BackUpPeecososcersoesecsesoosssancscssascscanas
Physical BaCkUp cesesscessesscsccacovsssnssscsccscsccns

LogicAl I/O C tivennevsoscossncressssssessossssassonnasasacns
Mass Storage Input/Output Control Macro Routine (MIOC)

iv

S N =
]

13
— D D D 0000 00 OO WW W W= =]~ =O0 U

[
——O

[SSJ AS TN oSN WSTR O 2 o VNN O I S ST o5 N OS2 WS TN o B o SN GU I oV AU o 8
]

3
[

2-11
2-12
2-13
2-20
2-20
2-23
2-23
2-23
2-23
2-24
2-25
2-25
2-26
2-26
2-26
2-217
2-21
2-27
2-27

3-1
3-2

#5-618

N

Q.

Section III {cont)

8/29/69

TABLE OF CONTENTS (cont)

File Description Macro Routine (MCA)......
Communication Area Service Macro Routines (MLCA and

MUCA)......

Action Macro Routines . ccessecsevevascecocscossssasssscnsas
Summary of Logical I/O C Macro Routines cceeeceessscesscnss

File Processing ModeS..sesecrscccsacccse

LI I S S S A N B AN N

Input/OQOutput Processing Mode..ceeeeeesecccvcsocscoansanns
Input-Only Processing Mode .cccvecccrensccocccsonnncanss
Output-Only Processing Mode cveeseccess
Action Macro Processing Functions ceecesceeccecccsaccscccnse
Opening Files ceceseescsrocescncenrencscosrsocscsccansnss

Opening Sequential Files ceevesnecsanss

Opening Partitioned Sequential Files ..
Opening an Indexed Sequential File
Opening Direct Access Files vcoeceaen

Closing Files..

eeecesenseert s

Closing Sequential and Partitioned Sequential Filess... ...
Closing Indexed Sequential and Direct Access Files ¢ce...
Retrieving Items in Files ceccosecccsncsn
Retrieving Items in Sequential and Partitioned Sequential

FileS ceeoesecnssccesscccsanscosnns

es 0000 scer e

s s c0casessses s

Retrieving Items in Indexed Sequential FileScceeececcasce

Retrieving Items in Direct Access Files ccesececacccnnas
Replacing Items in FileSeaaocesscesccacsssscsscssscosscaas

Replacing Items in Sequential and Partitioned Sequential

FileS svveesssceoccsoscsosacsscsssscsssassnsosocccnas
Replacing Items in Indexed Sequential Files cocecsaesc.. oo
Replacing Items in Direct Access Files...c.vcecennans .o

Putting Items to Sequential and Partitioned Sequential Files..
Action Macro Calls (for Partitioned Sequential Files Only)...
Set Processing to Beginning of Specified Mémber (SETM).
End Processing of Current Member (ENDM)....veveennns
Alter Status of Member (MALTER)....
Release Complete File to Unused State (MSREL)........
Inserting Items in Files «....veeeencanns
Inserting Items in Indexed Sequential Files...cceeecvcoes
Inserting Items in Direct Access FileS.ieveoeeseossccens
Deleting Items from Files cceeeiecececcsccsoscscscssscccee
Seeking a Desired Cylinder..ceoceceecceese
Setting Processing to a Specified Location
Program Organization seceeeecnscecccncacns
Language Elements for Logical I/O C.vecereosscnrecorcensses
Input/Output Control Macro Routine (MIOC)eecceteecosconnn
MIOC Macro Call.veeecevsecssesosanee
Parameters of MIOC Macro Calle.scceecesascacsensocanse
File Description Macro Routine (MCA) cccceesecaccccscsene
MCA Macro Call cieveoeocsescsnsccassosnsccccansscssces
Communication Area Service Macro Routines (MLCA and

MUCA)......

e s ecssseoecenccren

o0 eecs0s000 00000

Page

w
1
[\

ooyt)
— = = OO OO O BRI BRDNDINVN

WWWbwwwWwwwwwwwwwwwww
]

w
]

—

o

3-12
3-13
3-15

3-16
3-16
3-16
3-17
3-17
3-17
3-18
3-19
3-19
3-20
3-20
3-21
3-21
3-22
3-22
3-22
3.23
3-26
3-26
3-36
3-38
3-.38.1 |

3-50
#5-618

Section III (cont)

Section IV

TABLE OF CONTENTS (cont)

Mass Storage lL.oad Communication Area Macro Call

(MLCA)..iveseeacocsnns

L R N N R Y

Mass Storage Unload Communication Area Macro Call

(MUCA) et ivenernnnnns

Communication Area Field Designatorseececeicececess

Action Macro Calls ,...c000
Open (MSOPEN) ..cc000ss

Close (MSCLOS) cve.ceewns
Get (MSGET)eeeereceeses
Replace (MSREP) ...040.
Insert (MSINS) cocverosan
Delete (MSDEL) ..vecese

e e v et s 00 s00000 0

® 9 0 0% 000000 eP e et OO

e s s 000000000 sstesess e

s s 000000

Put (MSPUT) tveeeeescoccossessccssosssccssssssses
Set Member (SETM) (veeeesesnccscsscesssosnssssons

End Member (ENDM)....
Alter Member (MALTER)

Release (MSREL)
Set lLocation (SETL) ..cecs.s

Seek (MSEEK)ieeesessass

e s s e s s 00 et ersesss e

Programmer's Preparation Information for Logical

I/OC tiineeveocraconssseosveatsenossssnsccscsnncsnns
Logical I/O C Memory RequirementSesssecscsasssssss
Program Organization sseveceeeccccscesssccncesenes

MIOC Segmentation ceeescecoscscsscscceccssacens
MIOC Restrictions.ceescseossecssssssccoccsonscs
Physical I/O C Relationships with MIOCccev..
Physical I/O C Relationships with MCA ..ceueevens
Address Mode eseeeseocnccescscnsssccsnssassnscocanas

Index Registers ¢veeecese

Read/Write Channel Utilization «......

Direct Access Addressing

Item Key Specification
Direct AcceésSeeeeeacoss

Indexed Sequential
Exits and HaltS..oeoeeees

LR RN A A A S IR I A B I B Y

ee s s s sesenvavss

es e v s e es0 v 0t s seces0 0

Operating Procedures for Logical I/OC ...ceverncennes
Control Panel Operating Procedures ...ecceccecesccss
Console Typewriter Operating Procedures cc.eeesvese

File Support C cevccececseasesncecsssscssccnsssesssocsosacas
General Description of File Support Ceceseceseecencessccns
Foreground/Background Processing of File Support C ¢cevse
Functions of File Support Ceeceseerccasisccstoccsscsssacss

AllOoCAtE cseecrvssocscscrssssscsssassenassnsssassssncscs

Deallocate .veeecassssoncas

Load ..cc0n veosesssessssans
Unload.,eeceesococccacsocnsnss

Map cceecencsscnsarnacenns

vi

sece s e

e s s s s s e e s eesrses s s

3-51
3-52
3-54
3-55
3-56
3-56
3-58
3-58
3-59
3-59
3-59
3-60
3-60
3-61
3-62
3-62

3-64
3-64
3-64
3-65
3-67
3-69
3-69
3-69
3-69
3-70
3-70
3-71
3-71
3-72
3-72
3-77
3-77

w
1

o
[\

R G NN N R TN
1
NIVINDVINDND ==

#5-618

&

[$4

Section IV (cont)

TABLE OF CONTENTS (cont)

Map Description of @ Filesseeeesecsoceesasssccscscse
Map Expired FileS cececsevesosoersescssccsasasssssce
Map Unused Areas ceeeesvssassacs esdesscaccscsnnes

ConsiderationS..ce..

Number of Functions Performedcc00v.e cessasee .o
Block and Record Sizes Within 12K Memory..cceee... oo

Job Control Language
Execute Statement

for File Support Cecvevecnccncoecse .

R R I A I I R A A A A A S I AT S S I I BRI A

Job Control for a Single Operation .«...veeceeccescssens
Job Control for a Sequence of OperationSec.csessecececese

Allocate Function ...

@e 000 s 00 ecsoeeceros 0000 e vt RO ee

Job Control Language for Allocate Function «e.cevecescs
Execute Statement «..ceeceecectocectsccccscscraces
Function Statement........ ceesrscsnsecsnasrsssanas

File Statement.

LI I A R A N I A I A I A I I I SR A A N A A

File-Name Parameter cccecesescsocacscascsesssasace
File-Organization Parameter.ccecseccceccasccccss
General Overflow Parameter ccceecseesccsscssccas
Item-~Key Parameter ccececsccsccscssssnsssaccnse
Password Parameter..... ecesessecssansessecsee
File-Expiration Date Parameter cc.ecceveoceccacs
Protection-Status Parameter....cec.... ceseseoas

Device-Addr
Size Statement

ess Parameter essececsessesance

...... L R R I R N B I R B R S A A S

Record-Length Parameter cecscsssescsnans

Item-Length

Parameter .ccceececesccsecscasnnsse

Block-Size Parameter coceeceossecsossrscesscscscass
Bucket-Size Parameter ceceveccecssscscscsscsncss
Index-Size Parameter ..cceeeceescsscnsassscsacs
Cylinder Overflow-Size Parameter..c.ccceeeocccces
String-Size Parameter.cecsccsescescscasssccanee
Units Statement .eeecemecssesscoossssscsassacncnsss
Volume-Name Parameter ceceeseccassccssasosssse
Master/Cylinder Index Parameter cesesscscessses
Overflow Parameter .cceceescsscsssscscsssssacsas
Data Unit of Allocation seeeececscsessnsasacessses
FROM Paramet@r.cceceeceecscscssesccssscscscne
TO Parameter......... cesevacnas escecserssenes
Member Statement .. .c.cec0e. eecscscsecsacsscescsens
Member-Name Parameterocececesocsssnscns
Member-Length Parametercconeeecececcses
File Statement for the List File s civeceteescccsccons

Device-Addr
Day Statement

ess Parameters .civeececcorsccesccosns

9 © 5 6 5060000000600 000080000000008s000e0

Job Control Language Example for Allocate Function....
Summary of Job Control Statements for Allocate

Function ¢ e eeee.
Deallocate Function

vii

g

(Y
0

o

1
=0 \D 0O 000NN ONO IV

1
[a
NN~ O

Lol ol o N S SN S N N S S Y T N
]

4-12
4-12

‘4-13

4-13
4-13
4-14
4-14
4-14
4-15
4-15
4-15
4-16
4-16
4-16
4-16
4-17
4-17
4-17
4-18
4-18
4-19
4-19
4-19
4-19
4-19
4-20
4-20
4-20
4-21
4-21

4-24
4-28

#5-618

TABLE OF CONTENTS (cont)

Section IV {cont) Job Control Language for Deallocate Function..........
Execute Statement oo ccvseeecsossacssssarsscossssnas
Function Statement «.c.eiseessorsssossseossscsscsscna
Volume Statement v.evesseeeesascocecscasssossanss

Volume-Name Parameter...cceceeeeseacsosscacans
File Statement ccceeeasesceosscacnsassocaccscsssocns
File-Name Parameter..scececesecscrsoscsssscsas
Expiration-Date Check Parameter .vooveeecescsescas
Password Parameter.csesceccscersasscoanssososss
Device-Address Parameter cceoeceececesocacssnns
Day Statement.eecscecesssssaseascssssasscssssnsans
Job Control Language Example for Deallocate Function..
Summary of Job Control Statements for Deallocate
Function...eseeeeccsceccscncstsscscsasassancssoscsnsans
Load and Unload FunctionS..sesececessscscssasassscasasns
Job Control Language for Load and Unload Functions....
Execute Statementeeseescecccsaccssscssccssnss

Function Statement ¢ vcevevsens ceeevssaase e P
File Statements v.veseceececsscoccosnas cseseesanns
In/Out Parameterceceeeenenes cesersensnonse
File-Name Parameter..ceeeeecsscscccenocess sese
Device-Type Parameter....... cectectsctcscaocsenn
Device-Address Parameter .coeveeceecee eessseccnce

Item-Length Parameter ccecieuieiececsenccasannss
Record-Length Parameter...cceceeeeceveccasasannss
Banner-Character Parameter ..ceeeceescracsnssns
Parity Parameter..cceeeeeecececscecosencanaanss
Padding-Character Parametereeeeevecsoncss
Mode Parameter ...seeeecscecscsosssoscsnssnans
Password Parameter..cosvecescsssscscsassnnsses
Bucket-Addressing Parametero00ecseeessacs
Protection-Status Parameterveecsscaccanas
Imbed Parameter.......... teseeseencnsanas
Release Parameter Geeensesecacssansens
Report-Number Parameter cesecsannanns
Member Statements c.ececeecscssas csececcsesesenes
Member-Name Parameter.coeceesscssssecsnroas
Exits Statement ¢ cceseeescoscosescsssssscsossasaans
Program-Segment-Name Parameter......... cesn
Low-Memory-Address Parameter..cceeesececceans

Job Control Language Examples for Load and Unload
Functions.eiseeeeseeececcecerscsasocsnsusnscnssnse
Summary of Job Control Statements for Load and Unload
Functions.sieeescesesnceccecscscsocecencssssccsaese
Map FUunction .seseeccsecoscesescscsesccscssonncsesassns
Job Control Language for Map Function...eeseeoeensssss
Execute Statement .. ceeeeeecsoocsosssessssocosanss
Function Statement .c.cetveisresensssocassosasosanes

viii

Page

4-28
4-28
4-29
4-29
4-29
4-29
4-29
4-29
4-30
4-30
4-31
4-31

4-33
4-33
4-35
4-36
4-36
4-36
4-37
4-37
4-37
4-38
4-39
4-39
4-40
4-40
4-41
4-41
4-41
4-42
4-42
4-43
4-43
4-43
4-44
4-44
4-44
4-45
4-45

4-48
4-51
4-51
4-51
4-51

#5-618

L8

TABLE OF CONTENTS (cont)

Page

Section IV (cont) Volume Statement cveveessecesccscssosssssssssesees =52
Volume-Name Parameter ...cceecececcecssceseess 4=-52
Device-Address Parameter....coeceveesacencecss 4-52

File Statement eececerseeseetesssccacnsorsassceansees 4-53
Day Statement ecececoescocescssoscssosssessssoscases 4=53
File Statement for the List File cveeecececscoscescsss 4=53
Device-Type Parametercsccseececcssosscscasases 4=54
Device-Address Parametere.cececcscoccesesceaas 4=54
Job Control Language Examples for Map Function.s..... 4-54
Summary of Job Control Statements for Map Function.... 4-55
Programmer's Preparation Information for File Support C.. 4-57
File Considerations cececescscssscssosscccsssesasccses 4=57
Direct Access FileSeeassssssssssessccessssccnccasss 4=57
Unloading a Direct Access File coeecscecccscseeee 4-57
Loading a Direct Access Fileseeecsssesssessessss 457
Sequential File€Secesesossescenserssanscasvssncsssssee 4=57
Partitioned Sequential FileSeeoossseecocesoscsassosanss 4-58
Unloading a Partitioned Sequential File ceeceevee.. 4-58
Unloading by File.veeeeosescscssceasccnssansss 4=58
Unloading Selected Members.sceecssssccesseces. 4-58
Loading a Partitioned Sequential Filecseeseosseess 4-58
Loading by File,.,vveeecseosccccsssasceccenss 4-58
Loading Selected Members.ceseesesesscssseces 4-58
Processing a Partitioned Sequential File by Mem-
ber Names sseeesesssossossasscsassacasanseses 4-58
Loading from Mass Storage to Mass Storage....... 4-59
Indexed Sequential FilesS ceveoesececossccsosoascccess 4-59
Allocating an Indexed Sequential File sesesesssoess 4=59
Loading an Indexed Sequential File vceeeseesocesss 4=59
Unloading an Indexed Sequential Fileceesosesaeeass 4-60
Mixed File Organizations seceeeecscsccessasssccsass 4-60
Loading or Unloading sseeeeesssscccscsscasssasss 4-60
Own-Coding Considerations ecesesesessesescassesesas ee. 4-60
Structure of Own-Coding Routine.scseeesessasassasss 4-61
Own-Coding Considerations for Tape-Resident
Operation...ceceeveevscsesescsesocncs cetestsacens
Own-Coding Communication with Load/Unload
Functioneccesececcacescossccsosstsncscscssscsccnnos
Omitting Items from the Output File..coveveenaens
Invalid Bucket Addresses..cccecceccevsssccsccosces
Insufficient Space.scceieccteececccnscsccacensss
Entrance to General Overflow .eceececcasccsccecs
Key Out of Sequence ,,.cceeeecesssescscncoscassans
Tape and Card File Considerations cceeceeccscsscsccsces
1/2-Inch Tape FOrmatS.ceessscaseosssocacsscascnaas
Header Label cooeeesesovvocscessccaacocsscasaas
Data RecOords coeeeesccccscesccccsconsscsccsccces
Padding Items.veceeeeecsectesctscanrocncncans

NS
[

o

N

R N O T O N T N T
[} !
cscoccoooooooOrOOCNONON

o WWwWwwwihnN N

ix #5-618

Section IV (cont)

Appendix A
Appendix B
Appendix C

TABLE OF CONTENTS (cont)

Trailer Label e e ceenens esena
Tape Marks cecenessesseance Ceosocecsacanes

Card File Formats ce.oeeeas

Header Labeleseseceoecesescoscascsosssssassnas

Data ItemS cceecrscees
Trailer Label .o.vcee

C R N N N ER]

Unloading Mass Storage Files onto Printer sccceevaeces
Operating Procedures for File Support C.cceeeeveeroncans

Loading File Support C

LR I A B R R R N I A N A A A)

Mod 1 (MSR) Operating SystemMeceseecscccssceoscses
Mod 1 (TR) Operating System «ceseesececscsccsocaas
Protectionof Mass Storage During Execution of File

Support C.oveereneeennens

Protection During Map....

R R A N N I R I R A I R AR Y

Protection During Allocate ccesseeessacesscseccnosse
Protection During Deallocate covseseecsescosconsansnas
Protection During 1.oad/Unload «veceeeosasecacsooses

Operator Control and Messages for File Support Covenns
Operator Control with Control Panel. ceeceeseece
Peripheral Conditions ¢ceeeveeccarecnccens

File Related Conditions....

Job Control File Conditions..ecesescesscnocvonns
Conditions Specific to File Support C.cvveeceennns
Operator Control with Console Typewriter coceeceess

Peripheral Conditions.

File-Related Conditions ...
Job Control File Conditions.cceecececcsscssscces
Typewriter Messages Specific to File Support C...
Failure During Allocation and Deallocation.scceeecss

Failure During Allocation...

s 0 e s 000000 s s e 00000000000

e e s 000 s 0000000000

Failure During Deallocation..c.ceeecesocecncoans

Volume Label and Volume Directory.ieceeccsscescccoccascocsse

Partitioning a Sequential Filecoeteeeeceeccrsoscecassasscanss

File Design and Allocation..cceoesccescecsccscccccccaccssans

File Design Criteria ¢eceeasee

Application Considerations..... O N
File AdditionSeeeeesssececoses Geecetssevecesansons

File InquirieS.vseaeceecss

Random Versus Sequential FileS veevveeescoosonssnce
Random Plus Sequential FileS voeeveeecsoccesccscens
General File Design ConsiderationsS...cecevesceccsccass

Block SizZ€ceeeecoocseones

s 00 esve0seonccssssne e

Assignment of Units of Allocation «eeceeecsccesccsas
Multivolume File Processing ceceeesecsceccccsscscas
Assignment of Files to be Processed Concurrently...

Sequential File Considerations

Page

4-66
4-66
4-66
4-66
4-67
4-67
4-67
4-68
4-68
4-68
4-70

4-70
4-70
4-70
4-70
4-70
4-70
4-70
4-71
4-72
4-72
4-717
4-83
4-83
4-84
4-84
4-86
4-93
4-93
4-94

| I R R R B |
BB W W NN NN ke e b b e e b

oo w o o»
[}

#5-618

¥

A%

.

TABLE OF CONTENTS (cont)

Page
Appendix C (cont) Allocation..... ceetean Gt eecatieaceratacceeaessanannes c-4
Direct Access File Considerationse.... cececsenas ... C-10
Bucket Size and Overflow cececesnsan esesecenns .. C-10
Allocationeeseeesesccesns Cerecessacenn vessecssessses C-12
Indexed Sequential File Considerations.....eeece. ceeessess C=17

Design ConsiderationsS..cceeeeeseeessocssssssssacssesas C-17
Ttem SEQUENCE seesersserscssecasssssssossscssnceses C-17

Distribution and Volatility.eeeeescese cesesrescassess C=17
Types of Overflowe.ecoeeooseesoscassssescssancases C-17
Optimization cceeececccccecacacas ceecessasssscsseesess C-18

Optimizing Access Time ccveessesceccsosscsosaseasss C-18
Optimizing Storage Capacity..ceeecieeosscscsessesss. C-20
Comprising Between Access Time and Storage

Capacityeeeesseass teerenn ceeeenan ceesesnea sees. C-22
Allocation....... e cecetsersstsnnntann ceescann ceeseen C-24
Data Cylinders Required....... crensescecenraas eees C-24
Tracks Required for Master/Cylinder Index.......... C-25

Appendix D Physical I/OC cieveereeransacnconeas Ceceseseescectasannns
Use of Physical I/O C +ovevcnccvesooccassassscssssaonens
Read Action sveeseeeceeseseceosescsosssonancscnssanss
Write Action teeeececcocassccss cessscsectesccsacsanes
Wait ACtiOn ceeeescsscscceecseseocsacassascsassnsnanns
Restore Action seveeeeecccececcscosacecasscsossnsnses
Verify Action..seeceeeecsececscccoscsscsasccscanasacns
Seek ACtion coveceeecosossessosossescscossosscnssccnasnes
Detailed Description of Physical I/O C Macro Routines
Control Macro Routine (MPIOC) cvevveetnesescacancanan
Communication Area Macro Routine (MPCA)......00s.. .

UUUUU?UUUUU
WWWNNNNNN =~

Communication Area Service Macro Calls (MLCA and
MUCA) it eveacnssssecnsncas Cevecsacscnanen sesses D-
Action Macro Routines seseeececoscerincrssoscassnonsns D-

Language Elements of Physical I/O Cevievinvnessecscnnnss D
Control Macro Call (MPIOC) ccieeeoseesscasssssssscess D
Parameters of MPIOC Macro Call +scieevesccasane eeeses D=
Communication Area Macro Call (MPCA).veeseneceecsess D
Parameters of the MPCA Macro Call vovvvevevescansnes D
Communication Area Service Macro Calls (MLCA and

MUCA) teveovocoorssescoscacsassssscssnssssasassssssss D=9
Action Macro Calls cecvevescesoscesssscssessssssnsaee D=-10
Read Action Macro Call.ceeceescccoesscnssascencass D=10
Write Action Macro Call ceveeeescacscsscscccascnenss D=10
Wait Action Macro Call tececeecscrsesccsssccsansaas D=11

Restore Action Macro Callot veineennss cesesee D-11
Verify Action Macro Call S D FS B |
Seek Action Macro Call voeevncececcens essessccessses D-11

Programmer's Preparation Information for Physical I/O C.. D-12
Address Mode tseesreeesceceenonssconcreccanssacseneaes D-12

xi #5-618

TABLE OF CONTENTS (cont)

Appendix D {cont) Read/Write Channel Utilization....eeveeeeeeeeronoanees
Special Considerations for Specifying Parameters
Use of Index Registers.ueetesesecssscncsenscannnans
Peripheral Address Assignment and RWC Configura-
tion Considerations.ssesesssneesscecsecesencannens
Fixed Peripheral Address Assignment cvoeeeeeaesa
Variable Peripheral Address Assignment.cs.oaoass.
Considerations for MPIOC Parameter Specification......
Suffix Character.eeeecsseesessoscosseosccssosnaocccnas
Peripheral Address Assignment v..eeveeecovccaseese
Device Protection «.c.eeieenninntsitnessnnnesanoeas
Considerations for MPCA Parameter Specificationeesesa..
File PrefiX ceeeeeecasoccecssonsasesnensssnsossocssca
Suffix of Related MPIOCsc0vevecssssesccsassnss
Buffer Address (AAD)ieeeessecsccasssasccsscscasancs
User's Uncorrectable Error Routine Entrance (EAD)..
Type of Read or Write (TRW).vieeeaseoasesaceansans
Control Unit Current Address and StatUS.eeeescsocass
Considerations for Action Macro Routines ..evseescescee
Read Action Macro Routin€..ecesee~ssesssssacossssns
Write Action Macro Routine ceseeesecsceccsosscsnesea
Verify Action Macro Routine seeececescsssccsscssose
Wait Action Macro Routine covevseeevenenrvecnccanas
Restore Action Macro Routine .o eeeeeeereecencosenes
LOKDEYV Action Macro Routine . ..ovevvvscocossocans
Handling Track Linking Records ceceeeeeeececeeccnnn
User's Uncorrectable Error Routine cvoceececesessosses
Error Type Indicator (ERI).eeeereceocossceccancannns
Address Register Contents at Time of Error Exit
(EDF) cecconeassoncsnccsscsosscsscssosssssanaonns
Re-execution of Correction Procedureceeceseescesese
Bypass Error Condition..eseeecececccscscocssnccnnss
Issue New Action Macro Call ceveececcovoscocoscsncs
Operating Procedures for Physical I/O C sivececonsaceanas

Appendix E Randomizing Techniques cccesecoccececcsccvcscscscsnscssscsss
Randomizing Addressing....ceceiveeeeseeccensconnconenss

Prime Number Division ¢.cevesovesesscanssscsssscess

Square Enfold and Extracteeeecsscsscccsscccsscscnces

Radix Conversion ceececeececcncsscacsscssosssssssssoascss

Nonnumeric Item Keys ciieeeececcccscencssccscccsasnas

Multifield KeYS .0, ivrenserssnrsssesscessarssssssanss

Frequency AnalysisS s veecesesccsecsccsssssssoscscsnassans

Appendix F Mass Storage File Protection.sececescsesecssscscssscasssannas
File Protection.ceeececscecesccesssesscsoscsssscsssssnscnsnse

Write Protection teeceeveccsscossosssccssssccscscscsasscss
Password Protection.ecsceecreeccscsocacsesccecsscccsonoscss

Appendix G Terminal Files....eioeneiereereeceecrtencnoacnscascacnnnes
Creation of Terminal FilesS e.vvevectsencecscscansasocenaea

8/29/69 ' xii

[L
~N OO b Y e

| I B |
ON b N b

QQ HH-Hy OEonEEEEE

un

=

TABLE OF CONTENTS (cont)

Page
Appendix G (cont) Print-Image Files covveeceeecccccccsocsescssncscscnsnoess G=2
Card-Image Files co.cvvveeeeenensn cevecaan ceressesareaes G=-2
LIST OF ILLUSTRATIONS
Figure 2-1, Disk Pack Cylinder Concept - Type 259 Disk Pack Drives.sssoes 2-2
Figure 2-2. Relationship Between Items and Records..... ceetenanans ceeses 2-5
Figure 2-3. Relationship Between Items, Records, and Blocks evccvueeenens 2-5
Figure 2-4, Illustration of Units of Allocation - Type 261 or Type 262
Disk Filecsvesoeoesn Cesrcsasneoss N ceseas 2-17
Figure 2-5. Relationship Between Items of the Master and Cylinder
IndeX ceeiveetuiresncocesesanonnnstoccnsssanssncssnosances 2-14
Figure 2-6. Relationship Between String Index Items and the Data Area of
a Cylinder (oveeeeceeeoonsesonsssccsssceosnosscsnssssccsssess 2-15
Figure 2-7, Insertion of Items into a String ...ceeeeeescecessssssosecssss 2-16
Figure 2-8. Deletion of an Item from a String c.sceececcecscosccscessecoas 2-21
Figure 2-9. Using the Item Position of a Deleted Item s vecevvevrscecevaness 2-22
Figure 2-10. Relationship Between Items, Records, Blocks, and Buckets.,..,. 2-24
Figure 3-1. Omission of Single Parameter from MacroCall....ccvveeeeees 3-25
Figure 3-2, Omission of Consecutive Parameters from Macro Call cv.eeee. 325
Figure 3-3. Program Segment Loading. cceeceeessecvecsssssecssnccscsosss 3=68
Figure 4-1, Format of File Support C Execute Statementcccveesee.. 4-8
Figure 4-2, Job Control Statements for Allocation of FileS..ceeeteeeancees 4-10
Figure 4-3, Job Control Statements for Deallocate Function..eeeeeeeeene.. 4-28
Figure 4-4. Job Control Statements for Loading and Unloading Files «evs... 4-35
Figure 4-5, Listing of Sample Unload-to-Printer Function «vvveeeeeccoeses 4-69
Figure B-1. Sequential File Using Partitioning Optionccveseececsececeene.. B-4
Figure D-1. MPCA Control Unit Current Address and Status Field......... D-16
LIST OF TABLES
Table 3-1. Summary of Logical I/O C Macro Routines..evecescessssesses 3-3
Table 3-2. Action Macro Calls for Each File Type in Each Processing
MOAE cecevoenceosconcecncoesaccasossnsscssasenssossssonss 3=0
Table 3-3. Summary of MSGET Macro Functions for Direct Access
FileS cineeeeosincecensssesasesssccsosscsscacsoscssssssnses 3=15
Table 3-4, Parameters of MIOC Macro Call..... cesesecsssresrsreassees 3-27
Table 3-5. Summary of MIOC Parameter ValueS...eeeeoea.n eeessecssass 3-36
Table 3-6 Parameters of MCA Macro Call cccerecenracncenasvseane eee. 3-39
Table 3-7. Summary of MCA Parameter Values.«.oveecaes cvereecesnsses 3-49
Table 3-8. Mnemonic Designators for Communication Area Fields....... + 3-52
Table 3-9. Summary of Action Macro Call Coding...v.0e0 ceescensecsess 3-63
Table 3-10 MIOC Segmentation.....eoeeeeaees. I YY)
Table 3-11. Exit and Return Codes for Volume Directory EXitSececesosscees 3«73
Table 3-12. Exit and Return Codes for Member Index Exits coecseossecscses 3=75
Table 3-13 Exit and Return Codes for Data Exits..... crecsesssssccccases 3=T75

xiii ' #5-618

Table 3-14,
Table 3-15,
Table 3-16.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4,
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.
Table 4-9.
Table 4-10.
Table 4-11.
Table 4-12.
Table 4-13,
Table A-1.
Table A-2.
Table B-1.
Table B-2.
Table B-3.
Table C-1.
Table C-2.
Table C-3.
Table C-4.
Table C-5.
Table C-6.
Table D-1.
Table D-2.
Table D-3,
Table D-4.
Table E-1.
1/05/70

LIST OF TABLES (cont)

Exit and Return Codes for Device Exits

Halt Codes for Logical I/O C
Console Typewriter Pause Codes and Messages for

Logical I/0 C

Available Memory per I/O Media for 12K Conflguratlon ceesese
Summary of Job Control Statements for Allocation Function ...
Summary of Job Control Statements for Deallocate Function ...
Minimum Device Requirements for Mass Storage File

Organizations

Functions ...

..

S e 000 s ev 000 e s 000 s es o

Summary of Job Control Statements for Loan/Unload

Summeary of Job Control Statements for Map Function s.seeeees

Conditions Related to Non-Mass Storage File sv.veeerens

Job Control Halt Codes..

File Support Diagnostics for 5040 Halt ...

File Support C Halts
Typewriter Messages for Conditions Rela.ted to Non-Mass

Storage Files ¢vvvvoses
Job Control File Console Typewriter Messages cevenns
Typewriter Messages Specific to File Support C
Volume Label « .. ittt it iiiiii ittt rtennnacanonas

Volume Directory
Fields of Member Index Items
Fields of First Item in Member Index

e s e e

e s e e e

Fields of Last Item in Member Index
Optimum Record Size - Types 155, 258, 259, 273, 259A,

and 259B Disk Pack Drives...

Optimum Record Size - Type 261 or Type 262 Dlsk Files ..444s

Overflow Probabilities
Cylinder Overflow as Percentage of Data Area.....c..v...

Example -Optimization for an Indexed Sequential File «.........
Example-Summary of Optimum Points se.eeveeesessne cesensee
Parameters of MPIOC Macro Call cetecaesecennns oo
Parameters of MPCA Macro Call tecesesisesacnnns
Mnemonic Designators for MLCA and MUCA ceesecsaennunn oo
Corrective Action for User's Error Routinec.. tecscons

Prime Numbers

xiv

4-49
4-56
4-71
4-73
4-74
4-78

#5-618

"

L

SECTION 1
INTRODUCTION

This manual describes the Data Management Subsystem of the Series/200 Operating
System - Mod 1 (Mass Storage Resident), Data management, as described herein, involves:
conventions established by Honeywell for the organization of data, a method of processing data
in files stored on mass storage devices, and a means of transferring data files to or from mass
storage devices. The established conventions include those for preparing a volume for use, data

organization, reserving space on a volume to store a file, and file organization,

To process data in files stored on mass storage devices, a means of accessing the entire
file must be available. The input/output control program provided by Honeywell, called Logical
1/0O C, suppliesthe programmer with this capability. To load and unload datafiles using mass
storage devices, a method of reserving (or allocating) space for the files must be available.

The File Support C program, included in the operating system, enables the programmer to per-
form these functions and, in addition, enables him to delete {(or deallocate) files from mass
storage. To simplify the programmer's task when he performs these functions, a job control
language which is common to the entire operating system is used. The programs included in
the Data Management Subsystem are fully compatible with the bad track handling procedures

described in Appendix B of the manual, Mod 1 (MSR) Utility Routines.

DATA MANAGEMENT CONVENTIONS

The fundamental concept of the Data Management Subsystem is that all data to be processed
by the operating system is organized according to one set of conventions. The conventions es-
tablished for this operating system involve the mass storage volume, data organization, alloca-

tion of space, and file organization.

A volume is a unit of peripheral storage, in this case, a disk pack. Volumes are composed
physically of disk surfaces and logically of cylinders as described in Section II of this manual.
The volume conventions established to ready a volume for use in the system involve preparing
the volume, the volume label, and the volume directory. All mass storage volumes used in this

operating system must be prepared before data is written on them.

Volume preparation is performed by the Volume Preparation C program described in the

manual Mod 1 (MSR) Utility Routines (Order Number 619). The File Support C allocate function

(described later) resefves space on a mass storage volume so that it is capable of accepting the
data file for storage. To ensure that the correct volume is being used, each volume has a label,

The volume label contains the name of the volume and a code indicating the type of disk pack being

1-1 #5-618

SECTION I. INTRODUCTION

used. This information is written into the volume label by the Volume Preparation C program.
The volume directory, also established by the Volume Preparation C program, contains the

names of all files stored on the volume, a description of each file, and information about the size

and location of each file.

The data organization conventions established for this operating system involve defining
the units of data and distinguishing between logical and physical units. The units of data are
items, records, blocks, and files. An item is a logical unit of data; it is the basic unit of in-
formation for a data processing program. A record is a physical unit of data written between
two gaps (interrecord gaps) on a track. A block is a group of one or more records that is trans-
ferred to and from mass storage as a unit. A block contains one or more items. A file is a
collection of logically related items; it is the largest unit of data that can be stored and retrieved

by the operating system.

The conventions established for allocating space on a volume to store a file involve the
concept of "unit of allocation.! The unit of allocation is the basic element in designating the
volume area that is assigned to store a file; it specifies the beginning cylinder and track num-

bers and the ending cylinder and track numbers between which the unit of allocation is stored.

The file organization conventions established for the Mod 1 {(MSR) Operating System in-
volve defining the types of file organization that can be used. At present, the operating system
accepts three basic types of file organization: sequential, indexed sequential, and direct access.

The organization of a file predetermines the methods that can be used to process it.

The sequential file is organized so that items are accessed sequentially, i. e., the items
are retrieved in the same sequence in which they were written, This method of accessing items
corresponds to that used in magnetic tape processing., Thus, any function operating upon a se-
quential file can process only one volume at any given time. Regardless of the number of devices
assigned to a sequential file, the second volume can be processed only after processing of the
first volume is completed. A single exception to this procedure occurs when a sort is performed,
and the item address is present. In this case, the input (sequential) file must be on-line, since

the sort must reaccess each item in the input file in a random manner.

An indexed sequential file is organized so that each item can be processed directly, se-

quentially, or in combination both directly and sequentially.

When an indexed sequential file is loaded by File Support C or processed directly, all vol-

umes of the file must be on-line at all times. An item key is provided to the input/output rou-

1-2 #5-618

£)

3

SECTION I. INTRODUCTION

tines. The item containing this key is located through the indexes. Items must be identified by
a contiguous set of characters within an item. The item identifiers are called "item keys' or

simply ""keys.' A key can be any number of characters long and can appear anywhere within an
item. However, each item key in an indexed sequential file must be the same length and appear

in the same position within each item of the file,

The File Support C load function builds three indexes for the file. The indexes built are a
master index, a cylinder index, and a string index, Overflow areas are initialized at load time.
The indexes are subsequently used in accessing an item in the file. To insert a new item, the
system simply locates the two items in the file which immediately precede and follow the new
item (based on the value of the new item's key), and the new item is placed between them. In-
serting items can cause items to overflow the data area of the file; in such a case, the over-
flowing items are stored in the overflow areas, and the string index entries are adjusted to

indicate this.

The logical sequence of items in an indexed sequential file does not necessarily correspond
to the physical placement of the items. When an indexed sequential file is processed sequen-
tially, items are retrieved in logical sequence from the beginning. The volume(s) containing the
master/cylinder index and general overflow area must be on-line, whereas the volumes contain-
ing only data are processed one at a time. However, File Support C requires that all volumes

be on-line when the file is loaded.

In some applications, an indexed sequential file can be processed both directly and sequen-
tially. One example of such a combination is when processing is to begin at some point other
than the beginning of the file, but is to be sequential thenceforth. All volumes must be on-line

at all times,

A direct access file is organized to provide fast access to items, The file is normally
processed directly; items are retrieved as needed without reading intervening items on the file.

All volumes must be on-line,

A direct access file can also be processed sequentially if it is necessary to process every
itemn in the file, for example, if data is to be unloaded from mass storage ontotape. Volumesare
processed one at a time, and items are processed according to their physical placement on the

file.

The structure of a direct access file is in terms of buckets. A bucket is an area (defined

by the programmer) that contains one or more items, When a bucket contains more than one

1-3 #5-168

SECTION I. INTRODUCTION

jtem, there need not be a relationship between the items. However, use of a randomizing rou-
tine may produce identical addresses for items which may, in turn, be used to form a bucket. A

bucket and a block (defined earlier) can be the same size, or a bucket can contain more than one

block.

A direct access file is divided into a data area, a cylinder overflow area, and a general
overflow area. (The overflow areas are optional.) Because items can be inserted into a direct
access file, any bucket in the file can become completely filled with items. To accommodate
additional items, an area can be reserved at the end of each cylinder. This area is the cylinder
overflow area and is used to store the overflow items from the data area. The possibility exists
that items can overflow the cylinder overflow area. In this case, these items are stored in a

general overflow area which, if present, is the last cylinder in each unit of allocation.

Because items can be inserted and deleted in a direct access or an indexed sequential file,
a method of determining the status of an item position is required. An item position can be used,
unused, or it can contain an item that has been deleted. When an item position is used, it is
called an active item position; when unused, it is called inactive. The last character of each item
in a direct access or indexed sequential file serves as the status character, indicating whether

the item position is active, inactive, or contains a deleted item.

LOGICAL 1/O0 C PROGRAM

The Logical I/O C program provides a method of accessing files and data stored on mass
storage devices. For this operating system, Logical I/O C consists of a set of macro routines
that the assembly-language programmer calls for in his source-language program. The called
routines are specialized (i.e., tailored to a specific need) and assembled in his machine-
executable program by Mass Storage Easycoder Assembler C, described in the manual Operating
System - Mod 1 (Mass Storage Resident) — Program Development Subsystem (Order Number

617). Logical 1I/O C can be specialized and assembled using Library Processor D and Easycoder
Assembler D of the Mod 1 (TR) Operating System,

Logical I/O C consists of four types of macro routines used for: control, file description,
communication area service, and action. The control macro routine is called the mass storage
input/output control (MIOC) macro routine; it provides general control over the entire input/
output process. The file description macro routine is called the mass storage communication
area (MCA) macro routine; it sets up a communication area for a file in which all values neces-
sary to describe the file and the processing options are stored. Pertinent portions of the com-

munication area are available to the programmer and can be altered by him through the use of

1-4 #5-618

»

SECTION I. INTRODUCTION

the communication area service macro routines. Unloading any field of the communication area
available to the programmer is done through the mass storage unload communication area (MUCA)
macro routine. Altering any available field of the communication area is done through the mass
storage load communication area (MLCA) macro routine. The action macro routines that the
programmer includes in the main line of his coding cause the various functions of Logical I/O C

to be performed.

The file processing functions that Logical I/O C performs are summarized below.

1, Open or close a file, verifying and updating the file's directory information.

2. Get, put, or replace individual items in a file, blocking and unblocking as
necessary.

3. Insert an item into or delete an item from a direct access or an indexed

sequential file.
4. Directly access items in a direct access or an indexed sequential file.

5. Establish linkage to the program Physical I/O C. Physical I/O C reads
and writes data, detects errors, and (if possible) corrects errors.

6. Provide exits to user-written label and error routines.

7. Control the overlapping of central processor and input/output operations.

8. Terminate sequential processing on one volume and switch to the next volume.
9. Allow other processing or peripheral data transfers to occur during

cylinder-to-cylinder access time (seek time) of a disk device.

FILE SUPPORT C PROGRAM

3

The File Support C program performs frequently desired functions on mass storage files,

These functions are as follows,

1. Allocation of files to be stored on mass storage volumes.

2. Deallocation of files stored on mass storage volumes.

3. Loading files onto mass storage volumes.

4. Unloading files from mass storage volumes,

5. Listing the contents of the volume directory or the unassigned tracks

of a volume.

The allocate function is used by the programmer to assign areas of one or more volumes
for storing a file and to automatically update each volume directory accordingly. This function
also initializes a newly allocated file automatically. The deallocate function removes all entries
for a file from the directory of each volume on which the file exists. This makes all areas used
by this file available for future allocation. The load function is used by the programmer to load
a mass storage file from cards, tape, or another mass storage file. The unload function is used
to unload a mass storage file onto cards, tape, printer, or another mass storage file. The map
function is used by the programmer to obtain a printed listing based on the contents of the volume

directory.
1-5 #5-618

SECTION I. INTRODUCTION

All File Support C routines are automatically specialized at execution time. This special-

ization is based on parameters supplied by the programmer in the job control statements. There-

fore, it is not necessary for the programmer to perform an assembly operation to specialize

these routines.

JOB CONTROL LANGUAGE FOR DATA MANAGEMENT SUBSYSTEM

The job control language used in this manual is shown with certain typographic conventions

that aid in describing the language precisely. The typographic conventions are as follows,

L,

Use of upper case. Letters or words (that are written in upper case),
numbers, and almost all punctuation marks represent literal information
that the programmer must write exactly as shown in an accompanying
illustration or example.

Use of lower case. Letters or words (including hyphenated words) that are
written without capital letters are generic expressions that represent informa-
tion which the programmer must supply. The generic expressions name or
describe a quantity; the programmer must supply the actual value,

Use of braces. Braces ({ }) enclose information from which the programmer
must make a choice. In other words, enclosed in braces is a list of expressions
and the programmer must use one of these expressions. For example, the
parameter used to specify the type of file organization for which space is

being reserved by the allocate function is shown below.

ORG = | SEQ
PART({ ,
DIR
IND

The programmer chooses the file organization appropriate for the file being
allocated; for example, sequential organization is indicated as follows.

| ORG=SEQ, |

Use of ellipses. An ellipsis (. . .) indicates that an expression can be

repeated. Each repetition has the same format as the first expression.
For example, specification of FROM and TO parameters for the File
Support C allocate function is indicated as follows.

FROM=(c, t), TO=(c,t), « . .

The ellipsis indicates that more than one pair of FROM and TO parameters
can be written. For example, the programmer might write the following
for two units of allocation.

FROM=(1, ¢), TO=(9, 9), FROM=(75, ¢), TO=(99, 9),

1-6 #5-618

~’

».]

(AD]

SECTION I. INTRODUCTION

EQUIPMENT REQUIREMENTS FOR DATA MANAGEMENT SUBSYSTEM

Any peripheral devices used by the Data Management Subsystem, either for system files
or data files, may be assigned to peripheral addresses in either the first or second I/0 sector
(with the exception of the job control file which cannot be reassigned). The following paragraphs
describe the required equipment and the additional equipment usable in the Mod 1 (MSR) Opera-

ting System.

Required Equipment

A Series 200 central processor
Advanced Programming Instructions
One card reader

One printer

12, 288 characters of main memory

One mass storage device and associated control unit, selected from any of the
following combinations:

Control Unit Device Type
157C 155
257C 155
260 258, 259, 261, 262, 273
257 258, 259, 273
257-1 258, 259, 273
257A 259A
257B 259B

Additional Usable Equipment

One card punch

One or more Type 204B Magnetic Tape Unit(s)

One Type 220 Console with additional 4, 096 characters of memory
Up to 32, 768 characters of main memory

Second I/O sector

As many as 8 mass storage devices on each available control unit.

1/05/70 1-7 #5-618

)

3

SECTION II
DATA MANAGEMENT CONVENTIONS

The basic concept in data management is that all data in a system is organized according
to one set of conventions. The set of conventions established for the Mod 1 (MSR) Operating
System involves volume, data, and allocation conventions, as well as conventions for organizing
and processing files. All files in the system, including those supplied by Honeywell for the use
of system programs and those supplied by the user, obey the data management conventions.
These files are managed (created and accessed) by a common set of Honeywell-supplied
programs (i.e., File Support C, Logical I/O C, and Physical I/O C programs). The data
management conventions that have been established for the Mod 1 (MSR) Operating System
provide full user control over data, efficiency in processing data, and ease in programming

and operating.

VOLUME CONVENTIONS

A volume is a unit of peripheral storage, In the Mod 1 (MSR) Operating System, a disk
pack is defined as a volume. Mass storage volumes are composed physically of disk surfaces
and logically of cylinders, as shown by the illustration of a Type 259 Disk Pack Drive in
Figure 2-1, Each disk surface has a series of concentric recording bands called tracks. With
the Type 155 Disk Pack Drive data is recorded on both sides of one disk, Thus, there are two
tracks (00 and 01) per cylinder. With the Types 258, 259, 259A, and 259B Disk Pack Drives
data is recorded on both sides of all disks except for the top and bottom disks, Data is recorded
on the underside of the top disk and on the top side of the bottom disk, There are six disks, and,
thus, there are ten tracks (00 through 09) in each cylinder, The Type 273 Disk Pack Drive
contains 11 disks, and, thus, there are 20 tracks (00 through 19) in each cylinder, The Types
261 and 262 Disk Files contain 128 tracks per cylinder, (For a detailed description of Types
155, 258, 259, 259A, and 259B Disk Pack Drives and the Types 261 and 262 Disk Files, see

Direct-Access Devices and Controls, Order No. 514.)

Cylinders are composed of tracks arranged vertically above and below each other on
different, but adjacent, disk surfaces., Cylinders are numbered consecutively from the outer-
most {(cylinder 000) to the innermost (cylinder 103 or 202 or 127). The number of tracks per
cylinder and the number of cylinders per drive for the various mass storage devices are shown

below.

1/05/70 2-1 #5-618

)

i

b3

SECTION II. DATA MANAGEMENT CONVENTIONS

1/05/70

Tracks per Cylinders per

Device Type Cylinder Drive

155 2 203

258 10 104

259 10 203

273 20 203

259A 10 203

259B 10 203

261 128 128

262 128 128
NOTES: 1. The last four cylinders of Type 258 Disk Pack

Drive; the last three cylinders of Types 155,
259, 273, 259A, and 259B Disk Pack Drives;
and the last three cylinders of the Types 261
and 262 Disk Files are all reserved for system
use.

Type 262 Disk Files are treated in all respects
as two Type 261 Disk Files,

#5-618

SECTION II. DATA MANAGEMENT CONVENTIONS

CYLINDER
202
CYLINDER
]

TRACK @9

TRACK @1

TRACK @2

TRACK £3

TRACK g4

TRACK 25

TRACK 97

TRACK 98

TRACK #9

e
Figure 2.1, Disk Pack Cylinder Concept-Type 259 Disk Pack Drive

2-2 #5-618

1]

wr

SECTION 1I. DATA MANAGEMENT CONVENTICNS

The volume conventions established for the Mod 1 (MSR) Operating System are concerned

with volume preparation, bootstrap records, the volume label, and the volume directory.

Formatting and Volume Preparation

All mass storage volumes in the operating system must be formatted before data can be
written on them. Formatting establishes the size and record number of each record on a track.
Initially, each volume is formatted throughout all tracks on the volume by Volume Preparation
C, a program which is supplied by Honeywell as a utility routine for the operating system and
which must be executed whenever a volume is introduced into the system. Volume Preparation
C formats each track to ensure the quality of the recording surfaces and creates the volume label

and volume directory.

All records other than the last record on a track must be the same size. The last record
on each track must be a track-linking record. The records are numbered in sequence, starting
with record number 00008.

All system files, unless specifically noted, are formatted with a Mod 1 (MSR) standard 250~
character record size. Examples of such are bootstrap records, volume label, volume direc-
tory, executable program file, library file, program development work files, and sort work
files. Portions of a volume that are assigned to files are automatically reformatted whenever

the files are allocated.

Bootstrap Records

The Bootstrap Generator C program, supplied by Honeywell as a utility routine for the
operating systermn, is used to create the bootstrap routine on mass storage volumes any time
after a volume has been prepared for use by Volume Preparation C. The bootstrap routine is
used for loading the system from mass storage into memory. The operating system writes the
bootstrap routine on the first track of the volume Therefore, the first track of each volume

(cylinder 000, track 00) is not available to the user.

Volume Label

The unique identification for the volume is contained in the volume label. The volume label
consists of one 250-character record. It is written as the first record (record 0) on the second
track (cylinder 000, track 0l) of each volume by Volume Preparation C. The contents of the

volume label are listed in Appendix A of this manual,

Volume Directory

The volume directory is written by Volume Preparation C and maintained by File Support C.

2-3 #5-618

SECTION II. DATA MANAGEMENT CONVENTIONS

With the exception of the Type 155 Disk Pack Drive it begins on the third track (cylinder 000,
track 02) and can occupy from three to seven tracks of each volume. For the Type 155 Disk
Pack Drive it begins on cylinder 000, track 0l, record l and occupies all records through
cylinder 001, track 00 and 01. The volume directory is a catalog of all files stored in whole

or in part on the volume. Three sequential files make up the volume directory. The first file
in the volume directory contains the names of all the files stored on the volume, This file is
called *VOLNAMES#* and, in addition to the names of the files, it contains the addresses of the
file description and the file allocation for each file on the volume., The second file in the
volume directory contains the description of each file stored on the volume. This file is called
VOLDESCR and is made up of three distinct areas: an area for general information, an area
for labeling information, and an area for file organization information. For each file, the
general information area of *VOLDESCR#* contains information such as the type of file organi-
zation, item and record size, and the blocking factor, The labeling information area of
#*VOLDESCR* for each file contains information such as the creation date and number of the
file, and the modification date and number for the file. The area of *VOLDESCR?* that contains
information on the file's organization has entries such as the length of the index and the number
blocks in the file for sequential files and the key length and position for direct access files. The
third file in the volume directory is called *VOLALLOC#* and describes the allocation of each file
stored on the volume. If the file is continued on another volume, *VOLALLOC* identifies that

volume, The complete contents of the volume directory are listed in Appendix A of this manual,.

DATA CONVENTIONS

The data conventions established for the operating system involve defining the units of data
and distinguishing between logical and physical units of data. Also included in the following dis-
cussion are the relationships between the units of data. The units of data are: items, records,

blocks, and files.

An item is a logical unit of data. It is the basic unit of information for a data processing
program and is the smallest logical unit of data operated on by the input/output control programs,
For example, an item can be a single policy in an insurance policy file or an individual's account
in a master payroll file. The maximum item size, regardless of the type of file organization, is

4,095 characters.

A record is a physical unit of data, It is that data written between two interrecord gaps on
a track. All data records on a track, just like all data records in afile, must be the same phys-
ical size. A single record is the smallest physical unit of data that is operated on by the input/
output control programs. The record size is the prime determinant of the number of data char-

acters that can fit on a track.

1/05/70 2-4 #5-618

SECTION II. DATA MANAGEMENT CONVENTIONS

A record can contain one item, more than one item, or a portion of an item. The total
number of characters in a given item need not be contained in a single record; i.e., the item's
characters may be interrupted by the interrecord gap (IRG). For example, if the record size
is 250 characters and the item size is 100 characters, two records contain five items. This
relationship is illustrated in Figure 2-2. Procedures for determining the optimum record size

can be found in Appendix C.

RECORD 0 I RECORD 1
250 CH. R 250 CH.
ITEM 0 ITEM 1 ITEM 2 G |ITEM2 ITEM 3 ITEM 4
100 CH, 100 CH. 50 CH. | 50 CH. 100 CH. 100 CH.
]]

«

\ 2

Figure 2-2. Relationship between Items and Records

A block is a physical unit of data. Blocks are defined as a whole number of records trans-
ferred either to or from main memory by a single data transfer operation. A block can contain
one or more physical records, and block size is determined by the user, A block may be con-
tained entirely on one track or may begin on one track and end on another; however, it cannot
begin on one cylinder and end on another. Since it is the contents of a block (i.e., records) that
are transferred to or from memory, a buffer should not be smaller than a block. A block also
contains a whole number of items, The number of items in a block is known as the item-block-
ing factor and may range from 1 through 4, 095. The relationship between blocks, records, and
items is shown in Figure 2-3, Efficient use of mass storage capacity is dependent on optimal

relationship of records to track and blocks to cylinder.

BLOCK 0 BLOCK |
900 CH. 900 CH.
RECORD 0 1 RECORD 1 b3 RECORD 2 1 RECORD 3
450 CH, .
Cl R 450 CH R 450 CH. R 450 CH.
ITEM 0 ITEM i ITEM2, G i ITEM 2 ITEM 3 ITEM ¢ G ITEM 5 ITEM 6 ITEM 7 G { ITEM 7 ITEM 8 ITEM 9
180 CH, 180 CH, 90 CH, l 90 CH. 180 CH. 180 CH, 189 CH. 180 CH., 90 CH. : 90 CH. 180 CH. 180 CH,

Figure 2-3. Relationship between Itemms, Records, and Blocks

A file is a logical unit of data comprising a collection of logically related items. A file is
the largest unit of data that can be stored and retrieved by the operating system. A multivolume
file may exist on volumes assigned to both the first and second I/O sectors; all volumes must be

of the same device class, as shown in the following.

2-5 #5-618

SECTION II. DATA MANAGEMENT CONVENTIONS

Device Class Device Type
A Types 258, 259, 273, 259A, or ~~—’
259B Disk Pack Drives
B Type 155 Disk Pack Drive
C Type 261 or Type 262
Disk File

NOTE: One control unit can control both class A, and Class C devices, but one
file cannot be allocated to different class devices because they have
different capacity parameters (characters per track, track per cylin-
der). Also, one file cannot be allocated across devices of different
transfer rates.

The Type 259A Disk Pack Drive has a lower data transfer rate than the other class A de-

i

vice, but otherwise it is treated similarly by the operating system software.

ALLOCATION CONVENTIONS *

A file can be stored on one volume, or a file can span up to 8 volumes. In the latter case,
portions of the total file are stored on individual volumes. When the entire file is stored on one
volume, it is a single-volume file. When the entire file is stored on more than one volume, it
is a multivolume file and can be assigned to devices connected to the first, second, or both I/O
sectors‘. _The portion of a file stored on one volume (in either single-volume or multivolume _

files) is called a ''file volume. "

Units of Allocation

A "unit of allocation' is the basic element in the designation of an area of the volume as-

signed to the file. The unit of allocation is of the form C1T1C2T2, where C is a cylinder address

and T is a track address. C1l is the first cylinder of the unit of allocation, and CZ2 is the last -
cylinder of the unit, TI1 is the first track used on all cylinders between Cl and C2, and T2 is the
last track used on these cylinders. The operating system maintains the status of the units of -

allocation on each volume through the file allocation index *VOLALLOC*, (see page 2-4) and a
new file cannot be completely allocated if its units of allocation for any volume conflict with the
units of allocation for any file currently allocated on that volume. {(See "Failure During Alloca-
tion and Deallocation, " in Section IV.)

NOTE: In general, it is recommended that, for Types 155, 258, 259 or 273
Disk Pack Drives, the units of allocation of a file be made a full cyl-
inder wide (two, ten, or twenty tracks)., The fewer the number of
tracks per cylinder, the greater the number of accesses to a new
cylinder required. An unnecessary increase in the number of such
accesses can increase the time required to process a file. However,
a file can be any track width as long as all of its data units of allo-
cation have the same width. If files are small or are in communi- -
cation with other mass storage files, cylinder can be shared.

1/05/70 2-6 #5-618

SECTION II. DATA MANAGEMENT CONVENTIONS

When a file has more than one unit of allocation, a unit of allocation for that file cannot
start on the cylinder on which the immediately preceding unit of allocation for that file ended.

See Figure 2-4 for examples.

CYLINDER
12 13,14 15 16 17 18 19 20 80,81 82 83 84 8586 87,

||

000! 02 03 04 05 06 07 08 09 10 I!

TRACK 08

) FLE B .
12 FROM={10,10),
; T0:(16,14.)

Figure 2-4. Illustration of Units of Allocation-
Type 261 or Type 262 Disk File

A multivolume file can use as many as eight volumes. However, all volumes of a multi-

volume file must be of the same device class,

A single-volume file can have up to six units of allocation. Any given file volume used to
store a multivolume file also can have up to six units of allocation, but the maximum number of

units of allocation for an entire multivolume file is sixteen.

All units of allocation for a multivolume file must be assigned consecutively by named
volume. That is, units of allocation may not be assigned on volume A, volume B, volume C,
and then on volume A again. All of volume A's units of allocation must be assigned before any
units of allocation for volume B, etc. are assigned, In this example, volume A has the lowest

volume sequence number, volume B the next higher, etc.

2=17 #5-618

SECTION II. DATA MANAGEMENT CONVENTIONS

If the unit of allocation (C 1T 1C 2T 2) for a file on a Type 261 or Type 262 Disk File were
10-00-16-09, it could be shown graphically as in Figure 2-4 (File A, first unit), In this illus- ~
tration, the mass storage area is shown as if it had been rolled out into a plane., Portions of

two files are shown to illustrate the uniform track-width requirement for the data units.

Track-Linking Records

The last record on each track must be a trackslinking record. Within each unit of alloca-
tion, a track-linking record points to record 0 of the next successive track. The last track-
linking record in the unit points to record 0 of the first track of the next unit of allocation on the
volume. If no succeeding unit of allocation exists on the volume, the track-linking record points

to record O of the physically successive track. For direct access files, the last track-linking

Y

record in a file volume contains the address of record 0 of the first allocated track of the last

cylinder of the file volume.

FILE ORGANIZATION CONVENTIONS

A file is organized according to the method used to access its items. This, in turn, pre-

determines how the file can be processed. That is, if a file is organized one way, its items can
be accessed directly (going directly from one item to another without accessing all the interven-
ing items), and new items can be inserted into the file. If, however, a file is organized another
way, items must be accessed serially, and new items cannot be inserted into the file. Thus, the e

method of file organization controls how the file can be processed.

Sequential File Organization

A sequential file is organized to permit accessing of each item in physical sequence. Thus,
iterns are retrieved in the same sequence that they were written. This type of file organization ~
is intended primarily for a file in which most of the items are processed each time the file is
used. Note that to process this type of file, the transaction input must be sorted to conform to
the sequence of items in the file. This is because each time this type of file is processed, the
first item is accessed first, and then each succeeding item is accessed in turn. New items can-
not be inserted into a file of this type, but existing items can be replaced, There is no need to

uniquely identify each item in the file.

If the sequential file partitioning option is used (see Appendix B), there are several addi-
tional advantages to sequential file organization. With this option, the sequential file can be
segmented into a number of smaller files, called "members.'" Immediate access to the beginning
of any member is possible. Item capacity of each member is independent, but file parameters

are uniform throughout all members of the file.

2-8 #5-618

o

SECTION II. DATA MANAGEMENT CONVENTIONS

ALLOCATION

All the units of allocation for a sequential file are used for data, and all the units of allo-
cation for one file on one volume are collectively called a file volume, The procedure for

determining the unit or units of allocation for a sequential file is described in Appendix C of this

manual. Note that when the partitioning option is used for a sequential file, that file must be
allocated on only one volume. A multivolume partitioned sequential file cannot be allocated or
processed.
DATA STRUCTURE

The data in a sequential file consists of one physically continuous stream of items. Pro-
cessing is done in physical sequence (which corresponds to logical sequence). The end of data in
a sequential file is marked by an item starting with [JEOD¢ (7625462477 octal). This item ap-
pears in the last data item position of each file volume filled with data and after the last data
item of the file. All tracks allocated to a sequential file are used to store data, with the termi-

nal item position of each file volume reserved for [JEOD¢.

Indexed Sequential File Organization

An indexed sequential file is organized so that each item can be accessed in logical se-
quence (like a sequential file) and directly, However, when an indexed sequential file is processed
sequentially, items are retrieved in logical sequence and not necessarily in physical sequence
(unlike a sequential file). To process an indexed sequential file, each item must be uniquely
identified. The item identifiers used are called item keys or just simply keys, An item key
is a contiguous set of characters within an item. A key can be any number of characters long and
can appear anywhere within an item. However, each item key in an indexed sequential file must
be the same length and appear in the same position within each item of the file, as determined by
the user when the file is allocated. In addition, the key of each succeeding item of the file must
be greater (in terms of the binary collating sequence) than that of the item immediately preceding
it. In other words, the first item in the file must have a key whose value (in terms of the binary
collating sequence) is the smallest, and each succeeding item in the file must have a key whose

value (in terms of the binary collating sequence) is larger than that of the preceding item.

Based on the sequential ordering of items and keys in the file, the operating system builds
three levels of indexes for the file, These are called the master index,the cylinder index, and
the string index. The indexes are used in directly accessing an item in the file, To directly
access an item in an indexed sequential file, an item key must be provided to the input /oufput
routines. This key is located in the master index to point to the appropriate block in the cylinder
index, The cylinder index, in turn, points to the appropriate cylinder's string index, The string
index points to the first block of a string containing the item. Since an item can be accessed in

this manner, a new item can be inserted into the file., To insert a new item, the system locates

2-9 #5-618

SECTION II. DATA MANAGEMENT CONVENTIONS

the two items in the file which immediately precede and follow the new item (based on the value
of the new item's key), and inserts the new item between them. Inserting items can cause items
to overflow the data area of the file, in which case, the overflowing items are stored in the over-

flow areas, and the string indexes are adjusted to indicate this accordingly.

To sum up the capabilities afforded by the indexed sequential file organization, the user
can: retrieve (access) and update each item in the file in logical sequence, as in the sequential
file organization; retrieve and update items in any sequence, negating the requirements of sorting
the transaction input to the sequence of the file; add new items to the file, with all adjustments to
the indexes being handled automatically; delete an item from the file, and then reuse the item

position; and retrieve any item in the file, and then all subsequent items in a logical sequence.

ALLOCATION

An indexed sequential file must have a minimum of three units of allocation. The first
unit of allocation must be for the master /cylinder index; the second must be for the general
overflow area; and at least one subsequent unit of allocation must be for data, Of course, on a
single~volume indexed sequential file, all units of allocation will be on one volume, but the se-
quence of units of allocation must be as stated above: master/cylinder index, general overflow,
and then data. The units of allocation for the master/cylinder index and general overflow may
be any width (tracks per cylinder); but a unit cannot begin on the same cylinder as that which
ended the previous unit of allocation. All data units must be of uniform track width, Four

methods of allocating multivolume indexed sequential files are shown below.

Method 1. Master/Cylinder Index on volume A

Overflow on volume B

Data on volumes C through H
Method 2. Master/Cylinder Index on volume A

Overflow

and on volume B

Data

Data on volumes C through H
Method 3. Master/Cylinder Index

Overflow on volume A

and

Data

Data on volumes B through H
Method 4. Master/Cylinder Index

and on volume A

Overflow

Data on volumes B through H

#5-618

'

SECTION II. DATA MANAGEMENT CONVENTIONS

As can be seen, the unit of allocation for the master/cylinder index and that for the general over-
flow cannot be separated by a unit of allocation for data; but the unit of allocation for the master/
cylinder index need not be on the same volume as that for the general overflow. However, the
master/cylinder index must be allocated first, and the general overflow must be allocated im-

mediately after the master/cylinder index and before any data areas are allocated.

The procedure for determining the units of allocation for an indexed sequential file is de-

scribed in Appendix C of this manual.

FILE STRUCTURE

An indexed sequential file is divided into three distinct kinds of areas: prime data, index,
and overflow. The prime data area is the area initially loaded with data. There are two kinds of
index areas, one for the master/cylinder index and one for the string indexes. There are two

types of overflow areas, one for cylinder overflow and one for general overflow.

Prime Data Area

The prime data area is made up of any number of "'strings' that will fit on the data portion
of a cylinder, A string consists of any number of blocks, as specified by the user. Block
length must not exceed one track. Formulas for computing the optimum string size can be found
in Appendix C. The items are entered into each string in succession, according to the se-~
quenced input file, when an indexed sequential file is loaded. Each cylinder allocated to the data
area contains (1) a string index with as many items as there are strings of data on the cylinder
and (2) one or more strings of data, each of which is a user-determined number of blocks long,
followed optionally by (3), a cylinder overflow area. The cylinders allocated for data may or

may not contain cylinder overflow areas.

An additional feature of the prime data area is that the user can specify a number of items
per string as "'imbedded overflow.'" Specifying imbedded overflow causes empty item spaces to
be left at the end of each string loaded in the data area. When new items are inserted into a
string, these item spaces can be used before either the cylinder or general overflow areas

need be used,

Index Areas

The index areas (the master/cylinder index area and the string index areas) contain the
master index, the cylinder index, and the string indexes. The master index and the cylinder
index are allocated as a single unit, the master/cylinder index. The string indexes are not
allocated as such; they are built when the file is loaded. Only those cylinders actually contain-

ing data will contain a string index. Those cylinders beyond the last cylinder actually loaded

2-11 #5-618

SECTION I, DATA MANAGEMENT CONVENTIONS

are unavailable for data. Formulas for computing the size of the master/cylinder index can be

found in Appendix C.

The master index is the highest level of index for the file and it contains one item for each
block of the cylinder index. The block size of the master index is the same as the block size the
user specifies for the data area, Each item in the master index contains an address field, a
status field, and an item key field. The contents and purpose of these fields is explained in the
paragraph entitled ""Directly Processing an Indexed Sequential File, " which follows this descrip-

tion of file structure.

The cylinder index is an intermediate-level index, and it contains one item for each loaded
data cylinder in each data unit of allocation for the file, The block size of the cylinder index is
the same as the block size that the user specifies for the data area. Each item in the cylinder
index contains an address field, a status field, and an item key field. These fields are explained
later. An option is available to have some or all blocks of the cylinder index area resident in

main memory, providing higher processing speed.

_ The string indexes are the lowest-level index for the file. Each string index contains one
item for each string of data loaded on a data cylinder of the file, and each string index is always
at the beginning of that portion of each cylinder allocated for data. String indexes do not exist on
cylinders beyond the last cylinder loaded with data. The block size of the string index is the same
as the block size allocated for the file, Each item in a string index contains five fields: an
address field, a status field, two key fields, and a reserved field. These fields are explained

later.

Overflow Areas
The two overflow areas, the cylinder overflow area and the general overflow area, are

used to store data items that either overflow the data strings or overflow the cylinder overflow
areas. These areas are initialized by the File Support C load function but are used only in sube
sequent processing. Cylinder overflow areas are not required to be present; but when the user
specifies that there is to be cylinder overflow, the area is made up of a number of tracks at the
end of the allocated portion of each cylinder in the data unit of allocation. The number of tracks

used for cylinder overflow can be one or more, as determined by the user when the file is allo-

cated. The general overflow area, on the other hand, is required as a separate unit of allocation.

The general overflow can be any track width (tracks per cylinder) and any number of cylinders,
but it cannot begin on the cylinder on which the immediately preceding unit of allocation for the
file ended, i,e., the master/cylinder index., Different files can share cylinders. Thus, the
master /cylinder indexes of several different files may be on one cylinder, while the general

overflow units for the same files share other cylinders.

2=12 #5-618

)

2

SECTION II. DATA MANAGEMENT CONVENTIONS

Items that go into the cylinder overflow areas are all those items whose key values are
greater than the highest key value for a string's data area and less than or equal to the highest
key value of the string's associated cylinder overflow area. All items in each cylinder overflow
area are always entered in ascending binary collating sequence with respect to their item key

values.

Items that go into the general overflow area are all those items that cannot be contained in
a data string or in the data string's cylinder overflow area. The general overflow area contains
all the items that overflow from all the cylinder overflow areas. The items in the general over-
flow area also are always entered in ascending binary collating sequence with respect to their

item key values.

DIRECTLY PROCESSING AN INDEXED SEQUENTIAL FILE

To retrieve an item directly from an indexed sequential file, the user supplies an item key
value and specifies MSGET. Input/Output routines then begin searching the master index from
its beginning for the item containing a key value equal to or greater than that supplied by the user.
When the item in the master index is located, input/output routines are directed by that item's
address field to the appropriate block in the cylinder index. This block is then searched from
its beginning for the item equal to or greater than that supplied by the user. When the appropri-
ate item in the cylinder index is located, input/output routines are directed by that item's address
field to the relative volume and data cylinder string index whose highest key value is equal to or
greater than that supplied by the user. The relationship between the items of the master index
and the cylinder index is illustrated in Figure 2-5. The string index is then searched for the item
containing the key value equal to or greater than that supplied. When the correct item is found,
input/output routines are directed to either the correct block in the prime data area or the appro-
priate overflow area, Figure 2-6 shows the relationship between string index items and the data
area of the cylinder immediately after loading, The contents of string index items is shown in

greater detail in Figure 2-7. Addresses are shown in decimal but are recorded in binary.

Figure 2-7 also illustrates the insertion of items into a string. As can be seen in these
illustrations, items are inserted in logical order based on the value of their keys. Figure 2-7
(Sheets 1, 2, and 3) illustrates how the string is filled. Notice in these illustrations that the key
values in the string index item for this string do not change. In Figure 2-7 (Sheet 4), however,
the value of the highest key currently in the string is changed by the input/output routines. The
value of the highest key associated with the string is never changed. Two key values are main-
tained in each string index item to enable input/output routines to determine whether to search

the string or the overflow area.

2-13 #5-618

¥1-¢

819-6#

Cylinder, track, and record
number of the first record in

the block of the cylinder index
whose highest key value is the
same as the key value of this

item.

FT_he highest key value in the block of the
cylinder index whose first record address
is the same as the address contained in
this item. (Key length is specified by the

user.)
MASTER INDEX ITEM
ONE BLOCK OF MASTER INDEX
1 MASTER/CYLINDER INDEX

ONE BLOCK OF CYLINDER INDEX

v

CYLINDER INDEX ITEM

Relative volume, cylinder, and
track number of the cylinder in
the data area containing the

The highest key value in the string index
addressed by this item,

string index whose highest key
value is the same as the key

value contained in this item.
pUa——

Figure 2-5.

Relationship Between Items of the Master and Cylinder Index

*II NOILDJS

SNOILNMANOD INIAWIADVNVIN VIVA

819-G#

STRING INDEX ITEMS

NOTES: 1. Status shown is that which exists
immediately after loa dng

looofll 1J »**poooo[10000]

E)ollo[1] *kok Fouool moool

in this illustration.

2. Only the highes tkyf
/ string in the cylinder hwn

ITEM SPACES RESERVED
FOR IMBEDDED OVERFLOW,

[Ol 141 1 l ik 1300001 30000]

—
[021 Zl i l ek ldOOOOl 40000]

[03/101 ! [ok E249§F2499]

7
[0408] 1 [Aok K }»0000[60000

|\0£(J 1 l HoAk [70000[7000(;]

IO(S‘*I 1 ! o Foooo[sooﬁ]

NNNNNNNN
.

P
[O?OZ] 1] ***}9000(190000'

TRACK 00

I IV |) IL_’I_]L_/_H_I

TRACK 01

LI

I[I A

TRACK 02 l

lmuuwlﬁm

\\\‘&\\

TRACK 03

L

200 3 \‘

]
f_l

H[?llmm&

1

TRACK 04 [

HTI

L]5249

TRACK 05

TRACK 06

TRACK 07

N [] LI JLJLJLJLJIJLJ

[A I N O N O | (]] 3

N N N O NS I A

§M| OO0 0000] e Y
N& luumuuuumwww@

| L]

F L

L]

CYLINDER TRACK 08
OVERF LOW {

AREA TRACK 09 L

J i

H f—_ll I A

RECORD 00

o0l 02 03 04 05 06 07 08 09

J L) L]

12

14

L]

Figure 2-6, Relationship Between String Index Items and the Data Area of a Cylinder

SNOILNFANOD INEFWIDVNVIN VIVA °‘II NOLLDJIS

912

STRING INDEX ITEMS ’
UNDEFINED 3-CHARACTER

NOTES: 1. Contents of string index
0001] : ‘ **:FOOOOFOMH items are in binary but VALUE FOR USE OF OPERATING
SYSTEM

are shown in decimal

|001q 1 I*n Foooo] wooo] format for ease of ex~ VALUE OF HIGHEST
planation, KEY CURRENTLY IN

THIS STRING,
2. Keys of the 12 items
[Ol lql l ***—EOOOOI 30002] 1o:ded are shown in

string five, Note that
lOZl Z| ! | g Foooq 40000' three item spaces are TRACK AND RECORD VALUE OF HIGHEST
NUMBER OF THE FIRST KEY ASSOCIATED

reserved for imbedded R s
; | ﬂ overflow, RECORD IN THE STRING .
[EO II**TFZ49 52492' WHOSE HIGHEST KEY 310] 1 | Ak 5249952499
T — — — —— — — - o— —

VALUE IS THE SAME AS ~~
qugmuqooou]ooooo]

fosoe] 1 Jx#x Foood 70000

J _ ITEM SPACES RESERVED
\\\\\\ ” FOR IMBEDDED OVERFLOW,

o e s o e e SN NN
oo (OO0 OOOCOOCOO0OO=ENNOO OO
e (OO OO OOCOOENNYOOOOO
a0 0 00 O O bod N NV Y froed fied g o e fong fiveg
maeces fond fieg] fd] B NNNY O OO O OO OO0
wee e I NN OOODO O OOOOIDOIO O
~o b NN O O OCOOOOOOOCO OO0 kG N
~or WNOOODOOODOOOOODODHONN
e (O O00O0O0OCOOOOOOCOOOOO
0t s o s

RECORD 00 0l 02 04 05

TRACK 00

CYLINDER
OVERF LOW
AREA

07

819~-G#

Figure 2-7, Insertion of Items Into a String (Sheet 1)

SNOILNFANOD INIWIADVNVIN VIVA °‘II NOLLDJAS

LI-2

819-G#

STRING INDEX ITEMS
[ooon[\ 1 - lzooool looool

lool()l 1 [***FUU:)’)[")000} NOTE: Two items have been inserted:

has cccurred,
IOl 141 1 l Ak bO()OOl 3')000]

!ozn 2[) l ok }aoooo[40000]

[ou ol 1 l sk Fz499l 524949]

[0408' 1 l bl })00()0! ~’;0000I

los06f 1| ##x rooodf 7005]

[ooo4| 1 | ok Pooool sooool

51550 and 51899, No overflow

ITEM SPACES RESERVED
N =
m ~ FOR IMBEDDED OVERFLOW,

TRAGK 00 101010 11

OO0 OO0 E el N N NN [

trackor | [[[][}

OO0 NN KNy O] O]

TRACK 02 [—| m ,_—l [

O N Y N O O]]]

mackos [][J][]

| () o) Y Y Y Fioed Fiiod g fiseg i) frosg froog

TRACK 04 W m m ba16s| [s2214 P2343] paa9o) (1 101t 1010 10 ‘__] L;]

waes [k NN OO OO

TRACK 06 I

) 0 OO O OO 0 80) B E) bed RY

raackor NN N (] [][

1 o o o o Y 2 N\ SN

gmwmummuuuuuuuumuﬁﬁﬁﬁ
AREA mackoo (| [|| J[01O J0 100010
Figure 2-7., Insertion of Items Into a String (Sheet 2)

SNOILNIANOD INIWIADVNVIN VIVA ‘I NOILDJIS

81~2

819-G#

STRING INDEX ITEMS

[o001] 1 T++* froooo] 10009

[oowl 1 I u*laoooo[eom

52030, No overflow has

ccccccc d,
l01 14l 1 I *r Looool 30000

IGZI ?.I 1 l dokok 140000' 40000]

[os1o]1]***Pas9%p2as9]

0408l 1 | *EE [>00()9| vSOOOOI

[aqﬁ x+x froood 70000]

losoql 1 l ok Foooa| sooool

0702} 1| *%*%x 5000Q 99000
. T

e <,’,’7,)”"q£?

TRACK 00
TRACK 0!

TRACK 02

TRACK 03
TRACK 04
TRACK 05

TRACK 06

TRACK 07

CYLINDER TRACK 08
OVERF LOW {

AREA TRACK 09

RECORD

NOTE: One item has been inserted:

NE

ITEM SPACES RESERVED
FOR IMBEDDED OVERFLOW.

LI IO L]

IO g

| L1

| L] |

] |1000c{ SN

) 1 |

N I N o A B

| Reod N Y R L) L] L

] e Y Y Y [] O 1]

LI OO

| o000 @ El_ooa ‘;u_oa m b1300| b1s00 P1sso| [s1600]

bi7se] b1899| [s190q fz030] ba1es| [s2216] [s2343] paage] |

| L]

]

L]

L] e Y Y Y |

IR RN

] 1

|

]|

| I O

P Y Y Y L [

| L] |

| L

| |

Iy

L] feoned Y

NN EEREE AL

JL L1

] |

| |

| food B Y X

LI Il

1

IR

| |

| |

L] L]

LI I I It

|

J

1 1

R .

00 0l 02 03 04 05

06

0

RN
7 08

09

0

1

2

Figure 2-7, Insertion of Items Into a String (Sheet 3)

i

SNOILNTANOD INIWIADVNVIN VIVA °‘II NOILDJAS

61-2

819-G#

—
0 Y)
e
frrd oo Bonad oo
e e fosoe oo
B [peadee)

Io4osl 1 I il kooool 60000]

o506 1 | +# fraood 70000]

[06041 1]*** Fooor{ sooool

NOTE: Items 51050 and 51901 have

been inserted, Items 52343
and 52499 are placed in
cylinder overflow. Also note
adjustment to string index
item for the fifth string.

J - ITEM SPACES RESERVED
&\\ FOR IMBEDDED OVERFLOW,

TRACK 00 |

OO0 80 088800 e NN Y L]

TRACK Ol | |

OO0 80 08 8 NN Ny O] O]]

TRACK 02 l I | '

IR NN NN .

TRACK 03 [|] I

N I I Y I O XY frood frosq [suiof fuzod [siaod fraog [sissq

taack o4 [saeod [sured [sisod frasod fased Baosd bases] Baae] [[[] [J][]][] [

mackos] [)b N NY NN O] O O O 0 £ O3 3]

e o WS NN (OO OO0 0000 D e Y

v NN C] OO O] 0080 0 E e NN Y

OVERF LOW

cmmm{mcxoa baef b [J L J O J IO C]] O]]]]

AREA trackos [][

OO OO0 OO cg

RECORD 00 01

L

02 0 04 06 07 0

Figure 2-7. Insertion of Items Into a String (Sheet 4)

SNOIINTANOD INIWIDVNVIN VvIVA °II NOILDJIS

SECTION II. DATA MANAGEMENT CONVENTIONS

Figures 2-8 and 2-9 show how the item position of a deleted item can be used. Notice that
the key of the item inserted (Figure 2-9) is less than that of the item following the deleted item
(Figure 2-8), If the key of the inserted item had been greater than that of the item following the
deleted item and less than that of the last item in the string (52216), it would have been inserted
in the string, and the item with the key 52216 would have been inserted in the cylinder overflow

area, Also, the value of the highest key currently in the string would have been changed in the

string index item.,

DATA ITEM STATUS CHARACTER
In indexed sequential files, an area on mass storage that can contain an item is called an

item position. Because the indexed sequential file organization offers the ability to insert and

iy

delete items, it is necessary to distinguish between an item position that contains an item and one
that does not. To accomplish this, an item position is defined as having two parts: the data
portion (including the item key) and the status character part. An item position, therefore, is
one character longer than the data portion. When designing indexed sequential files, the user

must include the status character in the item size computations.

The input/output routines use the status character to indicate whether the item position is
unused (inactive), contains an active item, or contains an item that has been deleted., When an
indexed sequential file is allocated and before any data is recorded in the file, the status charac- ~
ter of every item position is 77 (octal). The octal values the status character can have for an
indexed sequential file after the file has been loaded are as follows:
01
41
42

Active,

1

Deleted or imbedded, and

Inactive. (If this status character appears in the prime data area, it
indicates that the current block is one beyond the last active R
string of the file. If it appears in an overflow area, it
indicates that an active item was never inserted into or
beyond this position.)

Direct Access File Organization

The direct access file is organized to provide fast access to items that are not to be re-
trieved sequentially. A direct access file is organized principally in terms of buckets. Buckets
are user-defined areas that may contain one or more items. When a bucket contains more than

one item, there is no ordering of the items’ within that bucket.

A bucket and a block (as defined previously) may be the same size, or a bucket may contain
more than one block. Note that a large bucket may increase the access time to a given item but

may decrease the probability of overflow. A smaller bucket, however, might reduce the access

2-20 #5-618

69/62/%

12-¢

819-G#

STRING INDEX ITEMS

ooox[1 1***}00001 1000d

IOOlbl ! I b FOOOOI 20000] NOTE: Item 51300 has been

deleted.

Im 14I 1 I ek laooool 30000]

foz12] 1 T++* hrooodf 40000]
Iosxol 1[*" Fzzm]sutﬁ'
IO4081 d***h)oool GOOOOJ

losoe| 1| »++ Foood 70000]

|0604l 1 [ok Foooo[soooq

J . ITEM SPACES RESERVED
m " FOR IMBEDDED OVERFLOW.

* = INDICATION THAT THIS ITEM
IS MARKED FOR DELETION.

rRack o o e o o e e e s s Rz S NN
weo (JOODOOD0ODOOODOD O OSSN OO
mee (OO O0OOOCOOFEESNSNNY O OOO O
mecos [] 0 OO O k] Y Y XY Eeod biosd Friod raod ffod frsod fuseg
VISR Y e [e [e e Y e [v v v s o o o
meo [N SNSNOOOODOODOOOOC
mece o] NN N OO0 OO OO0 0O 000000 b N
ey NN (OO0 O0OOO0O0C00Oe Y N

gzggofonw{mcw bad beeod [] JL JL 0 IO S I B]
e e [)])) 3 T IIHJTIEbJ

Figure 2-8, Deletion of an Item from a String

SNOILLNIANOD INFWIOVNVIN VIVA ‘I NOILDJIS

22-

819-G#

STRING INDEX ITEMS
[ooon] 1B [xoooo[1ooo<j

[0016[1 l K [zoooo]zooool

[01 14[1 l ok lsoooo] 300()3]

oz12] 1 [+#+ koooof 40000

[0310[1] **ﬂ§22145z499j
[0408] 1 [+++ boood 0000

fos06] 1 [*x+* rooogf 70000

Pbo«;[1 [*nfoooq soooo]

TRACK 00

NOTE: Item 51059 has been
inserted. No overflow
due to previous dele-
tion.

N _ ITEM SPACES RESERVED
m ~ FOR IMBEDDED OVERFLOW,

N I N N NN N N N

e NN NN O

VP o e e e

TRACK 02 I

OO0 800 000 NN N

NN
NN\ 0 B N I A

TRACK 03 r

IO O0 0 NN N b

Broso| fs10s9] bi10o| 1200 [s140d [51550]

Track 04 [s160d [178e] [s189d [Biood kigo1] [s203q [sares| [s2ze) [| | | []

I I O A L

meos (DR NSNNOOOOO
e NEININ e e e s
wer NN DO OO OO OO

[I N I O S

] 0 T] feeed Y

T [K

CYLINDER , TRACK 08 [5_23_43 [2499) | | [——] 1 10 1t 10 1 L_]

OVERF LOW

AREA {TRACK 09 |

N N N N I I I I I I R R

I Y Y N
I H I IS O Y

RECORD 0o

1] 02 03 04 0 06 07 08 09 10

11

Figure 2-9. Using the Item Position of a Deleted Item

t)

SNOILNIANOD INFWIDVNVIN VIVA ‘I NOILDJAS

SECTION II. DATA MANAGEMENT CONVENTIONS

time to any given item in the bucket, since the area to be searched is less than that in a large

bucket.

ALLOCATION
Allocation of a direct access file is done in terms of the unit of allocation, as previously
defined on page 2-6. There are no restrictions to the allocation of space for direct access files.

Formulas for calculating a unit of allocation for a direct access file are described in Appendix C

of this manual.

FILE ORGANIZATION

The direct access file is divided into two areas: data area and overflow area.

-

Data Area

The data area of any cylinder allocated to a direct access file consists of those tracks of
the unit of allocation for that cylinder, minus those tracks within the unit of allocation reserved
for cylinder overflow. Cylinder overflow is optional; if not requested, the data area of the

cylinder consists of all the tracks in the unit of allocation for that cylinder.

Within the data area, the file is divided into buckets. A bucket's address is the address
of the first record within that bucket. (A bucket can contain one or more blocks, and a block
can contain one or more items,) When a bucket contains more than one item, there need be no
logical relationship between the items, except that through some means (such as randomizing),

the address of that bucket was specified as belonging to those items.

The size of a bucket cannot be greater than one cylinder and a bucket cannot begin on one
cylinder and end on the next. A bucket is processed as though it flowed directly into the cylinder

overflow area (if any) and then into the general overflow area.

One relationship between items, records, blocks, and buckets is illustrated in Figure

2-10A; a second relationship is illustrated in Figure 2-10B.

Overflow Areas

There are two types of overflow areas: the cylinder overflow area and the general over-

flow area. Eachcylinder overflowarea is used to accommeodate items that overflow the buckets

in the data area of that cylinder., The cylinder overflow area is optional; when specified, the
user defines a number of tracks to be set aside at the end of each cylinder in the units of alloca~

tion for the file, The general overflow area is also optional; but, if specified, it is used to

2-23 #5-618

SECTION II. DATA MANAGEMENT CONVENTIONS

l—————BLOCK 0 »| N3 BLOCK 1 »|

RECORD 0 RECORD 1 RECORD 2 RECORD 3

o=x-

I I
R R
I L |11, {G
0]'1] 2]3| 4 5176177178179 I10111 I12 I13 114G I15 I16 I17118 I19

N BUCKET 0 —p

A.

|€&—BLOCK 0 » |&——BLOCK I— >

I I I I I
[RECORD 0| R |RECORD 1| R [RECORD 2 |R |[RECORD 3| R [RECORD 4] R [RECORD 5|
G G G G G

|¢—ITEM 0-—*——ITEM 1———>| |€&—1TEM 2—»‘4—ITEM 3——
) BUCKET 0 >

B.

Figure 2-10, Relationship between Items, Records, Blocks, and Buckets

accommodate items that overflow the cylinder overflow areas (if any). If cylinder overflow is
not specified, items overflowing any bucket in a unit of allocation enter the general overflow
area. When general overfiow is specified, the last cylinder of each unit of allocation for the
file is used as the general overflow area, All tracks allocated on that cylinder are used for

overflow,

DIRECT ACCESS FILES AND KEYS

The meaning of the word ''key'' depends on the context in which it is used. To define direct
access file structure and processing, it is necessary to distinguish between the various uses of
the word key. The following list provides the definitions used in this manual:

1. Actual Key. The actual, absolute (physical) address of the bucket, in terms
of device, pack, cylinder, track, and record,

2. Relative Key. The number of a bucket, relative to the beginning of the file.
The first bucket in a file is numbered 0. The input/output (I/0) program con-
verts the relative key supplied by the user into the actual key for the item.

3, Item Key. The identification field (e.g., part number or employee number)
of an item. This field must consist of contiguous characters, but its length
and location within the item are determined by the user when the file is allocated,

2-24 #5-618

[

SECTION II. DATA MANAGEMENT CONVENTIONS

Use of a relative key relieves the programmer of the following considerations: device

address, intervening overflow areas, multiple units of allocation, and multivolume file factors,

Directly accessing an item normally requires that the user provide the bucket address
(either relative or actual) and the item key to the input/output routines. The input/output routines
locate the beginning of the bucket and then search through it for the item with the specified item
key. If the item is not found in the bucket, the search continues through the cylinder overflow

area (if any) and, if necessary, through the general overflow area (if any).

DATA ITEM STATUS CHARACTER

In a direct access file, an area on mass storage that can contain an item is called an item
position. Because the direct access file organization offers the ability to insert and delete items,
it is necessary to distinguish between an item position that contains an item and one that does
not. To accomplish this, an item position is defined as having two parts: the data portion
(including the item key) and the status character. An item position, therefore, is one character
longer than the data portion. When designing a direct access file, the user must include the

status character in the item size computations,

The input/output routines use the status character to indicate whether the item position is
unused (inactive), contains an active item, or contains an item that has been deleted. When a
direct access file is allocated and before any data is recorded in the file, the status character of
every item position is set to inactive. The octal values which the status character can assume

are as follows;

01 = Active;

41 = Deleted;

77 = Inactive;

00 = Active, last block in file volume;

40 = Deleted, last block in file volume; and

76 = Inactive, last block in file volume.

CUMULATIVE LOADING OF A DIRECT ACCESS FILE
Because the placement of any item in a direct access file is independent of the placement
of any other item, the contents of a direct access file can be accumulated into the file through

a series of separate load operations over any period of time.
The data source and the item format can vary for each load operation. It is the responsi-

bility of the user's own-code program to standardize the item format for proper placement

within the direct access file, (See Section IV.)

2-25 - #5-618

SECTION II. DATA MANAGEMENT CONVENTIONS

PROCESSING CONVENTIONS

Volume processing conventions within the Mod 1 (MSR) Operating System are designed to

provide standardized operating procedures which ensure maximum flexibility and operational ~—’

convenience. These conventions are dependent upon two factors: whether processing is direct

or sequential and which functions are being performed,

Sequential or Direct Processing

Data in mass storage files can generally be processed either sequentially or directly.
Sequential processing can be in physical sequence (e.g., direct access organization), in which
case there is no attempt to order data, and items are processed as they are encountered. Alter-
natively, sequential processing can be in logical sequence (e.g.,, indexed sequential organiza-

tion). In this case, items are processed according to the sequence of some item key field.

I

When a file is processed sequentially, each volume is operated on ds needed; the second

volume is not used until processing of a prior volume is completed.

A sequential file is always processed sequentially, Direct access and indexed sequential
files can be processed using the minimum number of volumes if files are processed sequentially

from the beginning.

Direct processing can be achieved by maintaining a unique address for each item and
accessing an item by referring directly to that address. Alternatively, it is often convenient to
provide a range of addresses which may contain several items, In this case, retrieval is
achieved by beginning at the first address within this range and searching for the desired item,
Both an address and an identifier are required. In some cases, these elements are identical,
For example, when indexed sequential file organization is used, the key is applied to locate an

address from the indexes as well as to identify the item upon which the search is conducted.

When a file is processed directly, all volumes of the file must be online.

Volume Proces sing Functions

Volume Preparation C, Mass Storage Edit C, Bootstrap Generator C, Disk/Tape Copy,
and the File Support C map function deal with volumes as their basic unit of operation, These
functions are not oriented to the concept of a file in its usual sense. Thus, whenever these
functions are to be performed on more than one volume, each volume is treated individually and

requires a separate execution of the program,

2-26 #5-618

—

SECTION II., DATA MANAGEMENT CONVENTIONS

File Proces sing Functions

Most of the remaining functions of the Mod 1 (MSR) Operating System are oriented to the
concept of a file. The file may be on one volume or it may be on several volumes, Some func-
tions process only single-volume files (e.g., Library File Update C and Executable Program

File Update C).

Certain file-oriented operations are independent of file organization and mode of pro-
cessing., For example, File Support C allocation and deallocation are handled similarly for all
file types, irrespective of the mode of processing. These functions are performed cyclically
upon all volumes of a file; i,e., if devices a, b, and c are assigned, allocation or deallocation

follows the order: a, b, ¢, a, b, ¢, a, etc.

BACKUP PROCEDURES

Logical BackuE

When a file requires reorganization (perhaps because of a significant change in required
capacity) and the data content must be preserved, the contents of the file can be temporarily
stored on another medium or another disk by means of the File Support C load/unload program
(see Section IV), When the reorganization has been accomplished, via reallocation of the file,
the data can then be restored by the File Support C load/unload program.,

Physical Backup

When it is desired to save physical areas of a volume in full track format, with or without
regard to individual file boundaries, the Disk/Tape Copy program can be used to store the

physical contents of entire tracks either onto a tape or onto another disk., (See Utility Routines

manual, Section VI.)
Disk/ Tape Copy operates on a full track at a time and thus offers a faster method of

data transfer. However, the user must give careful consideration to maintaining a valid

correspondence between the volume directory and the file areas on the volume.

8/29/69 2-27 #5-.618

3%

14

SECTION III
LLOGICAL I/O C

Logical I/O C consists of a set of macro routines designed to access files residing on

mass storage and to operate on the data within those files. The assembly-language program-

mer calls for and specializes these routines in his source-language program, and they are
assembled into his machine-executable program through the use of Mass Storage Easycoder

Assembler C of the Program Development Subsystem.

The functions performed by Logical I/O C are summarized in the following list.

1. Open or close a file, verifying and updating the file directory information,

2. Get, put, or replace individual items in a file, blocking and unblocking as
necessary.

3. Insert an item into or delete an item from a direct access or indexed

sequential file.
4. Directly access items in a direct access or indexed sequential file.

5. Establish linkage to Physical I/ O C. Physical I/O C, which reads and
writes data, detects errors, and (if possible) corrects errors, is de-
scribed in Appendix D of this manual.

6. Provide exits to user-written label and error routines.

7. Ensure the simultaneity of central processor and input/output operations.

8. Terminate sequential processing on one volume and switch to the next volume.
9. Allow other processing (including peripheral data transfers) to occur during

cylinder-to-cylinder access time (seek time) of a disk device.

Logical I/O C is composed of four types of macro routines. These are the control, file
description, communication area service, and action macro routines. The control macro rou-
tine is called the mass storage input/output control (MIOC) macro routine and provides general
control over the entire input/output process. The file description macro routine (MCA) is called
the mass storage communication area macro routine and sets up a communication area for
the file being processed in which all values necessary to describe the file and the processing
options are stored. Pertinent portions of the communication area are available to the user and
can be altered by him through the use of the communication area service macro routines (see
page 3-2). Unloading any applicable field of the communication area is performed by the unload
communication area service (MUCA) macro routine; altering any applicable field of the commu-
nication area is performed by the load communication area service {(MLCA) macro routine., The
action macro routines are included in the main line of the user's coding to cause the various

functions of the input/output routines to be performed.

3-1 #5-618

SECTION III. LOGICAL I/O C

MASS STORAGE INPUT/OUTPUT CONTROL MACRO ROUTINE (MIOC)

The mass storage input/output control macro routine (MIOC) is a segmentable series. of
subroutines that are specialized at assembly time to accommodate all input/output functions
requested within a given program. Unnecessary coding is eliminated from each subroutine on
the basis of user-specified parameters. The control macro routine further specializes itself
at execution time on the basis of a specific description of a file that the programmer creates

with the file description macro routine.

A single MIOC can process one or more files. These files can be on different mass stor-
age device types used concurrently. The control macro routine performs all necessary inter -

face functions between the user's program, the user's exit routines, and Physical 1/O C.

FILE DESCRIPTION MACRO ROUTINE (MCA)

The file description macro routine (MCA) creates a communication area for each file that
is to be processed by a given program. All values required to describe a file's organization and
structure are placed in the file's communication area. There are two sources for these values:
(1) the file description area of the volume directory (*VOLDESCR*)' and (2) those values speci-
fied by the programmer at assembly time. Most of the values that are placed in the file's com-
munication area are taken from the *VOLDESCR* entry for the file and placed in the communi-
cation area at execution time. Those values that cannot be placed in 'the communication area at
execution time are specified by the programmer when he writes the MCA macro call; these values

are placed in the file's communication area at assembly time.

COMMUNICATION AREA SERVICE MACRO ROUTINES (MLCA AND MUCA)

The macro routines which service the communication area (MLLCA and MUCA) load infor-
mation into and interrogate certain fields of the communication area. Using these macro rou-
tines, the programmer can alter the contents of certain fields of the communication area without

knowing its structure.

ACTION MACRO ROUTINES

The programmer includes action macro routines (summarized in Table 3-1) in the main

line of his coding to cause the various functions of Logical I/O C to be performed. The file pro-

cessing functions that the action macro routines perform are described in detail later in this

section.

SUMMARY OF LOGICAL I/O C MACRO ROUTINES
The macro routines that make up Logical I/O C are listed in Table 3-1. This table lists

3-2 #5-618

o

SECTION III. LOGICAL I/O C

each macro routine according to its type, shows each macro name, and gives a brief description

of the general function performed by each macro routine.

Table 3-1, Summary of Logical I/O C Macro Routines

Macro General
Macro Type Name Function Performed
Input/Output MIOC Provides general control over the entire input/
Control output process.
File MCA Sets up a communication area in which all values
Description necessary to describe a file and the processing

options are stored.

MLCA Used to alter applicable fields of information in
Communication the communication area.
Are.a MUCA Used to unload applicable fields of information
Service . . .
in the communication area.
MSOPEN Opens a file for processing.
MSCLOS Closes a file after processing.
MSGET Retrieves an item in the file.
MSPUT Delivers items sequentially from memory to
mass storage.
Action MSREP Replaces the last item retrieved.

MSINS Inserts an item into an indexed sequential or
a direct access file.

MSDEL Deletes the last item retrieved from an
indexed sequential or a direct access file.
MSEEK Positions read/write heads to a desired cylinder

of a direct access or indexed sequential file
allowing other data processing to occur,

SETM:* Sets processing to the beginning of the specified
member,
ENDM* Stops processing of the current member,

MALTER¥* Changes the specified member of a file as
directed.

MSREL* Frees the area occupied by a partitioned
sequential file.

SET L% Sets processing to a specific location of
the file for sequential delivery of items.

*Applies to partitioned sequential files only.
**Applies to indexed sequential files only.

3-3 #5-618

SECTION III. LOGICAL I/O C

FILE PROCESSING MODES

There are three file processing modes available: input/output processing, input-only
processing, and output-only processing. Sequential and partitioned sequential files can be
processed in all three modes, but in certain processing modes, certain functions are not
applicable. Indexed sequential and direct access files can be processed only in the input/

output and the input-only modes.

Input/Output Processing Mode

In this processing mode, the user can both read data items from the file (input) and
write data items to the file (output). With sequential files, this mode is used when it is
desired to read data and then update some or all of the data read. With direct access and
indexed sequential files, the input/output processing mode is used for the same purpose as
with sequential files, or it may be used to insert new items into the file or delete items from

the file.

Input-Only Processing Mode

In this processing mode, the user can only read data items from the file (input); he cannot

write data items onto the file. This protects the file from undesired alteration.

Output-Only Processing Mode

In this processing mode, the user can only write data items onto a sequential file or parti-

tioned sequential file (output); he cannot read data items from the file.

ACTION MACRO PROCESSING FUNCTIONS

Each function is identified by the name of the action macro call that requests the function.
These names are shown in this description in upper case letters. For example, the function

of opening a file for processing is requested by the MSOPEN macro call,

The functions the action macro routines perform can be divided into two groups: file-control
functions and iterﬁ-handling functions. The file~control functions are:
1. Opening files for processing,
Closing files after processing,

Starting processing at the beginning of a specified member,

Altering the status of a member,

2

3

4. Ending processing of a member,

5

6 Releasing a file to an unused state,
7

Starting processing at a specified location of the file, and

3-4 #5-618

(L]

SECTION IlI. LOGICAL I/OC

8. Seeking a specific cylinder of a mass storage volume, preparatory to
actual processing of data resident on that cylinder, while allowing
other processing to occur during the seek.

In the above list, 1 and 2 apply to all file organizations; 3, 4, 5, and 6 apply only to
partitioned sequential files; 7 applies only to indexed sequential files; and 8 applies to indexed

sequential or direct access files, Item-handling functions are as follows:

1. Retrieving an item,

2. Replacing an item,

3. Putting items sequentially onto the mass storage file,
4, Inserting items, and

5. Deleting items.,

In this list, 1 and 2 apply to all file organizations; 3 applies only to sequential and

partitioned sequential files; and 4 and 5 apply only to indexed sequential and direct access files.

Because the various types of files can be processed in more than one mode, certain
functions of Logical I/O C action macro calls are not always applicable. The applicable func-
tions for each processing mode are shown in Table 3-2. In Table 3-2, the functions are repre-

sented by the action macro call that requests the function. These macro calls are defined as

follows:
1. MSOPEN — opens a file for processing,
2. MSCLOS ~— closes a file after processing,
3. SETM — sets processing to the beginning of the specified member,
4. ENDM — ends processing of a member,
5. MSREL — releases a file to an unused state,
6. SETL — sets processing to the location specified for sequential

delivery of items,

7. MALTER — alters the status of a member,

8. MSGET — gets (retrieves) an item in a file,
9. MSREP — replaces the last item retrieved in a file,
10. MSPUT -~ delivers items sequentially to a mass storage file,
11. MSINS — inserts an item into a file,
12, MSDEL -~ deletes an item from a file, and
13. MSEEK -~ seeks a cylinder for subsequent input/output processing

of a file allocated to that cylinder.

Note that whenever the phrase ''an exit is taken' is used in the subsequent descriptions of

the functions, the exits are optional. The only exception to this is that end-of-data exit must

3-5 #5-618

>

SECTION IlI. LOGICALI/OC

be specified. When an optional exit is not specified for a particular function, the action either

continues under default conditions or.provides notice to the operator.

\J
Table 3-2. Action Macro Calls for Each File Type in Each Processing Mode
. Action Macro Calls
Processing
Mode Sequential Partitioned Sequential |Indexed Sequential| Direct Access
File Organization File Organization File Organization | File Organization
MSOPEN MSOPEN MSOP EN MSOPEN
MSCLOS MSCLOS MSCLOS MSCLOS
MSGET MSGET MSGET MSGET
Input/Output MSREP MSREP MSREP MSREP
Mode SETM MSINS MSINS
ENDM MSDEL MSDEL
MALTER SETL MSEEK <
MSREL MSEEK
MSOPEN MSOPEN MSOPEN MSOPEN -
Input-Only MSCLOS MSCLOS MSCLOS MSCLOS
Mode MSGET MSGET MSGET MSGET
SETM SETL
ENDM
MSOPEN MSOPEN
MSCLOS MSCLOS =
MSPUT MSPUT =
O“ti’;‘:;omy SETM Not Applicable ~
© ENDM
MALTER
MSREL
AR N e
Opening Files
While the process of opening each of the four file types is similar, not all the steps per- ~
formed for one type are performed for another, Similarly, additional steps are performed
when opening multivolume files. R
OPENING SEQUENTIAL FILES
Sequential files are requested to be opened for processing in the mode specified in the
MSOPEN macro call, In executing the open function for sequential files, Logical I/O C performs
the following steps.
1. Logical I/O C attempts to locate the file requested in the MSOPEN macro call in
the name portion (¥*VOLNAMES¥*) of the volume directory. If the file name
cannot be located in ¥*VOLNAMES* an exit is taken. A return to the open
function from the exit indicates that a new volume has been mounted and that
a new attempt to open the specified file is to be made.
2. After the file name is located in ¥*VOLNAMES#*, Logical I/O C verifies that
the file-volume sequence number is zero. If it is not, an exit is taken. —

3-6 #5-618

SECTION III. LOGICAL I/O C

The user can return to the open function from the exit requesting a new
attempt to open (implying that a new volume has been mounted) or return

to the open function from the exit requesting that the volume be accepted
regardless of its file-volume sequence number. (The option to accept the
volume regardless of its sequence number is not available in the output-only
mode.)

After verifying the file-volume sequence number, Logical I/O C locates the
file's description in *VOLDESCR*. If password checking for the file is speci-
fied, the password for that file is compared to the user's password field
referred to by the file's communication area. If password checking for the
file is not specified, Logical I/O C verifies that the password field for the

file contains all blanks. If either password check fails, an exit is taken.

The only allowable return from an exit because of a failure of a password
check is for the user to attempt to reopen the file. The password check

can fail for any of the following reasons:

a. If the user specified password checking in the MCA macro call and
the file is not protected by a password;

b. If the password for the file supplied by the user (via parameter
21 of the MCA macro call) is not identical to that for the file; or

c. If the user does not include a password in the MCA macro call
and the file is protected by a password.

When the password check is completed successfully, an exit is taken so the
user can examine ¥*VOLDESCR#%, A return to the open function from this exit
indicates either that the open function for this file is to continue or the file

is rejected by the user and that an attempt to open a new file is to be made.

If the open function for the original file is to continue and if the processing
mode specified for the file in the MSOPEN macro call is either input/output
or output-only, *VOLDESCR¥* is written back onto the mass storage device
by Logical I/O C.

If the specified processing mode is input/output or input-only, Logical I/O C
verifies (through the data status field in ¥*VOLDESCR*) that the file volume
contains data. If the file volume does not contain data, an exit is taken.
The user can either issue a new macro call for a different function, or

the user can return to the open function from the exit requesting that a new
attempt to open be made (implying that a new volume has been mounted).

At this point, Logical I/O C checks the labeling information in ¥*VOLDESCR*
and moves all information required by other Logical I/O C functions from
VOLDESCR into the file's communication area.

If the specified processing mode is output-only and if the item-handling
mode is specified as locate, Logical I/O C moves the address of the left
end of the first item location in the current buffer to the user-specified
field defining the next location into which an item is to be placed.

At this point, Logical I/O C sets the following indicators in the file's
communication area:

a. An indicator is set specifying whether or notthis file volume is
the last file volume of the file (this information is contained in
the ¥*VOLALLOC* entry for the file); '

b. An indicator is set specifying that the file is opened; and

c. An indicator is set specifying the appropriate processing mode.

3-7 #5-6}8

SECTION III. LOGICAL I/OC

OPENING PARTITIONED SEQUENTIAL FILES

Partitioned sequential files are requested to be opened for processing by the MSOPEN
macro call. Unlike opening a sequential file, the processing mode for the partitioned sequential
file is not specified until a SETM macro call is issued. Inexecuting the open function for parti-

tioned sequential files, Logical I/O C performs the following steps.

1. Logical I/O C attempts to locate the file requested in the MSOPEN macro call in
VOLNAMES#. If the file name cannot be located, an exit is taken. A return
to the open function from this exit implies that a new volume has been
mounted and a new attempt to open the file is to be made.

2. After the specified file name is located in *VOLNAMES#*, Logical I/O C
locates the file's description in ¥*VOLDESCR*, If password checking for
the file is specified, Logical I/O C performs the password check as
described for opening sequential files. If password checking is not
specified, Logical I/O C verifies that the password field for the file
contains all blanks. If either password check fails, an exit is taken
as described for opening a sequential file.

3. When the password check is completed successfully, an exit to the user
is taken so that the user can examine ¥*VOLDESCR*. A return to the
open function from this exit indicates either that the open function for
this file is to continue or the file is rejected by the user and that an
attempt to open a new file is to be made. If the open function for the
original file is to continue and if the update action is specified in the
MSOPEN macro call, Logical I/O C writes *VOLDESCR* back onto the
mass storage device.

4. At this point, Logical I/O C checks the labeling information in
VOLDESCR and moves all information required by other Logical
I/0 C functions from *VOLDESCR* into the file's communication
area. Logical I/O C then sets an indicator in the file's communi-
cation area specifying that the file is opened,

OPENING AN INDEXED SEQUENTIAL FILE

Like sequential files, indexed sequential files are requested to be opened for processing
in the mode specified in the MSOPEN macro call. In executing the open function for indexed
sequential files, Logical I/O C performs the following steps.

1, Logical 1/O C attempts to locate the file requested in the MSOPEN macro
call in the name portion of the volume directory. If the file name cannot
be located in ¥*VOLNAMES*, an exit is taken. A return to the open function
from this exit implies that a new volume has been mounted and a new
attempt to open the specified file is to be made.

2. After the file name is located in ¥*VOLNAMES#*, Logical I/O C verifies
that the file ~-volume sequence number is one greater than the sequence
number of the last file volume (the first file-volume sequence number
is zero), If the file~volume sequence number is not one greater than
the last file-volume sequence number, an exit is taken. A return to
the open function from this exit causes Logical I/O C to try again to
open the file.

3. After the file-volume sequence number checking, Logical I/O C performs
the password check as described for sequential files.

3-8 #5-618

g

SECTION III. LOGICALI/OC

4. When the password check is successfully completed and if the volume
contains the first file volume being opened (file-volume sequence number
zero), an exit is taken so the user can examine the *VOLDESCR* entry
for the file, The user can return to the open function from this exit
specifying that this open function is to continue, or a return can be made
specifying that a new attempt to open the file is to be made.

5. If the open function is to continue, Logical I/O C moves all pertinent
data from the ¥*VOLDESCR* entry for the file into the file's communi-
cation area and updates the ¥*VOLDESCR* modification number and date.

6. If the processing mode specified is input/output, Logical I/O C writes
VOLDESCR back onto the mass storage device.

7. Next, Logical I/O C processes the *VOLALLOC#* entry for the file.
In doing this, it moves the master/cylinder index and the general
overflow entries from ¥*VOLALLOC?# into the file's communication
area and the data units of allocation entries into the user provided
units of allocation table.

8. Logical I/O C then sets an indicator in the file's communication
area specifying the appropriate processing mode.

9. If processing is to be sequential from the beginning of the file and a
prime data unit of allocation has been processed, LogicalI/O C
proceeds to step 10.

NOTE: If processing is not to be sequential from the beginning of the
file, Logical I/O C returns to step 1 and repeats the process
until all file volumes that contain data have been opened.
After all file volumes have been opened, Logical I/O C
proceeds to step 10.

10. Logical I/O C sets an indicator in the file's communication area speci-
fying that the file has been opened in the appropriate processing mode.

11. If a resident cylinder index has been requested, Logical 1/O C reads
the specified number of blocks of the cylinder index into the specified
area in main memory.

12. If the MSOPEN macro call specified that processing is to be sequential
from the beginning of the file, Logical I/O C issues a SETL macro call
for the beginning of the file.

13. Logical I/O C returns to the main line of the user's coding.

OPENING DIRECT ACCESS FILES

Like sequential and indexed sequential files, direct access files are requested to be
opened for processing in the mode specified in the MSOPEN macro call. In executing the
open function for direct access files, Logical I/O C performs the same first six steps as
performed for opening an indexed sequential file; it then performs the following steps.

1. Logical I/O C processes the *VOLALLOC#* entry for the file. In
doing this, it checks each entry in ¥*VOLALLOC#* for the file and moves
each entry to the next available position in the user-supplied units of
allocation table. If Logical I/O C detects a discrepancy while pro-
cessing ¥*VOLALLOC#*, an exit is taken. The only allowable return to
the open function from this exit is to try again to open the file.

3-9 #5-618

SECTION III. LOGICAL I/OC

Logical I/O C then sets an indicator in the file's communication area
specifying the appropriate processing mode.

If the file is being opened for sequential processing from its beginning,
Logical 1/O C sets processing to the beginning of data and returns to
the user's main line coding.

NOTE: If the file is not being opened for sequential processing from its

beginning, Logical I/O C returns to step 1 and repeats the process
for each file volume until all file volumes have been opened.
Logical I/O C then sets processing to the beginning of data and
returns to the user's main line coding.

Closing Files

The process for closing sequential and partitioned sequential files is similar, and the

process of closing indexed sequential and direct access files is identical.

CLOSING SEQUENTIAL AND PARTITIONED SEQUENTIAL FILES

Sequential and partitioned sequential files are requested to be closed by the MSCLOS

macro call.

In executing the close function for these files, Logical I/O C performs the

following steps.

NOTE: Steps 1 through 4 apply only to sequential files,

1.

If the file was processed in the output-only mode, Logical I/O C ensures
that all buffers have been written onto the mass storage device and that
the item following the last item written is an end-of-data item. (End-
of-data items are signified by OEOD¢ in the first five locations of the
item.)

If the file was processed in the input/output mode, Logical I/O C
ensures that the current buffers have been written back onto the mass
storage device if an MSREP has been issued for an item in these
buffers.

If the file was processed in the input/output or output-only mode,
Logical I/O C moves the current item count into the file's ¥*VOLDESCR*
item.

If the file was processed in the output-only mode, Logical I/O C
sets the data status indicator to 00 in the last file volume that
contains data.

Next, an exit is taken so the user can examine ¥*VOLDESCR* for

the file. A normal return from the exit to the close function causes
Logical I/O C to write *VOLDESCR* back onto the mass storage device
if the file was processed in the input/output or output-only mode (or
update mode in partitioned sequential files).

CLOSING INDEXED SEQUENTIAL AND DIRECT ACCESS FILES

Indexed sequential and direct access files also are requested to be closed by the MSCLOS

macro call,

The following steps are performed by Logical I/O C when executing the close

function for indexed sequential and direct access files.

3-10 #5-618

SECTION 1II. LOGICAL I/OC

1. If the file was processed in the input/output mode and an MSREP,
MSINS, or MSDEL was issued for an item in the current buffers,
Logical I/O C writes those buffers back onto the mass storage device.

2. If the current file volume was processed sequentially from its be-
ginning, Logical I/O C updates the item count in *VOLDESCR* by
adding the net change in items to the current file volume. If the file
was not processed sequentially from its beginning, Logical I/O C
updates the item count in *VOLDESCR* by adding the net change in
items since the file was opened to the last volume in the file.

3. If the file was processed sequentially from its beginning, an exit is
taken so the user can examine the current *VOLDESCR*. If the file
was not processed sequentially from its beginning, an exit is taken so
the user can examine the last *VOLDESCR* in the file. A normal
return from the exit to the close function causes Logical I/O C to
write *VOLDESCR* back onto the mass storage device if the file was
processed in the input/output mode.

Retrieving Items in Files

The process of retrieving items in sequential and partitioned sequential files is
similar. The process of getting items in indexed sequential files and in direct access files is

significantly different.

RETRIEVING ITEMS IN SEQUENTIAL AND PARTITIONED SEQUENTIAL FILES

The request to retrieve an item in a sequential or partitioned sequential file is the
issuance of the MSGET macro call. Logical I/O C can perform the get function for sequential
and partitioned sequential files only when the file is being processed in either the input/output
mode or in the input-only mode. The process is the same for both file types in either mode,
except that when the file is processed in the input-only mode, step 2 does not apply. In
executing the get function for sequential and partitioned sequential files, Logical I/O C per-
forms the following steps.

NOTE: A data block is read into memory only after the first MSGET is issued.

1. If the next sequential item is in the current buffer, Logical I/O C begins
to get the item at step 4; if not, it begins at step 2.

2. If an MSREP macro call has been issued for an item in the current buffer,
Logical I/O C writes the current buffer back onto the mass storage device.

3. Depending on the buffering method (single or double), Logical I/O C
causes the current buffer to contain the next sequential block from the
mass storage device.

4. If the next sequential item is an end-of-data item and if an indicator in
the file's communication area specifies that more data follows on
another volume, Logical I/O C sets processing to the next file volume.

5, If the next sequential item is an end-of-data item and if the current
file volume is the last one, an end-of-data exit to the user is taken to
indicate this. When this exit is taken by Logical I/O C, the user
cannot return to the get function. An MSCLOS (or ENDM if the file
is partitioned) must be the next action macro call issued for this file.

3-11 #5618

SECTION IIl. LOGICAL I/OC

6. 1f the next sequential item is not an end-of-data item and if "move
item handling' has been specified, Logical I/O C delivers the item
to the user-supplied work area. If "locate item delivery' has been
specified, Logical I/O C delivers the address of the leftrnost
character of the item in the current buffer to the user -supplied
address field. After either of these deliveries has been made,
Logical I/O C returns to the user's main line coding, ensuring
that the mass storage address of the item is available to the user.

RETRIEVING ITEMS IN INDEXED SEQUENTIAL FILES

The macro call that is used to request the retrieval of an item in an indexed sequential
file is MSGET. Logical I/O C retrieves an item either sequentially or directly (randomly), as
directed by the MSGET macro call, The item retrieved is delivered to the user-supplied item
work area in the move-item-handling mode, and the address of the leftmost character of the

item is delivered to the user-supplied address storage area in the locate-item-handling mode.

If the user requests key verification and the locate-item-handling mode is being used,
Logical I/O C moves the item's key to the user-supplied key storage area so that, if the user
issues an MSREP macro call for the item, Logical I/O C can verify the item's key before

replacing the item in the string.

In executing the sequential get function for items in indexed sequential files, Logical
I/O C performs the following steps.

NOTES: 1. To perform the sequential get function, the user must have
previously issued a SETL macro call, or specified LIMVOL
in the MSOPEN macro call.

2. Step 2, below, applies only to input/output processing.

1. If the next sequential item is in the current buffer, Logical I/O C
delivers that item to the user and returns to the user's.main line
coding. If the file is being processed in the input/output mode and if
the item-handling mode is locate, Logical I/O C moves the item's
key to the user-supplied key storage area if the user requested key
verification.

2. If the current buffer is no longer required and if an MSREP or an
MSDEL has been issued for an item in that buffer, Logical I/O C
writes the block back onto mass storage.

3. If the last item delivered to the user was the final item on the
current file volume and if that file volume is not the last volume
of the file, Logical I/O C activates the next sequential file volume,

4. If there is no more data on the current file volume or in the general
overflow area, and if this is the last volume in the file, Logical I/O C
exits to the user indicating that the end of data has been reached.

The user cannot return to this get function when this exit is taken by
Logical 1/O C.

5. If more data remains on the current file volume, Logical I/O C reads
the block containing the next required item into memory and delivers
the next sequential item to the user as in step 1.

3-12 #5-618

SECTION III. LOGICAL I/O0 C

In executing the random get function for items in indexed sequential files, Logical I/O C
performs the following steps.
NOTE: Step 1 applies only to input/output processing.

1. If an MSREP or an MSDEL has been issued for some previously retrieved
item, Logical I/O C ensures that the block containing that item has been
written back onto the mass storage device.

2. If the last action macro call issued for this file was an'MSEEK, Logical
I/O C compares the item key of the MSEEK with the item key of the MSGET.
If they are the same, Logical I/O C clears the seek indicator and proceeds
to step 8; otherwise, it proceeds to step 3.

3. If the cylinder index is resident, Logical I/O C omits steps 4 and 5.

4. Logical I/O C searches the master index for the first item whose key
value is greater than or equal to the desired item's key.

5. Logical I/O C then searches the cylinder index block determined in step 4
for the first item whose key is greater than or equal to the desired item's
key.

6. When there is a resident cylinder index, Logical I/O C searches it for the
desired item's key. If the key falls outside the limits of the resident cylinder
index, the master index is searched and the block containing the cylinder
index for the desired item's key is read into the last block area of the resi-
dent cylinder index; then, the resident cylinder index is searched again for
the desired item's key.

7. Logical I/O C seeks the volume and cylinder located by the above steps.

8. The string index is searched from its beginning for the item whose key
is equal to or greater than the desired item's key.

9. The prime data area or the cylinder overflow area is searched for the
desired item. Logical I/O C will continue the overflow search into the
general overflow area if necessary.

10. The item is considered not located if:
a. An item with a key value greater than the desired item's key
value is located in any area,
b. An item status character of 41 or 42 is detected in an item
with an equal key value, or
c. The physical end of the general overflow area is detected.

11. When the desired item is located, Logical I/O C delivers it to the user
in either of the two item-handling modes. If key verification was specified
and the file was processed in the input/output mode using the locate-item-
handling mode, Logical I/O C moves the item key into the user-supplied
key storage area. After the item is delivered to the user, Logical I/O C
returns to the user's main line coding ensuring that the current item's
mass storage address is available to the user in the file's communica-
tion area.

RETRIEVING ITEMS IN DIRECT ACCESS FILES

To retrieve an item in a direct access file, the user can supply the bucket address and the
item key, just the item key, just the bucket address, or neither the bucket address or item key.
The macro call used to request the retrieval of an item in a direct access file is MSGET. Table

3-3 summarizes the MSGET macro functions for direct access files.
3-13 #5-618

SECTION III. LOGICALI/O C

NOTE: When an item is retrieved in a direct access file and delivered to
the user by Logical I/O C, Logical I/O C returns to the user's
main line coding ensuring that the item's mass storage address N
is available to the user in the file's communication area.

In executing the get function when both the bucket address and the item key are supplied
in the MSGET macro call, Logical I/O C performs the following steps:
NOTE: Step 1 applies only to input/output processing.

1. If an MSREP, MSDEL, or MSINS has been issued for some item
previously retrieved or to be inserted, Logical I/O C ensures that
the block containing that item has been written back onto the mass
storage device.

2. Logical I/O C searches each undeleted item position in the specified
bucket for the item with the specified key. When the cylinder over-
flow area is entered, Logical I/O C sets an indicator in the file's @
communication area specifying this. It sets another indicator
when the general overflow area is entered.

3. When the end of the overflow area(s) is detected or when an inactive ~
item position is encountered, the item is not located and an exit is
taken. When Logical I/O C takes this exit, the user cannot return
to this get function,

4. When the item is located, Logical I/O C delivers it to the user in
either the move or locate-item-handling mode.

In executing the get function when only the item key is supplied, Logical I/O C performs ~
the same steps as outlined when the bucket address and item key are specified, except that
Logical I/O C begins searching for the item at the next sequential item location in the
current bucket.
In executing the get function when only the bucket address is supplied, Logical I/O C -
performs the following steps.
NOTE: Step 1 applies only to input/output processing.)
1. If an MSREP, MSDEL, or MSINS has been issued for some item
previously retrieved or to be inserted, Logical I/O C ensures that
the block containing that item has been written back onto the mass
storage device.
2. Logical I/O C searches sequentially from the beginning of the
specified bucket for the next undeleted item, without regard for its
key.
3. The search is continued through the file in the following sequence.
a. The remaining buckets on the current cylinder are searched.
b. The current cylinder's overflow area is searched.
c. Steps a. and b. are repeated for all subsequent cylinders in
the current unit of allocation.
d. The general overflow area of the current unit of allocation is
searched. N

3-14 #5-618

SECTION III. LOGICAL I/O C

e. Steps a., b., c., and d. are repeated for all subsequent units
of allocation on the current file volume.

f. When a file volume has been exhausted, Logical I/O C activates
a new file volume for sequential processing as in steps a., b.,
c., and d.

4. If an undeleted item location cannot be located by Logical I/O C, an
exit is taken.

5. When an undeleted item location is located, Logical I/O C delivers
the item and returns to the user's main line coding.

In executing the get function when neither the bucket address nor the item key is supplied
by the user, Logical I/O C searches as it does when only the bucket address is supplied, but
-
it begins searching for the next sequential undeleted item with the next sequential item in the

current bucket.

Table 3-3. Summary of MSGET Macro Functions for Direct Access Files

| BUCKET ADDRESS SPECIFIED | YES | YES | NO __; NO __

ITEM KEY SPECIFIED YES NO YES NO

Start at beginning of this bucket X X

Start from current bucket

position X X
FUNCTIONS ses 1s

Search for specified item key X X

Search for next sequential

active item X X

Continue search into over-

flow area(s) X X

WHEN BUCKET

IS EXHAUSTED Continue search into next con-
tiguous area (bucket or overflow)

NOTE: An MSGET with only a key specified may be executed following
an MSGET with a bucket and key specified or another MSGET
with only a key specified.

Replacing Items in Files

The process of replacing items in files is similar for sequential and partitioned sequential
files, but it is significantly different for indexed sequential and direct access files. In all cases
in which an item is replaced, the replaced item is the item last retrieved by Logical I/O0C

through the MSGET function.

3-15 #5-618

SECTION III. LOGICAL I/OC

REPLACING ITEMS IN SEQUENTIAL AND PARTITIONED SEQUENTIAL FILES

An item can only be replaced when the file is processed in the input/output mode. The

replace function is requested by the MSREP macro call. The following steps are performed by

Logical I/O C when executing the replace function for items in sequential and partitioned

sequential files,

1.

Logical I/O C sets an indicator in the file's communication area
specifying that an MSREP has been issued for the item last retrieved
by the get function. This ensures that the current buffer is written
back onto the mass storage device after it is exhausted but before it is
overlaid by a new block.

If the move-item-handling mode is specified, Logical I/O C overlays the
item in the current buffer to which the last MSGET referred with the
item in the user-supplied item work area,

REPLACING ITEMS IN INDEXED SEQUENTIAL FILES

In an indexed sequential file, an item can be replaced only when the file is processed in

the input/output mode. To execute the replace function for items in an indexed sequential

file, Logical I/O C performs the following steps.

1.

If key verification was requested, Logical I/O C ensures that the key
of the last item retrieved is the same as that of the replacement item
as follows:

a. In the move-item-handling mode, Logical I/O C compares the
key of the item in the buffer with the key of the item in the user's
item work area; and

b. In the locate-item-handling mode, Logical I/O C compares the
key of the item in the buffer with the key in the user-supplied item
key storage area.

I either of these checks fails, an exittothe user is taken. When

Logical I/O C takes this exit, it does not expect a return to this

replace function.

If processing of the file is in the move-item-handling mode, Logical
1/O0 C moves the item from a user-supplied item storage area to its proper
place in the current buffer.

Logical I/O C then sets an indicator in the file's communication area
specifying that the current buffer must be written back onto the mass
storage device before it is overlaid in memory. Logical I/O C then
returns to the user's main line coding.

REPLACING ITEMS IN DIRECT ACCESS FILES

In a direct access file, items can only be replaced when the file is processed in the

input/output mode. In executing the replace function for direct access files, Logical I/O C

performs the following steps.

1,

Logical I/O C sets an indicator in the file's communication area that
an MSREP macro call has been issued for an item in the current block.
This ensures that the block will be written back onto the mass storage
device before it is overlaid in memory.

3-16 #5-618

SECTION III. LOGICAL I/OC

2. If the move-item-handling mode is specified, Logical I/O C overlays
the item in the current buffer to which the last MSGET referred with
the item in the user-supplied item work area.

Putting Items to Sequential and Partitioned Sequential Files

The put function is initiated by the MSPUT macro call and can be used only when a se-
quential file is being processed in the output-only mode. Note that when processing is in the
locate-item delivery mode, the MSOPEN or SETM macro call issued previously causes an initial

item delivery address to be placed in the user's linkage address field.

To perform the put function, Logical I/O C performs the following steps.

1. If the file is being processed in the move-item delivery mode, the user's
item is moved into the current buffer.

2. Logical I/O C then determines if there is room in the current buffer for
another item. If there is no room, Logical I/O C skips to step 4.

3. If the file is being processed in the locate-item delivery mode, the
address of the leftmost location of the next available item position is
moved to the user's address field. At this point, Logical I/O C
returns to the user's main line coding.

4. Logical I/O C determines if there is room in the file or the current
member for another block after the current block. If there is no room,
an exit to the user is made. Logical I/O C does not expect a return
to the put function if this exit is taken. The last item for which the
user issued an MSPUT macro call is overlaid by an end-of-data item
when an MSCLOS or ENDM macro call is issued. (The last item for
which the user issued an MSPUT macro call will still exist in the
user's work area.) The next action issued for this file or member
must be an MSCLOS or an ENDM macro call.

5. If there is room for another block in the file or member after the
current block, the current block is written onto the mass storage
device, pointers are set to the new current buffer, and Logical
I/O C returns to step 3.

Action Macro Calls (for Partitioned Sequential Files Only)

SET PROCESSING TO BEGINNING OF SPECIFIED MEMBER (SETM)
The set member function is initiated by the SETM macro call. When this action is
performed, processing is set to the beginning of the member specified in the SETM macro

call in the processing mode designated.

When performing the set member function for a member that is to be processed in the
input-only mode, Logical I/O C performs the following steps.

1. Logical I/O C attempts to locate a member index entry for an undeleted
member whose name is the same as that specified. If no such name
exists, an exit to the user is made to indicate this condition. Logical
I/O C does not expect a return to the SETM macro routine if this exit
is taken; however, a new action can follow if this exit is taken,

3-17 #5-618

SECTION III. LOGICALI/O C

2. When the member index entry for the specified member is located, Logical

I1/O C sets the address of the member's first item in the file's communi-

cation area. s
3. A processing mode indicator is then set in the file's communication area,

and Logical I/O C returns to the user's main line coding.

When the member is to be processed in the input/output mode, Logical I/O C performs the
set member function as described for the input-only mode, except that the processing mode

indicator is set to input/output processing in the file's communication area.

When the member is to be processed in the output-only mode, Logical I/O C performs the
following steps in executing the set member function.

1. Logical I/O C attempts to locate a member index entry for an undeleted
member whose name is the same as that specified. If this entry is found,
Logical 1/O C skips to step 5.

=\‘(l‘

2. If Logical I/O C cannot locate a member index entry for an undeleted
member whose name is the same as that specified, it verifies that there
is room in the member index and that there is data space for another
entry. If room is not available in either place, exits to the user are
available. If either exit is taken, the user cannot return to this set
member function , but he can issue a new action macro call.

3. If room exists for another entry, an indicator is set in the file's com-
munication area to signify that a new member is being created. -
4. Logical I/O C then sets the address of the first item of the unused area ~
into the file's communication area and performs step 8.
5. Logical I/O C checks the status of the member to see that it is available
for output-only processing. If the member is unavailable for output-only
processing, Logical 1/O C exits to the user, allowing no return to this
set member function but allowing a new SETM or an MSCLOS macro call
to be issued.
6. If processing is in the locate item delivery mode, the address of the -
leftmost end of the buffer area (into which the user's first item is to be
placed) is set into the user's address field.
7. The mass storage address of the member's first item is moved into the g
file's communication area.
8. The processing mode indicator in the file’s communication area is set
to indicate output-only processing, and Logical I/O C returns to the user's
main line coding.
END PROCESSING OF CURRENT MEMBER (ENDM)
The end-member processing function is initiated by the ENDM macro call. When per-
forming the end-member processing function, Logical I/O C performs the series of steps
listed below.
1. If the current member was processed in the input/output or oufput-only
mode, Logical I/O C ensures that all buffers have been retranscribed —

3-18 #5-618

[

SECTION III. LOGICAL I/O C

to the mass storage device and, in the case of output-only processing,
that an end-of-data itemn has been generated.

2. If the current member was processed in the output-only mode and if
it was just created (i. e., it is a new member of the file), Logical I/O
C generates a member index entry for the new member and decreases
the length of the unused area entry for the new member index, If
necessary, Logical I/O C also generates a new "end-of-data in the
member index' entry for the file,

3. Logical I/O C sets an indicator in the file's communication area,
indicating that no member is open for processing, and returns to the
user's main line coding.

ALTER STATUS OF MEMBER (MALTER)

The alter member function is initiated by the MALTER macro call to change the status of
a member to: (1) deleted, (2) make the member available for output-only processing, (3) make
the member unavailable for output-only processing, or (4) rename the member. Note that a
change in member status, a change in member name, or both actions can be specified. When the
alter member function is performed, Logical I/O C performs the following series of steps.

1., Logical I/O C attempts to locate the specified member name in the member
index. Deleted entries in the member index are not examined. If the mem-
ber name cannot be located in the member index, Logical I/O C exits to the
user, indicating the reason for the exit. Logical I/O C does not expect a
return to this alter member function if this exit is taken.

2. After locating the member name in the member index, Logical I/O C alters
the member as specified by the user.

a. The member's status is changed to "available' for output-only
processing.

b. The member's status is changed to ''unavailable' for output-
only processing.

c. The member's status is changed to ''deleted' after Logical I/O C
verifies that the member is available for output-only processing.
If the member is not available for output-only processing, Logical
I/0 C exits to the user to indicate this condition and does not
change the status of the member to "deleted,"

d. The member's name is changed to the new name specified in
the MALTER macro call.

RELEASE COMPLETE FILE TO UNUSED STATE (MSREL)

The release function is initiated by the MSREL macro call. When this function is per-
formed, the specified partitioned sequential file is released so that no members exist and the
complete data area of the file is available for reuse. Note that the file must be opened before
it can be released and that, when the release function is performed, verification of the avail-
ability status of currently active members is not made. In performing the release function,

Logical I/O C performs the following steps.

3-19 #5-618

SECTION III. LOGICAL I/OC

1. The end-of-index entry in the member index is moved to the second
position in the index.

2. The unused area entry in the member index (the first entry in the index)
is set to point to the first data block in the file.

Inserting Items in Files

Items can be inserted in indexed sequential and direct access files., The insert function

is requested by the MSINS macro call,

INSERTING ITEMS IN INDEXED SEQUENTIAL FILES
NOTE: MSINS can only be used in the input/output mode.
To insert an item in an indexed sequential file, Logical I/O C performs the following steps.

1. If the MSREP or an MSDEL has been issued for some previously retrieved
item, Logical I/O C ensures that the block containing that item has been
written back onto the mass storage device. If an MSEEK was the last action
issued for this file, Logical I/O C verifies that the item key for this MSINS
is the same as that for the prior MSEEK and clears the Seek indicator.

2. Using the master, cylinder, and string indexes, Logical I/O C searches for
the item position into which the user's item should be inserted. (If part of
the cylinder index is resident in memory and the item key does not fall within
the value range of the resident portion, the appropriate block of the cylinder
index area for the user's item is then read into the last block position of the
resident cylinder index area.) If an item position cannot be found, an exit to
the user is available to indicate this. If Logical I/O C takes this exit, it does
not expect a return to this insert function.

3. If the located item position contains an active item whose key is
equal to the key of the user's item, Logical I/O C considers the
user's key to be a duplicate item. If this happens, an exit is avail-
able to indicate this. If Logical I/O C takes this exit, it does not
expect a return to this insert function.

4. Logical I/O C inserts the user's item into the located item position,
saving the item originally at that position if necessary.

5. Logical I/O C displaces items as necessary to find an inactive or
deleted item position to allow for the extra item in the file. This
process of displacement may progress from the prime data area to
the cylinder overflow area and then to the general overflow area,
All items displaced are maintained in the proper ascending order
of item key. If the cylinder or general overflow area is used,
Logical I/O C sets indicators in the file's communication area to
specify this for later interrogation by the user. If the high key
value of a prime data area string is altered, Logical I/O C updates
the string index item of the string accordingly.

6. If the general overflow area is exhausted during the displacement
process, an exit is available to the user. The user's item has
been inserted into the file, but the last item in the general over-
flow area has been displaced out of the file. The displaced item
js available to the user at the time of the exit. If Logical I/O C
takes this exit, it does not expect a return to this insert function.

3-20 #5-618

%)

SECTION III. LOGICAL I/O C

7. An option is available providing two special exits to the user during exe-
cution of the MSINS macro routine for an indexed sequential file. If
selected, these exits occur while processing each data block affected by
the insert. The first exit occurs prior to inserting or moving items in the
block, and the seqgond occurs prior to writing the block back onto mass
storage after inserting and moving of items has been done.

INSERTING ITEMS IN DIRECT ACCESS FILES

The insert function is initiated by the MSINS macro call and can only be used with direct
access files being processed in the input/output mode.

NOTES: 1. Regardless of the parameters of the MSINS macro instruction,
searching for an available item position is always from the
bucket to the cylinder overflow area (if any) to the general over-
flow area (if any). When an item position is not available,
Logical I/O C exits to the user to indicate this condition. A
return to this insert function is not anticipated by Logical 1/0
C if this exit is taken.

2. When an insert operation is performed, an item is always moved
from the user's work area into a buffer regardless of the speci-
fied item-handling mode.

3. Duplicate item key checking is not done by the insert function
because the programmer may check for duplicate by issuing
an MSGET macro call before each MSINS macro call.

When the programmer specifies the bucket into which he wants to insert an item, Logical
I/O C performs the following steps.

1. If an MSREP, MSDEL, or MSINS has been issued for some
item previously retrieved or to be inserted, Logical I/O C
ensures that the block containing that item has been written
back onto the mass storage device.

2. Starting at the beginning of the specified bucket, Logical I/O C
searches for the first available item position., When the cylinder
overflow area is entered, an indicator is set in the file's com-
munication area. Another indicator is set when the general
overflow area is entered.

3. When the first available item position is located, Logical I/O C
places the item into it.
When the programmer does not specify the bucket into which he wants to place an item,
Logical I/O C starts searching for an available item position, beginning with the current item

position in the bucket, and the search is continued as in steps 2 and 3 above.

Deletir<ems from Files

Items can be deleted from indexed sequential and direct access files. The delete function

is requested by the MSDEL macro call.

3-21 #5-618

SECTION III. LOGICAL1/OC

To delete items from indexed sequential or direct access files, Logical I/O C sets to
"deleted' the status character of the item to which the last MSGET macro call referred. It also
sets an indicator in the file's communication area specifying that the current block is to be writ-

ten back onto the mass storage device.

Seeking a Desired Cylinder

In processing a direct access or indexed sequential file, the read/write heads of a disk
device can be positioned to the cylinder containing desired data by use of the MSEEK macro rou-
tine. A subsequent data transfer to or from that cylinder can be performed after other process-
ing has occurred while the read/write heads were moving into position. Cylinder-to-cylinder

access time on one volume can thus be overlapped, for example, with data transfer activities on

other volumes.

The programmer supplies the bucket or item key in the MSEEK macro call, and Logical

I/O C initiates a seek for the appropriate cylinder on the appropriate volume.,

Setting Processing to a Specified Location

The set processing function sets processing to the first item position in an indexed
sequential file whose key value is equal to or greater than a key value supplied by the user.
This function is requested by the SETL macro call. In executing the set processing function,
Logical I/O C performs the following steps.

1. If a delete or a replace function was performed for some previously retrieved
item, Logical I/O C ensures that the block containing the item has been
written back onto the mass storage device.

2. Logical I/O C then searches (as described for the random get function for
items in indexed sequential files) for the first item position equal to or
greater than that specified by the user. If Logical I/O C cannot locate an
jtem position, an exit is taken. When Logical I/O C takes this exit, it does
not expect a return to this SETL function.

3. Logical I/O C then sets indicators, addresses, and key values in the file's
communication area to refer to the next item in each data area,

4, When this is completed, Logical I/O C returns to the user's main line coding.

PROGRAM ORGANIZATION

As stated earlier in this section, the MIOC macro routine is a segmentable series of sub-
routines (see page 3-2). All the routines that make up MIOC can be resident in memory at the
same time, or MIOC can be segmented so that certain infrequently used routines remain on
mass storage until required. When segmentation is specified by the programmer, assignment

of segment names and segment loading is handled automatically by MIOC.

3-22 #5-618

e

SECTION III., LOGICALI/O C

NOTE: A program which calls a segmented MIOC must have a segment name
specified by a SEG statement,

When requested, the following routines of MIOC are resident at all times and occupy a non-
overlayable portion of memory:
1. Common coding,
Physical I/O control,
Get,
Replace,
Delete, and

oo or WD

Put.

When the programmer specifies that MIOC is to be segmented, designation of the insert
routine as resident or nonresident is arbitrary, but the following routines are nonresident when
requested. These are brought into a common overlay area in memory (defined by MIOC) as each
is required. The common overlay area defined by MIOC is reserved on the basis of the memory

requirement for the largest nonresident routine:

1. Open,

2. Set member,
3. End member,
4, Close,

5. Alter member,
6. Release, and
7. Set location,

NOTE: When segmentation is specified, the open function normally is brought
into the common overlay area in several segments. These are loaded
one after another as the function progresses. The programmer, how-
ever, can request that the open function be brought into the common
overlay area as a single segment.

LANGUAGE ELEMENTS FOR LOGICAL I/O C

Each of the macro routines described previously can be included in an Easycoder source-
language program simply by writing a macro call for each desired routine. At assembly time,
these macro routines for which macro calls are included in the source-language program are
specialized and included in the machine-executable output of the assembler. The macro routines
are specialized, i.e., they are converted from general to special routines which are tailored to
the particular use desired, This is accomplished by means of parameters included in or excluded

from the macro call, The specialized macro routines are included in the program at the point at

3.23 #5-618

SECTION III. LOGICAL I/O C

which the macro call was written. The macro calls described later in this paragraph constitute

the language elements of Logical I/O C.

The type, location, operation code, and operands fields of the Easycoder coding form are
significant when writing a macro call. A macro call is identified as such by the contents of the
type field (column 6 on the coding form). Whenever a single macro call is written on more than
one line of the coding form, all lines used for that call must contain the letter C in the type field,
except that the last line used must contain the letter L. In the case in which a single macro
call is contained entirely within one line, that line must contain the letter L in the type field.

The letter C in the type field signifies that a given line (even if it is the first line) of a macro
call is a continuation line. The letter L in the type field signifies that the line (even if it is the

only line) is the last line of 2 macro call.

The name of the macro routine that performs the desired function is written in the operation
code field (columns 15 through 20 on the coding form). This name must be written on the first
(or only) line of the macro call. The macro routines are stored in the library file according to
their names, and the name written in the operation code field is used to locate the macro routine
in the library. No line, except the first line of a macro call, may contain the macro routine name

in the operation code field.

The location field (columns 8 through 14 on the coding form) on the first line of the macro
call contains parameter 0 of that macro routine. The value of this parameter is defined by each
macro call. Note that parameter 0 of any macro call is the only parameter that need not be

followed by a comma.

The remaining parameter values for a given macro call are written in the operands field
(columns 21 through 62 on the coding form). A macro call may contain as many as 63 parameters.
All parameters except 0, i. e., parameters 1 through 63, are written in numeric order in the

operands field, starting at column 21. A parameter value may be up to 40 characters in length

and may be composed of any set of characters except the comma. The comma is used to termi-
nate each parameter and, therefore, cannot be a character in a parameter value. Each parame-
ter written in the operands field must be terminated by a comma. If a parameter is to be omitted
from a macro call, its terminating comma must follow the terminating comma of the preceding
parameter. To illustrate this, the macro call for the get function (when used with direct access
files) can contain as many as three parameters in the operands field. That is, the programmer
can specify a file tag and a bucket address, a file tag and an item key, or both bucket address

and item key as well as the file tag. If the programmer intends to specify only the file tag and
the item key, he omits the bucket address (parameter 2) and includes its terminating comma,

as shown in Figure 3-1.
3-24 #5-618

il

i

SECTION III. LOGICALI/OC

NOMBER lglg LocaTion | OPERoN OPERANDS l
1 213 olsjel7]e | LN 20}2) 4 L N | Ly . N 1 L 26 N . i PP,
' | ; A A s (I i i . 1 1 1 y 1 A 1 i S
LTS | SNl DU
3 I I L i { zl 1 L i 1 1 A 1 . | PR A
b II l 1 1 ((1 A1 1 'l i A - A i punra i .
sl 11l . MSGET |F4, IKEY, , , R .] s R
s ! ' 1 1 (A i PUNE Y 1 1 A 1 i 1 ' A i S
T +; I L 1 ‘ l(1 . 1 1 i A L 1 L Y
4 A.J ! L S 1(7 A 1 | PR A 1 o A al 2 4 i -J_A_A e
* ‘ ! i 1 s ‘('l N i L A 1 1 L i i
L J }] 1) l(. 1 1 1 1 . 1 A i 1 o i L
T T A T

Figure 3-1. Omission of Single Parameter from Macro Call

In Figure 3-1, the name of the macro routine which performs the get function is MSGET
and is written in the operation code field. Because this macro call only occupies one line on the
coding form, the type field contains an L, indicating that this is the last line of this macro call.
Parameter 0 of this macro call, normally written in the location field, is omitted. Parameter 1
has the value F1l and identifies the file to which this get function is directed. Parameter 2, th¢
bucket address, is omitted, but its terminating comma is included. Parameter 3 has the value
IKEY which points to the location at which the identification field of the item is located. Note
that if the terminating comma of parameter 2 were omitted, the assembler would interpret the

item key as being the bucket address.

When the macro call contains several parameters, as in the case of the MIOC macro call,
another method of omitting parameters can be used in conjunction with the method just described.
To illustrate this, the MIOC macro routine does not presently use parameters 5 through 9. The

programmer can write the macro call for MIOC as shown in Figure 3-2,

Nomeen [E[g| LocaTion | g OPERANDS

1 23 alsfe]7]e | 1415, 20{21) ¢ N PN ' N ;&2 L N N NN
' ! 1! L ' 1 i i 1 1 i 1 1 1 il .
o L IKIMINE MIOC 84,4, . . e L N .
3 ik . 18 A, : , , s . R : . .
. |)

1 1 1 1 A L ad I 1 i A "

Figure 3-2. Omission of Consecutive Parameters from Macro Call

In Figure 3-2, parameter 0 contains the value MINE which, at assembly time, is equated
with the lowest memory location that this MIOC routine occupies. Parameter 1 has the value $
which identifies this unique specialization of the MIOC routine. Parameter 2 has the value 1,
signifying that the program that contains this specialized MIOC routine will process sequential
files in the input/output mode. Parameter 3 is omitted, but its terminating comma is included.
The omission of parameter 3 actually indicates that this specialized MIOC routine does not pro-

cess partitioned sequential files. Parameter 4 has the value 1, indicating that this specialization

3-25 #5-618

SECTION III. LOGICAL I/O C

of the MIOC routine will process direct access files in the input/output mode. Notice that pa-
rameter 4is followed by a comma and that parameters 5 through 9 are omitted. These are
omitted by writing on the next line of the coding form (in the first two columns of the operation
code field) the number of the next parameter to be included and the value of that parameter,
starting in the first column of the operands field. Only a consecutive series of parameters can
be omitted in this manner. The programmer continues writing parameters consecutively in the
operands field, using as many additional lines as required, until all of the parameters of the
macro call have been accounted for. Notice in Figure 3-2 that the first line of the macro call

contains a C in the type field and that the last line contains an L in this same field.

Input/Output Control Macro Routine (MIOC)

One MIOC macro call is required for each program that uses the facilities of Logical I/O C.

When the programmer specializes more than one MIOC in a single program, each MIOC must
originate at the same memory location. By including more than one MIOC in a single program,
various file requirements can be handled. However, only one MIOC can exist in memory at any
given time. The method of achieving uniqueness between tags when more than one specialization
of MIOC is used in a single program is explained in Table 3-4 in the description of MIOC para-

meter 1.

MIOC MACRO CALL

The following example illustrates the method of coding the MIOC macro call.

e T T OPERANDS

1 2[5 alslefr]e | 1afts, 202t 4 | . N N) ezl L e, 50
; L] anAgLfa?,. Mloc POf'Olng.fO-t‘ .¢1 ..0,9,0 o PQ"AM@T@.\' N, . 1 1 1 PN L
L I 1 1 1 it i A L i 1 ' al P S | 1 4

3-26 #5-618

.y

69/62/8

LZ-¢

gl9-o#

Table 3-4. Parameters of MIOC Macro Call

Number Name Value Function Comments
00 Base Anytag Tag is equated with the lowest memory Optional.
location occupied by the MIOC macro
routine.
01 Unique See A single character incorporated in each Required for each MIOC macro
character "Comments'" tag used by this specialization of MIOC, call. Valid characters are
column for Used to achieve tag uniqueness when shown below.
valid char- more than one spec%ahzatmn of MIOC Key Punch | Print Symbol
acters; see is being used in a single program and to
also Note 5. ensure that a user tag does not duplicate (+,8,5) %o
any tag in MIOC. (+,8,6) a
(') 8o 3) $
(-,8,5) "
(0,1) /
(0,8,5) o
A Sequential files will not be processed Coding pertaining only to se-
by this specialization of MIOC. quential files is eliminated.
1 Input/output or both input-only and
input/output processing.
Sequential 2 Output-only processing. Code indicates type of sequential
02 file 3 Input -only brocessin file (including partitioned se-
functions p yP € g- quential) processing. When the
4 Input/output and output-only or all parameter is not omitted, one
three types of processing. of these codes must be used.
5 Input-only and output-only processing.
A The sequential files to be processed
Sequential are not partitioned.
03 fi
o’;teions PARTITION At least one of the sequential files to Cannot be used when parameter

be processed is partitioned.

02 is blank.

‘III NOILDES

D 0O/1TIVOIDOT

82-¢

819-G#

Table 3-4 (cont).

Parameters of MIOC Marco Call

Number Name Value Function Comments
A Direct access files will not be Coding pertaining only to direct
processed by this specialization of access files is eliminated.
the MIOC macro routine.
Direct 1 Input/output or both input-only and Code indicates the type of direct
04 access (see note 2) input/output processing. access file processing. When the
functions 5 Inoat-only processin parameter is not omitted, one of
P Y P g these codes must be used.
A Both sequential and random process- This parameter is valid only if
or ing of direct access files is required parameter 04 is not blank.
BOTH of this MIOC.
This specialization of MIOC only The MSINS macro call cannot be
. - . used and the MSGET macro calls
. SEQUENTIAL requires sequential processing of .
Direct . . used cannot contain bucket address
direct access files.
05 access or key values.
z::;:ssmg This specialization of MIOC only The MSINS macro call can be
RANDOM requires direct processing of direct used and the MSGET macro calls
access files. must specify at least a key value.
A Indexed sequential files are not Coding pertaining to indexed
Indexed processed by this specialization of sequential files is eliminated.
06 sequential this MIOC.
?lrfctions 1 Input/output or both input/output and Code indicates the type of indexed
“ (see note 2) input-only. sequential file processing. When
> Inout-only Drocessin the parameter is not omitted, one
npy yp g of these must be used.
A Both sequential and random process- This parameter is valid only if
or ing of indexed sequential files is parameter 06 is not blank.
BOTH required of this MIOC.
Indexed This specialization of MIOC only The MSINS macro call cannot be
07 sequential SEQUENTIAL requires sequential processing of used and the MSGET macro calls
processing indexed sequential files. used cannot contain key values.
mode
This specialization of MIOC only The MSINS macro call can be used
RANDOM requires direct processing of and the MSGET macro calls must
indexed sequential files. contain a key value.
MR

(

‘IIT NOILDJS

D O/1TVIIDOT

62-¢

819-9#

Table 3-4 (cont). Parameters of MIOC Macro Call

Number Name Value Function Comments
08 Residence of A Cylinder index for an indexed sequential Must be blank if parameter 06
cylinder index file is not to be resident in main memory.| (above) is blank.
RESIDENT Cylinder index is to be at least partially
resident.
09 Seek indicator A Indicates the MSEEK action macro routine] Must be blank if both parameters
will not be called. 04 and 06 (above) are blank.
1 Specifies that the MSEEK action macro
routine will be used only on a direct
access file.
2 Specifies that the MSEEK action macro
routine will be used only on an indexed
sequential file.
3 Specifies that the MSEEK action macro
routine may be used on both direct access
and indexed sequential files.
A In this specialization, MIOC will not be
segmented.
10 Segmentation X In this specialization, MIOC will be Any letter (A-Z) can be used.
(see note 3) segmented. This letter is assigned as the
first character of each segment
generated by MIOC, MIOC as-
signs the second character.
A The direct access and indexed sequen- Must be blank when parameter
tial files processed by this specializa- 04 and 06 are blank or 2.
tion of MIOC do not require the insert
function coding.
Insert RESIDENT Insert coding for the direct access and Insert coding will be resident
11 coding indexed sequential files processed by when parameter 10 is blank.
(see note 2) the MIOC will be resident.
SEGMENT Insert coding will be nonresident for Insert coding will occupy the

this specialization of MIOC,

common overlay area, when
applicable.

‘III NOILDJS

O O/1I IVIOIDOT

oe-¢

819-g#

Table 3-4 (cont). Parameters of MIOC Macro Call

Number Name Value Function Comments
12 SETM-ENDM A If segmentation is specified, the SETM Parameter 12 must be blank if
overlay and ENDM macro coding is segmented parameter 3 is blank.
structure so that each routine is a separate overlay.
COMBINE The SETM and ENDM macro routines
are brought into the common overlay
area together.
A Direct access bucket addresses are
or relative.
Direct RELATIVE
13 ;ccle(sts ACTUAL Direct access bucket addresses are Addresses are specified in
ucket actual. binary.
addressing
BOTH Both relative and actual direct access
bucket addresses are used.
A This program has only this one If the program has more than one
Multiple specialization of MIOC, MIOC specialization, each spec-
14 MI(,)C MULTIMIOCS This program has more than this one 1al.1zat1on must have its own
indicator st e unique character and each must
specialization of MIOC. o
originate at the same memory
location.
Open A The open macro routine will be seg-
Segmentation mented in a way that will require the
least amount of memory.
15 COMBINE The open macro routine will be a single This parameter has no signifi-
continuous segment in the common cance if parameter 10 is blank
overlay area. (a).
Alter a The coding for the alter member This parameter has no signifi-
16 member function is required in this MIOC. cance when parameter 03 is blank.
coding NOMALTER This MIOC does not require the coding
requirements s
for the alter member function.
Rel A The coding for the release member
y e?aseer function is required by this MIOC, This parameter has no signifi-
mem .
03 .
17 coding NORELEASE This MIOC does not require the coding cance when parameter 03 is blank
requirements for the release member function.

™

*III NOILDJES

D O/1 TVOIDOT

Te-¢€

819-G#

Table 3-4 (cont). Parameters of MIOC Macro Call

I Number Name Value Function Comments
A This specialization of MIOC will not
Multiple or process multivolume files.

18 volume SINGLEVOL If at least one file processed by
coding this MIOC is a multivolume file,
requirements | i1, TIVOL This specialization of MIOC will MULTIVOL must be specified.

process multivolume files.

19 These parameters are reserved

through Not Applicable for the use of the operating

24 system.

Key A Key verification is not used on indexed
25 verification sequential files being processed by
requirements this MIOC. The use of the key verification
option is recommended when
KEYVER Key verification is to be made on items items are to b.e re.placed in in-
being replaced in indexed sequential dexed sequential files.
files being processed by this MIOC,

26 These parameters are reserved

through Not Applicable for the use of the operating

28 system.

29 Address mode 3ora MIOC will be assembled in 3 -character
: address mode.
4 MIOC will be assembled in 4-character The 4-character address mode
address mode. Supervisor must be used at exe-
cution time.
A control panel is used by the operator
Operator A control file.
30 control file
device type 220 A Type 220 Console keyboard/type-
P writer is used by the operator control
file.
31 Not Applicable This parameter is reserved for

the use of the operating system.

*III NOILDJES

D O/1 TVIIDOT

2¢e-¢

819-G#

Table 3-4 (cont). Parameters of MIOC Macro Call

I Number Name Value Function Comments
A File processing functions will utilize
or two buffers.

DOUBLE

32 Buffer SINGLE File processing functions will utilize

d buffer.
modes : one dhet See note 1 at end of table. Only

BOTH Both single and double buffering is one buffer is used in processing
required for files processed by this indexed sequential files.
MIOC.

A Items are to remain in input buffers
or for user processing, and the user . ..
LOCATE will place items in output buffers. Locat? mode is more efficient
when items are not usually to be
Item- Items are to be moved to or from the moved from one area of memory
33 handling MOVE input/output buffers from or to a user- to another but will merely be in-
mode supplied item work area. terrogated and/or updated.
Files processed by this MIOC require

BOTH both the locate- and the move-item~
handling modes.

34 These parameters are reserved
through Not Applicable for use of the operating system.
45

46 Special A There are no special exits (as defined

insert below) taken during an insert to an
exits indexed sequential file.

SPEC-EXITS During an insert to an indexed sequential The data exit (parameter 43 of
file, the MSINS action macro routine MCA) is used for these exits.
takes two exits to the user while pro-
cessing each data block. The first exit
occurs prior to inserting or moving items
within a block. The second exits occurs
prior to writing a block to mass storage
after the inserting and moving of items
has been done.

‘III NOILDJS

D 0/1 "TVIIDO1

69/62/8

ge-¢

819-5#

Table 3-4 {(cont). Parameters of MIOC Macro Call

Number Name Value Function Comments
47 These parameters are reserved
through Not Applicable for use of the operating system.
49
A This MIOC will call Physical I/O C
or for specialization on the basis of
CALL parameters 51 through 56,
Physical . . :
50 1/0 C The user has calleq the appropriate A Physical I/0O C macro routine
requirements MPIOC macro routine, and the pa- (MPIOCQC) that this MIOC can use
PRESENT rametar values used to specialize it must exist in the program.
are the same as the values of param-
eters 51 through 56.
51 Physical I/O C | (see below) These values are used when this MIOC The user is required to specify
through parameter set macro routine calls MPIOC. They are either the parameter values he
56 the same as parameters 0l through 06 has used in his MPIOC macro
of MPIOC. call (when parameter 50 =
PRESENT), or the parameter
values he wants MIOC to use
{(when parameter 50 = Aor
caLL),
See param- A unique suffix for all tage in MPI1OC Required. May be the same as
. eter 01 for macro routine. parameter 01 of any MIOC in the
51 Suffix :
valid char- program. Must be the same as
acters; see parameter 01 of the MPIOC that
also Note 5. will be in memory when this
MIOC is in memory.
a Honeywell -recommended peripheral
address assignment for the mass
Peripheral storage control (04 octal).
52 a,dd‘ress xx Peripheral address assignment to
assignment (octal) which the mass storage control appli-
cable to this MIOC is attached.
A Automatic verification coding is not
” Write included.
verification v Write verification is to be done on some

file being processed by this MIOG.

‘1II NOILLDJS

D O/1 IvVOIDOT

Table 3-4 (cont). Parameters of MIOC Macro Call

Number Name Value Function Comments
A PCU number and R/W channel will The value of PCU contained in
Control of be specialized at assembly time a communications area (MCA)
54 more than using parameter 52 and may not is ignored.
one PCU be changed without reassembling.

M PCU number and R/W channel will The value for PCU in MIOC pa-
be specialized from the current com- rameter 52 is ignored. This
munications area (MCA) at execution value allows one MIOC to use
time. more than one PCU,

55 RWC definition| A Read/write channel automatically This parameter is meaningless
specialized at assembly time depending if parameter 54 = M,

on parameter 52. (When parameter 52
is blank or £ 7, an octal 56 is generated.
When parameter 52 >7, an octal 76 is
generated.)

I Xx Specifies read/write channel configuration | Must correspond to PCU sector
Y (octal) to be used for all data transfers. Cannot specified by parameter 52 and
z be changed without reassembly. Must must include read/write channel
correspond to PCU sector specified by 3 of that sector. (Correspondence
parameter 52 and must include read/write | is to actual sector and not to
channel 3 of that sector. value of sector bits, which are
See note 4, below, for permissible char- coded d1i:ferent1y in RWC and
PCU variants.)
acter values.
56 MSEEK A The MSEEK action macro routine cannot
[| indicator be called by this specialization of MIOC.
SEEK The MSEEK action macro routine may be
called for an indexed sequential or direct
access file.
NOTES: 1. A buffer is a user -defined area which Logical I/O C uses for reading and writing blocks onto mass storage.
The user specification of two buffers for use by a single file sometimes increases the efficiency of file pro-
cessing routines. This increase in efficiency is dependent on the size of blocks, the amount of processing
that will take place for each item in the block, the hardware characteristics which either allow or disallow
a transfer of more than one block per disk revolution, and the type of I/O function which normally is requested
a for this file.
o
P

O C (

‘IIT NOILDJS

D O/1 TVIIDO1

69/62/8

ge-¢

819-G#

Table 3-4 (cont). Parameters of MIOC Macro Call

NOTES:

(cont)

When processing several files simultaneously, the user should specify separate buffers for each file,

2.

4.

5.

If inserting is required, parameter 11 cannot be blank,
If MIOC is segmented, the program within which it is called must specify a segment name.

Permissible octal values for parameter 55 are follows: 53, 54, 55, 56, (I/O sector 1); and 73, 74, 75,
and 76 (I/O sector 2), Selection of a value depends primarily on the options available with the user's
equipment configuration, For example, 53 and 73 are possible only for a type 259A Disk Pack Drive,

and 54 and 74 assign a channel capacity greater than necessary., The usual values are 56 and 76, Refer-

ence should be made to the table in the user's Series 200 Programmers' Reference Manual for PDT 1/0
Control Character Cl,

When specializing the MIOC macro instruction to function in a program that also contains IOCC (1/0
Combination C) routines, the programmer must not use the single character $ (i. e., keypunch =, 8, 3)
as the value for parameter 01 or 51.

‘III NOLLDJS

D O/1 TVIIDOT

SECTION I1II.

LOGICAL1I/O C

PARAMETERS OF MIOC MACRO CALL

Table 3-4 lists the parameters of the MIOC macro call. Note that the function of most

MIOC parameters is to insert into or eliminate from MIOC certain subroutines. Thus, a given

specialization of MIOC makes it as small as possible. A summary of the parameters of the

MIOC macro call is provided in Table 3-5.

Table 3-5. Summary of MIOC Parameter Values
Number Name Value Function

00 Base Anytag Equated with MIOC lowest memory location.

01 Unique (print Tag which uniquely identifies MIOC. Must
character characters) be specified. (See Table 3-4, Note 5.)

(70» D B $p
"
» [, or Cp

02 Sequential Al 2, 3, Specifies how sequential files are to be
file 4, or 5 processed. When left blank, no sequen-
functions tial files are to be processed.

03 Sequential A or Specifies whether sequential files are
file PARTITION partitioned or not. When left blank, par-
options titioning option is not used.

04 Direct A, 1, or 2 Specifies how direct access files are to be
access processed. When left blank no direct
file access files are to be processed.
functions

05 Direct A, BOTH, Specifies the processing mode for direct
access SEQUENTIAL, or |access files. When left blank, the file
processing RANDOM can be processed either directly or
mode sequentially.

06 Indexed A, 1, or 2 Specifies how indexed sequential files are
sequential to be processed. When left blank, indexed
file sequential files are not processed.
functions

07 Indexed A, BOTH, Specifies the processing mode for indexed
sequential SEQUENTIAL, or sequential files. When left blank, the file
processing RANDOM can be processed in either mode.
modes

08 Residence of A or Specifies whether blocks of the cylinder
cylinder RESIDENT index for an indexed sequential file are to
index be resident in main memory.

09 Seek A, 1, 2, 0or3 Specifies whether MSEEK action macro
indicator routine is to be called or not, and whether

for direct access and/or indexed sequen-
tial files.

10 Segmentation A, orA Specifies whether or not MIOC will be

through Z segmented. When left blank, segmenta-

8/29/69

tion is not to be used.

#5-618

N

SECTION III. LOGICAL I/O C

Table 3-5 (cont).

Summary of MIOC Parameter Values

Number Name Value Function
11 Insert coding A, RESIDENT, Specifies whether or not insert macro cod-
or SEGMENT ing is resident. When left blank there will
be no insert coding.

12 SETM-ENDM A or Specifies how SETM and ENDM macro
overlay COMBINE routines are brought into the common
structure overlay area., When left blank, both

functions are brought into the overlay
area individually.

13 Direct access A, RELATIVE, Specifies how direct access bucket ad-
bucket ACTUAL, or dresses are supplied. When left blank,
addressing BOTH relative bucket addressing is used.

14 Multiple A or Specifies whether there is more than one
MIOC MULTIMIOCS MIOC macro routine in the program.
indicator When left blank, only one MIOC macro

routine is in the program.

15 Open A or Specifies how the open macro coding is
segmentation COMBINE brought into the common overlay area.

When left blank, optimum segmentation
is achieved.

16 Alter member A or NOMALTER | Specifies whether the coding for the alter
coding member function is used. When left
requirement blank, the MALTER macro call can be

used.

17 Release A or NORELEASE | Specifies whether the coding for the re-
member lease member function is used. When
coding left blank, the MSREL macro call can be
requirement used.

18 Multiple A, SINGLEVOL, Specifies whether multivolume files are
volume or MULTIVOL processed by this MIOC. When left blank,
coding only single volume files are processed.
requirement

25 Key A or KEYVER Specifies whether key verification in in-
verification dexed sequential files is required. When
requirement left blank, key verification is not used.

29 Address A, 3, or 4 Specifies whether MIOC is to be as-
mode sembled in 3-character or 4-character

address mode. When left blank, 3-
character address mode is used.

30 Operator A or 220 Specifies whether a control panel or
control file Type 220 Console typewriter is used
device type by the operator.

32 Buffer A, DOUBLE, Buffering modes to be used with this
modes SINGLE, or MIOC. When left blank, double buffer -

BOTH ing is used,.

33 Item- A, MOVE or Method of delivering items to the user
handling L.LOCATE, or to be used in this MIOC. When left
mode BOTH blank, the locate mode is used.

#5-618

SECTION III.

LOGICAL I/O C

Table 3-5 (cont).

Summary of MIOC Parameter Values

l Number Name Value Function

46 Special insert A or Specifies whether or not the set of two

exits SPEC-EXITS special exits will be taken during pro-
cessing of each data block by the
MSINS macro routine when called for
an indexed sequential file.

50 Physical I/0 C A, CALL, or Specifies how the appropriate MPIOC
requirements PRESENT macro is called or specialized. When

left blank, MIOC calls MPIOC.

51 Suffix See parameter Identifies the MPIOC tag. Must be

01 specified.

52 Peripheral A, xx (octal) When left blank, 04 (octal) is used.
address
assignment

53 Write verifica- A orV Specifies whether write verification is
tion required. When left blank, write verifi-

cation is not required.

54 Control of more AorM Specifies how the address of the periph-
than one periph- eral control unit is specialized. When
eral address as- left blank, only one control unit is used.
signment

55 RWC definition A or xx (octal) Specifies read/write channel when param-

eter 54 =A ., Cannot be changed without
reassembly.

56 MSEEK A or SEEK Specifies whether or not the MSEEK
indicator action macro routine may be called.

57 LOKDEV A or LOKDEV Specifies whether or not the LOKDEV

action may be called.

File Description Macro Routine (MCA)

One file description (MCA) macro call is required for each file to be processed by

MIOC. The MCA macro call automatically generates a Physical I/OC file description macro

call (MPCA).

in parameter 00 of the MCA macro call.

The communication area set up by MPCA has the same file tag that is specified

(Physical I/O C is described in Appendix D of this

manual.) The programmer can interrogate certain fields of the communication area set up by

MPCA, but he should never alter the contents of these fields, since they are used by Logical

1/0 C.

All volumes of one file must be included in the same device class.

follow,

1/05/70

The device classes

Class

Device Type
258, 259, 273, 259A, 259B
155
261, 262

3-38

#5-618

'8

SECTION III. LOGICAL I/O C

MCA MACRO CALL

The following coded example illustrates the method of writing the MCA macro call,

wumeer [p[g| rocarion | oo™ OPERANDS

1 2]3 als[s]7]s N walis, 20]2 N 1 P N . N s T C N]
L |4 Hoq IMCA parametor. A oo pavameter, o, . \
- 1 v §

The parameters required for MCA and their standard values are listed in Table 3-6. A

summary of the MCA parameter values is provided in Table 3-7.

8/29/69

3-38.1

#5-618

-

s

O

SECTION III.

LOGICAL 1I/O C

Table 3-6. Parameters of MCA Macro Call
Number Name Value Function Comments
00 File tag One, two, Used to achieve unique Required. The
or three identification of the programmer uses
characters communication area this tag in action
for this file. macro calls when
referring to this
file.
01 Unique MIOC | See parame- Associates this commu- Required.. Must
‘character ter Ol of nication area with the be the same as
MIOC for appropriate MIOC. parameter 0l of
possible same MIOC call
values. in this program.
02 Volume Tag Specifies the direct See Note 1 at end
address address of the leftmost of table for the
character of a user- format of the user-
supplied table which supplied table.
contains the device
addresses of the vol-
umes containing the
file.
03 Not These parameters
through applicable are reserved for
09 the use of the
operating system.
10 1/0 buffer Tag Specifies the address of See Note 2 at end
address the leftmost character of table for the
of a user-supplied format of the user-
buffer to be used for supplied buffer.
data transfers.
11 ‘Alternate A This file is processed If this parameter
buffer in the single buffer is assigned a value,
mode. double buffering is
Tag The address of a sec- used. See Note 2
ond user-supplied at end of table for
buffer. the format of the
buffer. Must be
blank for indexed
sequential files.
12 Item A or The address of the Optional. When
delivery LOCATE item in the buffer is left blank, the
mode delivered to the user. locate-item-deliv-
ery mode is used.
MOVE Items are delivered
from/to the buffer to/
from the user-supplied
I work area.

3-39 #5-618

SECTION III.

LOGICAL I/O C

Table 3-6 (cont).

Parameters of MCA Macro Call

Number Name Value Function Comments
13 Itemn linkage Tag Specifies the direct Required. See
address of the right Note 3 at end of
end of a user-supplied table.
address storage area
(i.e., of an index reg-
ister or a DSA).

14 Insert item A No inserting will be Applies only to

linkage done. direct access and

Tag Specifies the direct indexed sequential

address of the right end file processing.
of user-supplied address | See Note 4 at end
storage area that points of table.
to the leftmost character
of a user-supplied work
area,

15 Insert item A Items will not be inserted | See Note 8 at the

work area into indexed sequential end of this table.
files.
Tag Points to the leftmost
character of an item
storage area reserved
by the user.
Second A Items will not be inserted
insert into indexed sequential .

16 item files. See Note 8 at the
work end of this table.
area Tag Points to the leftmost

character of a second
item storage area
reserved by the user.

17 Units of A Specifies that this file has
allocation one dat.a unit ?f allocation. Optional, except for

Not valid for indexed se- |4 sequential
quential files. files. When left

Tag Specifies the directaddress| blank, Logical I/O
of the leftend of auser-sup- | C generates a single
plied table into which the field table. See Note
units of allocation for this 5 at end of table for
file are placed when this file | the format of the
is opened. Mandatory for user -supplied units
indexed sequential files. of allocation table.

18 Direct access A or Buckets are relatively Optional. When
bucket ad- RELATIVE addressed in binary for left blank, the
dressing mode this file. relative bucket

addressing mode
is assumed.
ACTUAL The actual key in binary
is supplied for buckets in R
this file.
N i
3-40 #5-618

€

L4l

&y

SECTION III. LOGICAL I/O C

Table 3-6 (cont),

Parameters of MCA Macro Call

Number Name Value I Function Comments
19 Not Applicable This parameter is
reserved for the
use of the operating
system.

20 File name Up to 10 Specifies the file Required. Must

characters name. be the same as
the file name
stored in the
volume directory.

21 Password A The file is not Optional. If a

protected by a password is speci-
password. fied, the field
Tag Specifies the address of containing the
. password must be
the right end of a user- d Kked at
supplied field into which word marke
the leftmost
the user has placed the 1 .
. ocation.
password for the file,
The password sup-
plied for the file
must be exactly the
same as that as-
signed to the file
when it was allo-
cated.

22 These parameters

through Not Applicable are reserved for

24 the use of the

operating system.
A Key verification is not
required for indexed
sequential files.
Specifies a direct Parameter 12
address referencing must be LOCATE.
Key Tag the rightmost charac- Key storage area
25 verification ter of a user-provided must be the length
requirements key storage area. of an item key and
must-be word-
marked in its left-
most location.
KEYVER Key verification is re- Parameter 12 must

quired every time the be MOVE.

replace function is

requested.

26 Sequential A Specifies that indexed See Note 9 at the
key work sequential files will not end of this table.
area be processed sequen-

tially.
3-41 #5-618

SECTION III.

LOGICAL I/O C

Table 3-6 {cont).

Parameters of MCA Macro Call

Number

Name

Value

Function

Comments

26
(cont)

Sequential
keywork
area

Tag

Points to the direct ad-
dress of the rightmost
character of a user-
supplied area for the
storage of item keys
from each current data
area of the file.

Tag is the direct
address of the right
side of the key
storage area.

27

Resident
cylinder
index area

Specifies that the cylin-
der index of an indexed
sequential file is not res-
ident in main memory.

This tag defines the left-
most location of the resi-
dent cylinder index area
reserved by the user.

The size of the area is
that required for the num-
ber of blocks specified

by MCA parameter 28,
plus three characters.

No punctuation is
allowed in this area,
since it is for 1/O
use only.

28

Size of
resident
cylinder
index area

Specifies that the cylin-
der index is not resi-
dent.

n (decimal
integer)

n specifies the number
of blocks of the cylinder
index that are to be
resident.

29

MSEEK
key work
area

The MSEEK macro rou-
tine is not to be called for
an indexed sequential file.

Tag

This tag specifies the
direct address of the
rightmost location of
the MSEEK key work
area.

This area is generated
by the user for storage
of one item key when the
MSEEK macro routine
is called for an indexed
sequential file. The con-
tents of the area are
compared with the item
key of a subsequent
MSGET routine, to
verify that both routines
refer to the same item.

This parameter
must not be blank
if the MSEEK rou-
tine is to be called
for an indexed se-
quential file.

The MSEEK key
work area must
have a word mark
on the leftmost
location. The size
of the area is that
of one item key.

8/29/69

#5-618

=

&

SECTION III. LOGICAL I/OC

Table 3-6 {(cont). Parameters of MCA Macro Call

Number Name Value Function Comments
30 Physical Serves as the suffix Required. Must be
1/0C character for the the same as the
suffix MPIOC macro call used unique character
for this MIOC. specified in param-
eter 51 of the MIOC
macro call with
which this MCA is
associated.
31 Protection A Permits no writing. Optional. When
XX Specifies the protection }eft blazk, the file
{octal) to be observed for this 18 PrOt??ted from
file. any writing (see

Note 6 at end of

table).

02 = Permit data
write.

06 = Permit A-
file write,

12 = Permit B-
file write.

16 = Permit A-
and B -file
write.

00 = Permit no
write.

32 Verification A Verification is not Optional. When
requirements required for this file. left blank, auto-
VERIFY All output data trans- matic verification
N N is not done.
fers for this file are
automatically verified.
33 These parameters
through Not Applicable are reserved for
39 the use of the
operating system.
40 Volume Tag See Note 7 at end of Reason for exit:
directory table. This exit is 1. Exit from open
exit available whenever the :

information to be con-
veyed pertains to the
volume directory.

function for
user interro-
gation and al-
teration of
VOLDESCR,

2. Exit from close
function for
user interroga-
tion and altera-
tion of
VOLDESCR¥,

-

#5-618

SECTION III. LOGICAL I/OC

Table 3-6 (cont).

Parameters of MCA Macro Call

Number

Name

Value

Function

Comments

40
(cont)

Volume
directory
exit

10.

11.

NOTE: For cases

Unable to lo-
cate specified
file,

Password
check failure.

Password
checking not
specified in
MCA, but pass-
word exists for
the file,

User's unii of
allocation table
has overflowed.

Invalid format in
VOLALLOC,

Open found a
file volume
whose sequence
number is not
one greater
than the last.

Exit from open
to user when the
device address
table is not long
enough for the
required file
volumes in the
file.

The current
file volume
being processed
as input/output
does not contain
data.

A new file vol-
ume has to be
opened, and no
entries remain
in the device
address table.

1 and 2,
APD points
to the left
end of the
VOLDESCR
item.

#5-618

AN

SECTION II. LOGICAL 1/0C

Table 3-6 (cont).

Parameters of MCA Macro Call

Number

Name

Value

Function

Comments

4]

Index exit

Tag

See Note 7 at end of
table. This exit is avail-
able whenever the in-
formation to be conveyed
is pertinent to a particu-
lar file's member index.

Reason for exit:

1.

The set mem-
ber function is
unable to locate
the member.

The alter func-
tion is unable
to locate the
member.

No room in in-
dex for the set
member func-
tion to create
another mem-
ber.

The member is
unavailable to
the set member
function for
output-only pro -
cessing.

The member is
unavailable to
the alter func-
tion for deletion

42

Not Applicable

This parameter is
reserved for the
use of the operating
systvern.

43

Data exit Tag

See Note 7 at end of
table. This exit is
taken whenever the in-
formation to be conveyed
pertains to the file's
data.

3-45

Reason for exit:

1.

End-of-data
item detected
on an input
function.

There is no
room to output
the last item
requested by
the put function.

No data blocks
remain for the
creation of a
new member,

Unable to locate
an item key in
an attempt to
get an item.

#5-618

SECTION III. LOGICAL I/OC

Table 3-6 (cont). Parameters of MCA Macro Call

Name Value Function Comments

Data exit 5. Unable to locate
an available
itemn position
while attempt-
ing to insert.

6. An invalid di-
rect access
bucket address
has been spec-
ified.

7. Indexed sequen-
tial insert has
inserted an item
and finds that
all the overflow
areas are full.

8. Indexed sequen-
tial key verifi-
cation failed
while replacing
an item.

9. Indexed sequen-
tial insert dis-
covers a dupli-
cate item key.

10. Set of two spee
cial exits has
been requested
during indexed
sequential in-
serts by param-

A7

eter 46 of
MIOC.
Device exit Tag See Note 7 at end of A list of causes
table. This exit is for this exit is
taken whenever the contained in Table
information to be con- 3-14,

veyed is pertinent to
the mass storage device
currently being used
for this file.

3-46 #5-618

SECTION III. LOGICALI/OC

Table 3-6 (cont). Parameters of MCA Macro Call

—
NOTES:

1.

The format of the user-supplied table that contains the device address of
the volumes containing the file must be constructed as follows.

a. There must be as many entries in the table as there are
devices associated with the file.

b. Each entry must be three characters long and be word
marked at its leftmost location.

C. There must be a record mark one character location
to the right of the last entry.

d. The format of each entry in the table is "ppdd00" (octal), where:

pp = address of peripheral control unit and
dd = device number.

The format of the user-supplied input/output buffer is as follows:
a. The buffer must be as long as a block of information.

b. There must be three record-marked character locations to
the right of the buffer. No other record marks may appear
in the buffer.

c. Itern marks may be set only within the current item of a
buffer and only when the locate mode is being used. They
must be cleared before Logical I/O C is reentered,

d. Any punctuation on the rightmost data character in the buffer
may be cleared by Logical I/O C. If the user requires punctuation
in this field, it is his responsibility to restore it.

e. Word marks may not exist in a key field in a buffer except for
the leftmost position of a direct access key field at the time Logical
1/O C is entered. Word marks may not exist in the buffer for an
indexed sequential file at the time Logical I/O C is entered.

f. Punctuation cannot exist in a buffer used for partitioned sequential
processing for the set member, end member, alter member, or
release member function.

In the move-itemm-handling mode, the address storage area points to the left-
most character of a user-supplied work area where Logical I/O C places and
retrieves items. This work area must be the length of one item and cannot
contain item marks at the time Logical I/O C is entered. If key verification
of replaced items on indexed sequential files is to be performed, a word
mark can be set at the leftmost character of the key area and nowhere else.
In the locate -item-handling mode, the address storage area locates for the
user the leftmost character of the current item position in the current buffer.

The work area to which the address storage area points must be the length
of one item; the work area cannot contain item marks at the time Logical

I/O C is entered. An item to be inserted must be placed in the work area
by the user. The value of parameter 14 (to which this note refers) may be
the same as the value of parameter 13.

The format of the user -supplied unit of allocation table is as follows.

a. There must be at least as many fields in this table as the
maximum number of units of allocation for the file.

3-47 #5-618

SECTION III. LOGICALI/OC

Table 3-6 (cont). Parameters of MCA Macro Call

NOTES:
(cont).

b. Each field in the table must be eight characters long and
must contain a word mark in its leftmost location.

c. There must be a record mark in the character location
immediately to the right of the last field in the table.

Possible values for parameter 31 are as follows.
a. 02 = permit data write,

b. 06 = permit A-file write,

c. 12 = permit B-file write,

d. 16 = permit A- and B-file write, and

e. 00 = permit no write.

These possible values are specified in octal, as shown. Recall that the
control unit protection switches must be set to agree with the value chosen.
For a further description of file protection, see Appendix F of this manual.

This note applies to parameters 40, 41, 43, and 44. These parameters
constitute the four major exit categories. The user is required to inter-
rogate a code to determine the exact cause of any given exit. This code
is set into a l1-character DCW instruction that the user is required to
generate at one memory location less than the entrance point of each exit
routine. Before returning from the user's exit routine, the programmer
sets up another code in the same DCW location that indicates the desired
action. The tag, which the programmer specifies for these exits, points
to a user-supplied routine that must: (1) save the return address, (2)
interrogate a code for the cause of the exit, (3) take appropriate action,
(4) set up a return code, and (5) return to MIOC (when applicable). When
the programmer does not accommodate a particular exit, MIOC uses a
standard value to continue (if possible) or notifies the operator, depending -
on the meaning of the exit.

At the time the exit is taken, the MCA field named "APD'" points to data
pertinent to the exit (see Tables 3-9, 3-10, 3-11, and 3-12).

When items are being inserted into indexed sequential files, two item
storage work areas are required. Parameter 15 points to the first area.
Since this area is specifically for the use of Logical I/O C, punctuation
cannot be present in this area whenever Logical I/O C is entered. Punctu-
ation does not exist in the area upon the normal return to the user's coding
from Logical I/O C. The tag of parameter 16 may point to an identical area,
or it may point to the same area that parameter 14 points to. If it does point
to the same area that parameter 14 points to, however, that area must not
contain punctuation when inserting is being done; when Logical 1/O C re-
turns to the user's coding, the item in the work area is not preserved.

The user -supplied item key storage area must have the following format.
a. For files with cylinder overflow, three fields are required.

Each field must be the length of an item key, and each field

must contain a word mark in its leftmost location;

b. Or, for files without cylinder overflow, two fields are required.
These fields must be the same length as an item key and must
be word-marked in their leftmost location.

3-48 #5-618

o

SECTION III.

LOGICAL I/O C

Table 3-7. Summary of MCA Parameter Values
Number Name Value Function

00 File prefix One, two, or Used to achieve unique identification of

three characters| this MCA communication area.

01 Unique MIOC See parameter Associates this communication area with
character 01 of MIOC for the appropriate MIOC.

possible values

02 Volume Tag Specifies the device address of the volumes
address containing the file.

10 1/0 buffer Tag Specifies the address of the user-supplied
address input/output buffer.

11 Alternate A or tag When left blank, the file is processed in
buffer the single buffer mode. The tag specifies

the address of the user-supplied input/
output buffer.

12 Item=delivery| A, LOCATE, Specifies the item delivery mode. When
mode or MOVE left blank, the locate mode is used.

13 Item linkage Tag Specifies the address of a user-supplied

address storage.area.

14 Insert item A or tag When left blank, no inserting is done.
linkage The tag specifies the address of a storage

area that points to the insert item.

15 Insert item A or tag When left blank, items are not inserted
work area into indexed sequential files. Tag points

to the leftmost character of an item
storage area.

16 Second A or tag When left blank, items are not inserted
insert item into indexed sequential files. Tag points
work area to the leftmost character of the second

item storage area. '

17 Units of A or tag When left blank, the file has only one unit
allocation of allocation, except for indexed sequen-

tial files. The tag specifies the address
of the user-supplied units of allocation
table.

18 Direct ac- A, RELATIVE, Specifies the mode of addressing for
cess bucket or ACTUAL direct access file. When left blank, the
addressing relative address mode is used.
mode

20 File name Up to ten Specifies the file name.

characters
21 Password A or tag When left blank, Logical I/O C checks for

a blank password field in ¥*VOLDESCR?*.
The tag specifies the address of the pass-
word the user is supplying for the pass-
word check.

#5-618

SECTION III.

LOGICAL I/O C

Table 3-7 (cont).

Summary of MCA Parameter Values

Number Name Value Function

25 Key verifica- |{A , KEYVER, Specifies whether or not key verification
tion require- | or tag is used.
ments

26 Sequential key | A or tag Specifies whether or not indexed sequen-
work area tial files are processed sequentially.

27 Resident cyl- | A or tag Specifies whether or not the cylinder in-
inder index dex for an indexed sequential file is resi-
area dent in main memory. If resident, the

tag defines the leftmost location of the
cylinder index area.

28 Resident cyl- { nor A Specifies number of blocks of the cylinder
inder index index that are resident. ''n'' equals any
area size number desired, expressed as a decimal

integer. Blank if the cylinder index is
not resident.

29 MSEEK key A or tag Specifies whether or not the MSEEK ac-
work area tion macro routine will be called for an

indexed sequential file. The tag defines
the rightmost location of a user-generated
) area for storage of one item key.

30 Physical 1/O X Serves as the suffix character for MPIOC
C suffix macro call used for this MIOC.

31 Protection A, 00, 02, 06, Specifies the protection to be used for

12, or 16, this file. When left blank, 00 is used.
(octal)

32 Verification A or VERIFY Specifies whether or not output data trans-
requirements fers for this file will be verified. When

left blank, verification is not done.

40 Volume Tag or A Specifies the address of a user-supplied
directory exit routine. When left blank, this exit
exit is not taken.

41 Index exit Tag or A Specifies the address of a user-supplied
' exit routine. When left blank, this exit

is not taken.

43 Data exit Tag or A Specifies the address of a user-supplied
exit routine. When left blank, this exit is
not taken.

44 Device exit Tag or A Specifies the address of a user -supplied
exit routine. When left blank, this exit
is not taken.

ﬁ_m

Communication Area Service Macro Routines (MLCA and MUCA)

There are two communication area service macro routines: MLCA alters the contents of

certain fields of the communication area, and MUCA moves the values of certain fields to the

user's own storage area.

#5-618

*

SECTION III. LOGICAL I/OC

MASS STORAGE LOAD COMMUNICATION AREA MACRO CALL (MLCA)

The MLCA macro call provides the programmer with the capability of updating the contents
of certain fields in the communication area. To alter the contents of a particular field, the
programmer must associate the field's mnemonic designator with a main memory address. A
mnemanic designator is a tag which Logical I/O C appends to the communication area tag that
the programmer specified as parameter 00 of this file's MCA call, The main memory address
is the address of the value to be placed in the communication area field. The MLCA macro rou-
tine moves the user's field to the associated field in the communication area, As many of these
pairs of mnemonic designators and main memory addresses as are required can be specified in

a single MLCA macro call. The following example illustrates the coding of the MLCA macro call,

Noweer [B|8| LocaTion - | OPERATION OPERANDS
1 2[3 alsfef7]s N 1405, 2021) | L . L f | 6263 . | | 60
o 1 e[[CHANGE MLCA _[FL1 , CHGVER , VER, MYPRT, PRT,, . . s . s X
el . ZERERR, ECT BUF, PBL, e . . s L
: | L] . . NEWNAM, FID, . . A D .
. 3 I i i i 1 X 1 A 1 i L 1 " 1 L
1 T

In this example, parameter 01 (FL1) is a file prefix and is identical with parameter 00 of
the MCA macro call which generates this particular communication area. Parameters 02, 04,
06, 08, and 10 indicate the addresses of main memory locations that contain information to be
placed in the communication area fields identified by the mnemonic designators VER, PRT, ECT,

PBL, and FID. A complete list of the mnemonic designators is given in Table 3-8.

Parameters 02 through 63 of the MLCA macro call are treated in pairs. The first unit of
the pair is the main memory address containing the value to be placed in the communication area,
and the second unit of the pair is the mnemonic designator of the communication area field to be
updated. The first omitted (blank) main memory address terminates the MLCA function. The

order in which the pairs are specified is not significant unless one field is to overlie another,

MASS STORAGE UNLOAD COMMUNICATION AREA MACRO CALL (MUCA)

The MUCA macro call provides the prdgrammer with the ability to access the contents of
certain fields in the communication area. The use of this macro call corresponds to that of the
MLCA, except that the transfer of information is from the communication area to main memory.

The following example illustrates the method of coding the MUCA macro call.

3-51 #5-618

SECTION III. LOGICALI/OC

— -
CARD OPERATION
NumBer |E[B LOCATION CODE OPERANDS
) 2(3 alSieirie 1 LI EN 20121 1 1 1 N 1 . |) 62163 | | N N n N 80
[
L 1 I JUNLOAD MucA | [FLi, LSTADR,RIC,, . . e : i
. = ¥ > ¥
1 _ 1 1 . 1 i 1 1 1 i i U S N W S _— 14
o !
3 | l i 1 A i 1 i L 1 . i L. . 1 1
¢ ! I L : L " ' L s s L L : L L
s I
(- i " L L 1 L L s 5 L 1 Lo L
s l | i 1 i i i 1 1 O, 1 I A i 1
7 I
Il I 1 4 1 I L A 1 1 L A 1 1 .
{
4 I] 1 1 1 1 i A 1 1 i N e 1 A —
o I ! 1 L — 1 1 i 1 1 1 — 1l i 1 1
T]
0 y 1 1 1 1 1 ! 4o e 2 ! i Loy {
b
" [1 L it 1 1 1 1 1 L] sl 1) L

COMMUNICATION AREA FIELD DESIGNATORS
Table 3-8 lists the communication area fields that can be altered or interrogated by the
MLCA and MUCA macro calls, respectively. These fields are identified by the mnemonic

designator that the programmer specifies in the macro call.

Each alteration or interrogation of a field in the communication area is performed by an
Extended Move (EXM) instruction, moving from right to left (data bits only). The move is
stopped by an A -field word mark. Thus, in the case of MLCA, the user's word mark terminates
the move; in the case of MUCA, the word mark in the communication area field terminates the
move, Caution must be used in setting up the field in main memory and in using address arithe=

metic on the mnemonic designators.

For certain fields, either the MLCA or the MUCA macro call cannot be used. This

restriction is indicated in Table 3-8.

Table 3-8. Mnemonic Designators for Communication Area Fields

Mnemonic
Field Name Designators Contents

Current address CAD CAD is an 8-character field in the format
DPCCTTRR. It is the actual address being used for
the current data transfer operation. The MLCA
macro call cannot be used for this field.

Protection PRT PRT is a single-character field (not word marked)
that reflects the protection the programmer requested
through parameter 31 of the MCA macro call. The
programmer can alter this field with an MLCA (using
octal values as shown for parameter 31 in Table

3-6), since it is the programmer's word mark that
terminates the move. The MUCA macro call can-
not be used for this field.

Error count ECT ECT is a l-character field that shows the cumulative
number of rereads and rewrites that have been neces-

sary for the file.

3-52 #5-618

N

SECTION III. LOGICALI/OC

Table 3-8 (cont).

Mnemonic Designators for Communication Area Fields

Field Name

Mnemonic
De signator s

Contents

Read/write
channel

RWC

If parameter 54 of MIOC specifies more than one
control unit (i.e., contains M), then RWC is a 1-
character DCW which defines the read/write channel
to be used by Physical I/O C for subsequent opera-
tions. The read/write channel can be altered only
when the peripheral control unit number differs from
that used in a preceding operation. If parameter 54
of MIOC specifies one control unit (i.e., is blank),
then RWC cannot be used.

Current peripheral
buffer

PBL

PBL is a DSA referring to the left end of the pro-
grammer's buffer which most recently has had a
data transfer issued to or from it. This field can-
not be altered after the file is opened.

Current buffer

CBL

CBL is a DSA that points to the left end of the pro-
grammer's buffer that is most recently receiving
items or delivering items to the programmer. When
single buffering is specified, this field must be the
same as PBL.. The field cannot be altered after the
file is opened.

Address of
pertinent data

APD

Any time an exit is taken that allows the programmer
to interrogate data retrieved by Logical I/0O C, the
DSA designated by APD points to that data. Only

the MUCA macro call may be issued for this field.

Next user
instruction

WCF

Whenever a user exit is taken, WCF (a DSA) points
to the return address in the user's code from the
last action call issued. The MLCA macro call can-
not be used for this field.

File
identification

FID

FID is a 10-character field containing the file name
that the user specified as parameter 20 of the MCA
macro call.

Write verify
indicator

VER

The 1-character field VER indicates whether verifi-
cation is required for the file. An octal 40 indicates
that verification is required. An octal 00 indicates
that no verification is required. This field may be
altered at any time.

Bucket address-
ing mode

BKA

BKA is a l-character field which, when equal to octal
40, indicates that bucket addresses are actual. When
this field is equal to octal 00, it indicates that bucket
addresses are relative.

Overflow
indicator

OVF

The 1-character field OVF indicates whether an in-
dexed sequential or a direct access random function
has overflowed into either the cylinder or the general
overflow areas. A bit is set each time such a sit-
uation occurs. It is always reset to zero at the
beginning of any direct access function. The values
of this field (in octal) are as follows:
R

3-53 #5-618

SECTION III. LOGICAL 1/0 C

Table 3-8 (cont). Mnemonic Designators for Communication Area Fields

Mnemonic
Field Name Designators Contents
Overflow 00 = no overflow,
Indicator (cont) : 40 = cylinder overflow,
20 = general overflow, and
60 = both cylinder and general overflow.
Current item RIC RIC is a 10-character field that shows the address
address of the last item retrieved by the user. The format
of the address is DPCCTTRRII (see note).
Relative volume RVL RVL is a l-character field that contains the relative
number volume number of the volume currently being
processed.
NOTE: D = device number.
P = pack number,
CCTTRR = mass storage record address for the first record of the item's block, a

track-linking record which points to the first record of the item's block,
or the first record of a partial portion of the cylinder previous to the
cylinder containing the item's block.
II = relative item position within the block.
If the block resides on a substitute track, CCTT contains the address of the substi-
tute track when one of the following conditions exists:
1. When sequential processing is being performed on any file type, and the block
is not the first block on the substitute track; or,
2. When direct-access processing is being performed, and the block is not the
first block on the substitute track, and is not the first block in a bucket,
prime data string, or cylinder overflow area,.

Action Macro Calls

An action macro call is a request from the user for a particular input/output function. The
call is placed in line in the user's coding whenever he desires that function. The coding gener-
ated from such a call specifies the communication area (MCA) applicable to the call, designates
the operation of the requested function, and conveys any additional information that the function

may need (e.g., the addresses of the bucket and item key in direct access files).

The following list defines terms frequently used in describing the action calls. The
action macro calls are summarized in Tables 3-2 and 3-9.

1. Location field tag. Whenever the user specifies a tag as parameter 00
of an action macro call, that tag will be equated to the operation code of
the first generated instruction of the action macro routine. This feature
is provided so that the user may branch directly to the coding generated
by an action macro call.

2. File tag, The file tag is a 1-, 2-, or 3-character tag for the file to
which the action is directed. This tag must be the same as parameter
00 of the appropriate MCA macro call.

3. Bucket tag. The bucket tag is the address of the right end of a user-
supplied field containing a bucket address. The format of this field is

defined on page 3-71,

3-54 #5-618

[

SECTION III. LOGICAL I/O C

4. Kef tag. The key tag is the address of the right end of a user-supplied
ield containing an item key. The format of this field is defined on pages
3-72 and 3-73.

5. Member-name t:agi The member-name tag is the address of the right
end of a user-supplied l4-character field containing the name of the
desired member. This field must be word-marked at its leftmost
location,

6, New-name tag. The new-name tag is the address of the right end of a
user-suppheﬁ l4-character field containing the new name for the member.

This field must be word-marked at its leftmost location.

The file tag applies to every action macro call and is either the first or only parameter of
each call. The bucket tags apply only to some action macro routines that can process direct
access files. The key tags apply only to some action macro routines that can process indexed
sequential and direct access files. The member name and new name tags apply only to some

action macro calls that pertain to partitioned sequential files.

OPEN (MSOPEN) .
The MSOPEN macro call is used to open a file for processing. MSOPEN is coded as

illustrated in the following example.

K §| Location | *giron \ OPERANDS
v 213 415f6]71s i 1alis, 20[2 5 f il A N desu ol Rles a0
‘|1 1l lanyTag MSOPENCile-tag (IN/OUT) LIMVOL,. L
? I l A u i i q I‘N i 1 1 i 1 1 1 PN P S G W § 1
3 1 1 1 'l AOUT 'l 3 'y i 1 1 1 1 e, 1 A
M i | " s L UPDATE A i L N ! L .
s ! l i f " I " i 1 .) 1 L N i '
¢ I | L 1 A1 J 'l 1 1 1 'l A 1 L A 1
- =T

When opening a sequential file, IN/OUT, IN, or OUT must be specified. When
opening a partitioned sequential file, UPDATE must be specified if processing of members is
to be done in the input/output or output-only mode. Blank (A) must be specified if processing of
all members is to be done in the input-only mode. When opening a direct access or indexed
sequential file, either IN/OUT or IN must be specified. To open an indexed sequential or
direct access file for sequential processing from its beginning, LIMVOL may be specified.
The following examples illustrate the MSOPEN macro call coding for opening each type of file.

EXAMPLE 1: Opening a sequential file for input-only processing. In this
example, the file tag is the 3 -character value of parameter
01, i.e., IMl, Parameter 02 has the value IN, Note the L in

column 6.
nowsen [E[g] LocaTion | TN OPERANDS
1 2[3 als]s]7]s 4 1445, 20[2¢ - 1) [N i e Nl —l 206 I |
e L . MSOPENIIMAIN . . ., . . e A . e
2 L l i 1 1 i 1 i I R L 1 Il - i P | i
8/29/69 #5-618

3-55

.

SECTION III. LOGICAL1/O C

EXAMPLE 2: Opening a partitioned sequential file in which processing of all
members will be in the input-only mode. In this example, the
value of parameter 01 is the single character I. Parameter 02
is blank.
NoMBER [B[g] LocATION | T OPERANDS
1 213 als[ef7ie | 1418, 2021 N | Lo n N | | 62|63 | | . 80}
P o MSOPENI, . , . . , . , . l L
] . . . B R . . e . e .
In this example, if any member of the partitioned sequential
file was to be processed in the input/output mode or output-
only mode, then UPDATE would have to be the value of
parameter 02.
EXAMPLE 3: Opening a direct access file for processing the input/output
mode. In this example, the file tag is the 2-character value
of parameter 01, i.e,, AA, Parameter 02 has the value IN/OUT,
NOMSER §| Locamon | T OPERANDS
s 2]3 als[el7]e . 1418, 20}21 N i b 4 L N) | 1 80|
I SOPENIAA, IN/oUT,,
EXAMPLE 4: To open a multivolume indexed seﬁuential or direct access file
for sequential processing from its beginning, the open macro
call is coded as follows. The value of parameter 03, LIMVOL,
specifies the minimum number of file volumes to be opened
initially. Note that if the file is indexed sequential, the file
volume or volumes containing the master/cylinder index and
the general overflow must always be online. Subsequent file
volumes are opened as they are encountered.
MR g| ocamon | PEroEn OPERANDS
i 213 «Ts]el7]o N 1815, 20[21 N | L N N i | efes ., .)) 3
L M MSOPENIELY, LN/OUT, LIMVOL,
CLOSE (MSCLOS)
The MSCLOS macro call is used to close all types of files. MSCLOS is coded as
illustrated in the following example.
nowper [p[g] LocaTion | TN OPERANDS
v 2[5 alsfe]7]e N 1afis, 20[2) N L N N N N N | 62163 ; b, O
Lol . MSeLosleoa, | e
% ! A 1 A i i 1 1 1 1 1 Pt P | e A
In this example, it can be seen that the MSCLOS macro call requires only the file-tag
parameter. Note that when the file being processed is a partitioned sequential file, the

MSCLOS macro call must be preceded by the ENDM macro call when a SETM macro call has

been previously issued for a member of the file.

GET (MSGET)

The MSGET macro call is used to retrieve items from the file being processed. MSGET

is coded as illustrated in the following example.

#5-618

u

SECTION III.

LOGICALI/OC

OPERANDS

A -0) -

1 A 1 P J PUDY D
b X MSGET f‘ulg,-“l’o? "buc.k‘:l'-"fq%m-_‘[g%,

. . . NEXT ,

i 2

I n

- +F F F

1 1 i A

N A s Lk&_y_-l’.g%

~ & & P e N -

I i I 1 n

T
1

|

| . N N , A, kev-Faq \
| ¥ [4]

!

|

|

" st

- F F LK L F

In processing sequential files, only the file tag can be used.

In processing direct access

files, any of the values shown (except the last two) for parameters 02 and 03 may be used. The
bucket tag value can be either relative or direct. Notice that when only a key tag is specified
for direct access files, the value of parameter 02 must be blank, and its terminating comma
must be present. The value NEXT must be specified for direct access files when neither a
bucket tag nor a key tag is supplied. In processing indexed sequential files sequentially, only
the file tag can be used. For random processing of indexed sequential files, the key tag must be
specified as parameter 02. For a description of the searching sequence for the desired item in
a direct access file, refer to page 3-13,

EXAMPLE 1: To get an item in a sequential file, or sequentially in an indexed
sequential file, the MSGET macro call requires only the file tag.
In this illustration, the value of the file tag is XYZ,

noweer [Blg| LocaTion | o OPERANDS
1 2]3 alsfe{r]e . 1ais, 20]2: N 4 R L A 1 L s . g f
Lt MSGEY XNZ, | b
2 ; i i i ’ 1 A L s VT 1 1 1 ol Aol L L
EXAMPLE 2: To get an item in a direct access file, a value for parameter 01

and for parameter 02 is required. The value of parameter 02
can, of course, be blank; but if it is blank, a value of parameter
03 is required. To illustrate this, the following coding shows
the file tag as MOD, the bucket-tag value as unspecified, and
the key tag value as IKEY, which is the address of the right-
most location of the field containing the item key.

CARD OPERATION
NUMBER ;ﬁ LOCATION CODE OPERANDS

+ 213 ofs[s]7]e N 14]1S, 20f21 Lol deaondh A it |

d 1 A A
A MSGET MOD, A, IKEY, ; . L L

1 i 1 n i i Lo . 1 1 A

—

EXAMPLE 3: To get the next sequential item in the bucket currently being
processed, the programmer codes the MSGET macro call with
only the value of the file tag specified for parameter 01 and
with NEXT as the value of parameter 02. In this illustration,
the file-tag value is WED.

CARD OPERATION
NUMBER ;ﬂ LOCATION CODE OPERANDS J
1 2Ts alslsir]e N 14lis; 20[21 i 1 L 1 e 2) P O 4 L
L I MSGET WED NEXT. . . e l s s . .
2 [N i
4 I 1 1 i 1 i i A a n 1 L I SR PTG § .

EXAMPLE 4: To randomly get an item in an indexed sequential file, the pro-
grammer codes the MSGET macro call with the file tag speci-
fied in parameter 01 and the key tag specified in parameter 02,
as shown below. In this example, the file tag is FL1 and the
key tag is MYITEM.

3-57 #5-61?

SECTION III, LOGICAL I/OC

T
nomse [E[p| LocaTion | TGN OPERANDS
273 aTs]s][7]e | 14hs, 20]21 N N . N . N L e2es . N N)
1N SGE
. ? i 1 M T FL1 ;MY‘TEM. 1 n i I e s 1 I 1 N 4
REPLACE (MSREP)
The MSREP macro call is used to replace that last item retrived from a file. MSREP is
coded as illustrated in the following example.
NUMBER $p Location | “Ene OPERANDS
1 2]3 aTsTefr]e R 1alis, 2002 | 3) | N R |), e2les . f 0]
o L IMSREP AR, |
2
} l L i i 1 —_ 1 1 1 Il i il PR | - i
In the coded example of the MSREP macro call above, it can be seen that the call requires
only the file-tag parameter. This is shown as UAR in the example.
-
INSERT (MSINS)
The MSINS macro call is used to insert items into a direct access or indexed sequential
file. MSINS cannot be used with sequential files.1 The insert macro call is coded as shown in ®
the following two examples. Example 1 is for direct access files, and example 2 is for indexed
sequential files.
NUMBER [EE‘ wocation | e OPERANDS
23 aTs]e]7 . \afis, 20[2 N N N N N -y | 62]e3 N | | 80]
' ; N . MSINS £ile-Taq (bucket-Tag s
z ; ! Il i i ‘nA i aj ’ L " AL L 1 \/
nnnoes [E[F| ocamion | oremow OPERANDS
 2]3 a1sle[7]e N 14is, 20[2/ N 1 e N 152183, L %0
AL : MSINS £11e-Yaa kev-tag . . .
2]’ " T a ¥ L] a 7
‘ . a
MSINS requires the file tag; the bucket tag can be either specified or unspecified. For a
description of the inserting process for direct access files, refer to "Inserting Items in Direct
Access Files' in this section. The following examples show both methods of coding this macro call ~
for direct access files. In each example, the same file tag (LOT) is used. In the first example,
the bucket tag is specified as BTAG; and, in the second example, it is unspecified.
T
NUMBER [p|g| LOCATION o Cooe OPERANDS
) 213 aTsfe[7]e | 14118, 20[21 i |\ N | N L 62/63 N 80}
el MSINS _[LOT, BTAG,. , . . L
2
Il ‘ 1 'l 1 -, 1 i 1 L
NUMBER B[R] LOCATION Pooe OPERANDS
v 2]3 aTs[e[7]e | 1415, 20[21 | A | | N 62(63 RN 60
T 0] IMSINS [LOT A, ‘
I . . N ,
_/'/

1
Parameter 11 of MIOC must be specified as SEGMENT or RESIDENT if the insert call is to be

issued.

3-58

#5-618

SECTION III. LOGICAL I/O C

The following example shows the MSINS macro call coded for indexed sequential files.

In this example, the file tag is specified as FLX and the key tag as IKEY.

CARD |V OPERATION

NUMBER B[R} LOCATION CODE

OPERANDS

273 als]el7]a | 1415, 20{2! \ L, L . |

R MSINS [FLX, IKEY,. A , e

* W oN -

+

DELETE (MSDEL)
The MSDEL macro call is used to delete the last item retrieved from a direct access or

indexed sequential file. The MSDEL

MSDEL cannot be used with sequential file organization.
macro call is coded as shown in the following example. For this macro call, only the file tag

is required; in the example, it is shown as AB,

CARD [V OPERATION
NUMBER |p|d| LOCATION cooE OPERANDS
' 213 al5]6({7]8 N 1alis) 2020 n N ; - - - m =
T
T I MSDEL (AR . o .
% l A 1 A 1 1 1 1 i 1 1 1 PR ST R | 1o

PUT (MSPUT)

The MSPUT macro call is used to deliver items sequentially to the file. This macro call

can be used only with the sequential file organization.

MSPUT is coded as shown in the following

example. For this macro call, only the file tag is required; in the example, it is shown as X.
T
NomBer [p|5| LocaTion | *TEro OPERANDS
 2]3 «Ts]e[7]e | 1ais, 20[21 | |) \ N | 62[63 80
T
% ! L A MSPUT X\ ! 1 i L n " R
{ l' 1 e i 1 i A i 1

SET MEMBER (SETM)
The SETM macro call is used to begin processing of the member specified in the macro
call. SETM can be used only with partitioned sequential file organization; it is coded as shown

in the following example.

Nf,“,fgm[ﬂ_g’ Location | OPERATION OPERANDS
213 alsje]7]s | 1alis) 20[21 . | . N L €263 80
1 .
: i " SETM _ file-Yog member.-name-tag, IN/ouT)
} !) i " a0 L " AN ")]
| , . . . : . dovut ., J .
| ' . 7
; + A 1 1 A 1 ' 1 1 L 1 i 1 1

SETM requires the file tag, the member name tag, and the processing mode parameter.

The following example illustrates the coding of the SETM macro call.

3-59 #5-618

SECTION III. LOGICAL I/O C

EXAMPLE 1: In this example, the member to be opened for processing is
tagged MEMTAG and the processing mode is to be the input/
output mode.

wumeer [b(g| LocaTion | g OPERANDS

1 2]3 als]e]7]e N ialis, 2021 N | L, L, 42]63 | 4 4 80
Ll . SETM ABC MEMTAG,IN/OUT, e . .
4 J Iy 1 1 L. 1 J . 1 1. '] —

END MEMBER (ENDM)

The ENDM macro callis used to stop processing of the current member.

macro call, only the file tag is required.

ENDM applies

only to partitioned sequential files and is coded as shown in the following example.

For this

Nomeer [F[3] LocaTIon | *"Tr" OPERANDS I
s 2]3 alsfelr]e | 1afis, 20[2 | N NI N 6263 N . ., . 80
[0 ENOM Ieile-tag, . . . A L R
o l 1 1 A 1 1 J. A i L i ol P | A

ALTER MEMBER (MALTER)
The MALTER macro call is used to change the specified member of a partitioned sequential
file, as directed by the parameters of the macro call. MALTER can be used only with partitioned

sequential files and is coded as shown in the following example.

T

OPERATION

,,f,‘::e,, 'a LOCATION SODE OPERANDS

i 2]3 alsfe[7]e , 1e]is, 20(2) . N R R N N L e2les . N N 80}
Lk . MALTERICi | ¢-Taq member,-name-taq,, L hew-hamp - t- B)
' . . e . . G iUNAMAILk“ el ?... .

n

2

L

& w N -

. AoeLeTE |
- J

]
}
|
|
T

n 1 i 1 1 L 4 N 1 al i i et 1

+
T

MALTER requires the file tag, the member name tag, a change in member status or a
change in member name. A change in member status, a change in member name, or both
changes can be specified. The following examples illustrate the coding of the MALTER macro
call.

EXAMPLE 1: In this example, the member's status is changed from '"available

for output processing' to '""unavailable for output processing."
The member name tag is EFG, and the file tag is HIJ.

3-60 #5-618

SECTION III.

LOGICAL 1/O0 C

noweer [F|g| LocaTion | G OPERANDS
+ 213 ais[e[7]e N 1415, 2021 N N T | s 4 | &2 . s , 20|
~ ' : L . MALTERHIJ EF6 UNAVAIL,, . . , N) .) .
H
l A L A 1 L i i 1 1 I 1 U W T .
s 'l 1 A1 1 A I3 1 i L at 1 S | L Il
‘ n ‘ 1 1 ' 1 1 1 1 i 1 1 I3 1 1
si 1
ey 1 i i I | 1 | 1. N | 1, | | NN
[K T
4.; 1 N I 1 1 L 1 o1 1, [N 1, M N o ol i
7.15 1 Lo 1 | P | AP | N 1, 1 L vl N
o N 1 L Lo a b, 1 il N 1. 1. ! o 1 1
b 1 L. A i] o . S S] L PR | i
ol 1] e l 1 A ORI R - | RPN B T T | Ll
".:.' 1 [T B A PR | R Y b 1 wloa ol P DTN IO
? i'l 1 N TR BN | N D B Lt ol 1 ol 1 Ll L1
? ill el L 1 1 [T I | | B | [N SN |
",i.: TR R L, 1 1. 1 1 il ol il 1 1 1 R
it I i R L | b . | ol TS A [
il N el L. 1 sl | 1 L o1 i . L. 1]
(X} v
.I.; 1 Ly | 1 | | o [L 1. 2 i
oy 1 1. N o 1 | | N N Ll | I 1 o
b I |] N , b vy L1 N 1 N T O 1, 1 ooy
EXAMPLE 2: In this example, the member's status is changed to "available
for output only processing,' and its name is changed to the
contents of a field tagged NEW that contains the new member
name. The file tag for this file is KLM, and the member
name tag is NOP.
NOMBER p| LOCATION o ooe OPERANDS
1 2|3 alsefr]e \ 1a)is, 20[2t . N . T T N T N N T %)
L MALTERIKLM, NOP AVAI L NEW, . . . e . e
2 ’L ! L F Il i 1 i 1 i 1 1 1 1 1
EXAMPLE 3: In this example, the old member is deleted. The
field containing the new member name is tagged NEW,
file tag is RST, and the member name tag is UVW,
o % LOCATION | OPERATION OPERANDS
v 2]3 als5]s|7]s | \ais, 20121 N | L A A L P G L T
3
! l Il L i MALTEERST‘U,V‘MW. L L i L L 1 1 L L a
2 1 N
l 1 N i s i 1. i i 1 1 1 e 1 1
3 i L 1 i 1 i i 1 A — i L L 1 1
. 4 | 1 1 1 i 1 1 L A 2l 1 1 L I3
RELEASE (MSREL)
The MSREL macro call is used to restore the complete area occupied by a partitioned
sequential file to an unused status., MSREL can be used only with partitioned sequential files
q Y P q
and is coded as shown in the following example,
nmanEr Location | *EreoM OPERANDS
) 213 al5]e]7]e \ \alis, 20[21 N | | o) N | |, e2le3 | N 80
! ! } L L MSREL “ q-'an_qu " s) n n 1 1 1 l 1
2 ! i 1 1) A a A 1 i 1 1 i 1 ol 1
8/29/69 3-61 #5-6’18

SECTION III. LOGICAL I/OC

SET LOCATION (SETL)

specified location.
call is used, the file is processed sequentially from the location specified.

used with indexed sequential files and is coded as shown in the following example,

The SETL macro call is used to start processing of an indexed sequential file at a

The location is specified by the value of parameter 02.

When this macro

SETL can only be

§| Location prelh

OPERATION

OPERANODS

1815, 20]21

SETL_ File-Tag kev-Tog. . ..) R .
. g, key-Tog

1

L i n A L 1 1 I R e

SEEK (MSEEK)

The MSEEK macro call is used to position the read/write heads of a disk device on a spec-

ified cylinder of that device.

A Seek may be performed for one disk device while the disk control is busy with data transfer
or other activities of another disk device connected to it.
macro call, a return is made to the main line of his coding while the Seek function is being exe-
cuted.
will be correctly positioned. Efficient use of the MSEEK macro call can significantly improve

access time; for example, the Seek time required for execution of an MSGET macro routine can

The Seek function does not cause the disk control to become busy.

be considerably reduced or eliminated.

Whenever the user issues an MSEEK

If a subsequent MSGET macro call is issued for the same cylinder, the read/write heads

The MSEEK macro call can be in either of two formats as shown in the following. The
first is for a direct access file; the second is for an indexed sequential file.
T
R I:’ETgT LocATION | OPERATION OPERANDS
1 2]3 4}5573 | 14]15, zofa1 | i L L | N , 6263 L 80)
N , MSEEK. i¢ile-Yag, bocket.-Tag,, . . e .
l ! i 1 L 1 1 J.) Y i 1 . P
-
NNEER 'Tgl rocation | OFERSTIOM OPERANDS
i 2(3 4:5579 | 115, 20[21 | | T A R | . 263 80
; b . MSEEK f'u { e,-,‘f'a% k.o,\’/-'fqe) . , 4
l ! L el L e \ n n 1 i s J__‘
I 1 1 1 i N - 1 il 1. i 1 1
i t 1 1 i 4 | 1 1 1 1 1 |
| { s ! L 1 ol { 1 1 L I P
il]IV 1 i 1 L A 1 1 1 1 i 1
; I i i i 1 i 2 1] 1 Il 1 .,
I + 1] b 1 1 ! il 1 1 L _‘__L_J
Table 3-9 is a summary of action macro call coding.

3-62

ty

k_l

SECTION III.

LOGICAL I/O0 C

Table 3-9, Summary of Action Macro Call Coding
Command Parameter 01 Parameter 02 Parameter 03 Parameter 04 Notes
MSOPEN file-tag
: IN/OUT 1,3
IN 1
ouT 2
UPDATE 2
A 2
LIMVOL 7
MSCLOS file -tag
MSGET file-tag
bucket-tag key-tag 4
bucket-tag A 4
A key-tag 4
NEXT 4,5
key-tag 8
A 8,9,10
MSREP file-tag
MSINS file-tag
bucket-tag 4
A 4
key-tag 8
MSDEL file-tag
MSPUT file-tag
SETL file-tag
key-tag
MSEEK file-tag
bucket-tag 4
key-tag 8
SETM file-tag
member-name -
tag IN/OUT
IN
ouT
ENDM file-tag
MALTER file-tag
member~-name -
tag AVAIL 6
UNAVAIL 6
DELETE 6
new-name - 6
tag
MSREL file -tag
3-63 #5-618

SECTION III. LOGICAL I/O C

Table 3-9 (cont). Summary of Action Macro Call Coding

NOTES: 1. Either IN/OUT, IN, or OUT must be specified when opening a sequential
file.
2. UPDATE must be specified when opening a partitioned sequential file if

processing of members will be input/output or output-only. BLANK must
be specified if processing of all members will be input-only.

3. Either IN/OUT or IN must be specified when opening a direct access or
indexed sequential file.

4. Valid only for a direct access file.

5. NEXT is required for a direct access file when neither bucket nor item
key is specified.

6. Either a change in status (parameter 03) or a change in name (parameter 04)
must be specified. Both parameters 03 and 04 may be used.

7. Applies only to direct access and indexed sequential files. Open function
will open the minimum number of volumes to allow sequential processing
of the file from its beginning.

8. Valid only for indexed sequential files.

9. Required for sequential files.

Required for sequential get function in indexed sequential files.

PROGRAMMER'S PREPARATION INFORMATION FOR LOGICAL I/O C

The following paragraphs contain general and detailed information to assist the programmer
in using Logical I/O C. The subjects covered in these paragraphs are: Logical I/O C memory
requirements, program organization, read/write channel utilization, address mode, index
registers, direct access addressing, direct access item key specification, and exit and halt

codes.

Logical I/O C Memory Requirements

Depending on the number and nature of the functions required, the minimum memory
requirement for Logical I/O C is 3,500 characters. This figure assumes that MIOC is seg-

mented and that the memory locations required for Physical I/O C are included.

Program Organi zation

The routines making up Logical I/O C are designed to take a minimum number of memory
locations in any given situation. This is accomplished first by generating only the required

coding for processing a given program's files, and, secondly, by segmenting the coding for

3-64 #5-618

[

(13

N’

SECTION III. LOGICAL I/O C

those functions that are required infrequently during program execution. Thus, while the coding
to open or close a file is required in any given program, this coding in a segmented program is
loaded into memory only when the programmer issues an action macro call for one of these func-
tions. A multiphase program can further reduce the input/output memory requirements by
specializing separate MIOCs with different processing capabilities for each phase. In multi-
phase programs, tag uniqueness is ensured, since a unique character for all tags of each MIOC
is specified by the programmer. The unique tag capability allows any other macro routine in.
the operating system to be specialized into the same program. Each MIOC called into a given

program must originate at the same memory location if they process a common MCA table.

MIOC SEGMENTATION

If the programs incorporating Logical I/O C are to be loaded from mass storage or tape,
it is generally advantageous to use the segmentation option. If the programs are to be loaded
from a card deck, it is suggested that the segmentation option not be used without first carefully
reading the following paragraphs. Segmentation is accomplished by assigning any letter of the

alphabet as the parameter 10 value of the MIOC macro call.

When segmentation is desired, the program using Logical I/O C must specify segment names
to Mass Storage Easycoder Assembler C. Then, during assembly of the segment that contains
the MIOC macro call, Logical I/O C takes control of assembly segmentation until all the coding
for the requested resident and nonresident functions has been generated. The coding for the
resident functions is generated in the same segment of the program that contains the MIOC
macro call. The coding for each nonresident function requested is generated in separate seg-
ments. Of this nonresident coding, the first segment is x1, where x is the letter assigned as the
parameter 10 value of the MIOC macro call. The second segment may be x2, the third x3, etc.,
until all the nonresident function coding is generated. The last segment generated, always xZ,
consists of any coding supplied by the programmer that follows the call for MIOC in the segment
that contained the MIOC macro call. Segment xZ appears, regardless of whether coding supplied
by the programmer followed the MIdC macro call in its respective segment. This means that if
the segment containing the MIOC macro call contains coding after the MIOC call, this coding is

assembled in a segment different than the original. For the names of MIOC segments and their

respective positions on a binary run file, refer to Table 3-10.

If the call to the Supervisor to load the segment containing MIOC is made in the normal
start mode, loading proceeds up to the end of the resident MIOC coding. At that point, there is
an Execute statement generated at assembly time by MIOC. This statement causes control to be
returned to a MIOC subroutine that requests the Supervisor to load the last MIOC segment, xZ,

without altering any communication area fields other than the segment name field. When the

3-65 #5-618

SECTION III. LOGICAL I/O C

Supervisor completes this loading, control is returned to the location specified in the program-
mer's Execute (or END) statement for the segment containing the macro call for MIOC. Note S~
that, in this case, the programmer cannot assume that his original segment name will be

preserved in the Supervisor's communication area.

When the call to the Supervisor to load the segment containing the MIOC macro call is
made in the return or special start mode, coding following the MIOC call is not loaded. When
coding does follow the MIOC call in the segment containing the MIOC call, it is the programmer's

responsibility to load that coding. This is accomplished by a request to load segment xZ.

For a description of the Supervisor's normal, return, and special starting modes, refer

to the manual, Mod 1 (MSR) Supervisor (Order No. 616). ®

Figure 3-3 illustrates the principles of program segment loading by the Supervisor. In
the normal starting mode, segment 0l would be loadéd, followed by segment BZ. In the special
or return starting mode, only segment 01 would be loaded. Note that B is assumed to be the
value assigned to parameter 10 of the MIOC macro call and that the programmer-originated

segment containing the MIOC macro call is defined as segment 01,

Table 3-10. MIOC Segmentation —
If Parameter 10 Implies Segmentation,
(P10 = x), the function: Is Contained Within These Segment Names When:
Open Parameter 15 = A Parameter 15 = COMBINE
VOLNAMES and VOLDESCR X1 X1 =
Processing
VOLALLOC processing - X2
Direct access precalculations X3 - omitted when parameter 4 = A
Indexed sequential precalcula- X4 - omitted when parameter 6 = A -
tions X5 - omitted when parameter 6 = A

Common subroutines X7

Included only when partitioned sequential files exist

] Parameter 12 = Parameter 12 = COMBINE

Set member XC XC
End member XS5

Included only for sequential processing of indexed
Set location sequential files

XE

Included only if segmentation of insert coding is

Insert specified (i, e., parameter 11 = segment)
XG

3-66 #5-618 .

SECTION III. LOGICAL I/O C

Table 3-10 (cont). MIOC Segmentation

If Parameter 10 Implies Segmentation,
(P10 = x), the function:

Is Contained Within These Segment Names When:

Swap

Included only if multivolume files exist (i.e.,
parameter 18 = MULTIVOL)

Common subroutines XXM
Close volume processing XN
Open volume processing {XO

XP

Included only when partitioned sequential files exist

MALTER XU
Release Xv
Close XY
Remaining user coding XZ

NOTE: Segments are found in alphanumeric order on a binary run file.

MIOC RESTRICTIONS

To accomplish segment loading, MIOC must utilize certain fields of the Supervisor's

communication area and make certain assumptions about other fields.

The following fields of the Supervisor's communication area are altered during the loading

of nonresident functions. These fields are restored to their original values, however, as soon

as a particular loading sequence is completed.

1. Segment name field:
2. Location 152 (octal):
3. Start mode field:

4. Search mode field:

The segment name field (locations 112 and 113 octal)
are altered to contain the segment name of the cur-
ently needed segment.

Location 152 octal is altered, on the basis of the last
requested nonresident function, to ensure that searching
for the next requested nonresident function is performed
most efficiently. This is done to ensure compatibility
with the Mod 1 (TR) Operating System.

The start mode field (location 160 octal) is altered to
the return start mode.

When the program's search mode includes visibility,
Logical I/O C always searches by program and seg-
ment name and by visibility. When visibility is not
included, Logical I/O C always searches by program
and segment name. This is accomplished by preserv-
ing the leftmost bit of the search mode field (location
157 octal) and altering the five rightmost bits to indi-
cate 20 (octal).

Certain assumptions are made by Logical I/O C concerning the contents of other fields of

the Supervisor's communication area.

These assumptions are included in the following list.

3-67 #5-—618’

SECTION III. LOGICALI/OC

PROGRAMMER-~
ORIGINATED
SEGMENT (IN-
CLUDING MIOC
RESIDENT CODING)

Segment 01

OPEN
SEGMENT

Segment Bl

CLOSE
SEGMENT

Segment BY

REMAINDER

OF
PROGRAMMER'S
SEGMENT 01

Segment BZ

Figure 3-3, Program Segment Loading

3-68

Nonresident

Segments

#5-618

-

%

SECTION III. LOGICAL I/O C

1. Search mode field: The assumption is made that the search mode field
(location 157 octal) contains a value other than 01
(visibility and relative position).

2. Program name field: Any time a nonresident function is requested,
Logical I/O C assumes that the program name
field (locations 104 through 111 octal) contains the
program name that contains the current MIOC
macro call.

PHYSICAL I/O C RELATIONSHIPS WITH MIOC

MIOC does not issue PDT or PCB instructions, Rather, it interfaces with the Phys-
ical I/O C program (MPIOC) which does issue such instructions. Normally, the program-
mer requests that MIOC call and utilize MPIOC. This request is made through parameter 50 of
the MIOC macro call. When the programmer wants MIOC to call MPIOC, he must specify, via
parameters 51 through 54 of MIOC, the specialization of MPIOC that he wants. In some cases,
however, the programmer may want to call MPIOC himself. In this case, he assigns the value

"PRESENT'" to parameter 50 of MIOC; he must also specify parameters 51 through 54.

When parameter 52 is equal to or less than 07, a 56 is generated. When parameter 52
is greater than 07, a 76 is generated. This ensures that all channels for the appropriate I/O

sector are used. Note that when a Type 257A Control is used, a 53 is generated.

PHYSICAL I/O C RELATIONSHIPS WITH MCA

The programmer is required to have one MCA for every file he intends to process in a
given program. Each MCA macro automatically generates a Physical. 1/O C communication area
macro call (MPCA). The programmer may desire to interrogate some of the fields in the MPCA;
he does this by writing an MUCA macro call. Because the MCA macro routine uses the MPCA
exclusively, the programmer should never attempt to alter the contents of any of its fields

(other than those listed in Table 3-7.)

Address Mode

The address mode for all Logical I/O C macros must be the same. Also, each time the
programmer enters Logical I/O C through a macro call or Logical I/O C returns to the program-
mer (normally through an exijt) from a macro routine, the address mode must be the same as
that of the macro calls. Furthermore, the address mode of an MPIOC that has been called by

the user must be the same as that of any Logical I/O macros associated with that MPIOC.

Index Registers

MIOC, together with MPIOC, uses and restores index registers X3, X4, X5, and X6.

These registers are restored to their original values whenever a return from Logical I/O C is

3-69 #5-618

SECTION III. LOGICAL I/O C

made to the user's coding. It does not matter whether the coding is in the main line of the pro-
gram or in an exit routine. Index registers X3 and X4 are restored at the last possible moment
before the return is made. Hence, they should not be used as a linkage parameter (parameters

13 and 14 of MCA) to MCA. Index registers X5 and X6 can be used as linkage parameters, how-

ever, since they are restored earlier.

Index registers are saved and restored with MCW's, The MCW is performed between
respective registers and the DSA fields in MIOC. The length of the DSA fields is consistent
with the current addressing mode. MIOC sets its own index register values with LCA instruc-
tions. Because of this, the programmer should always punctuate the registers in the normal
manner, viz., word marks should be placed in locations 10, 14, 18, and 22 in the 3-character
addressing mode and in locations 9, 13, 17, and 21 in the 4-character addressing mode. The

permanence of any other punctuation cannot be guaranteed.

Read/Write Channel Utilization

Two data transfer rates are applicable to mass storage devices. When Type 258, 259, or
273 Disk Pack Drives and Type 261 or Type 262 Disk Files are used, data transfer rates accom-
plished by interlocking at least 1-1/2 channels (such as 1A and 3 or 4A and 6) are required.
When Types 155, 259A, or 259B Disk Pack Drives are used, a single interlocked channel suffices.

In the absence of any other directive, Logical I/O C utilizes channels 2 and 3 or channels
5 and 6 (depending upon the I/O sector) when operating with Type 258, 259, or 273 Disk Pack

Drives; alternatively, it utilizes channel 3 or 6 when operating with Types 155, 259A, or 259B
Disk Pack Drives.

The user can change this assumption by setting parameter 54 of the MIOC macro call to
M and by specifying RWC as the communication area field designator in an MLCA macro call
(see Table 3-8). This action should be performed prior to opening the file. The RWC value
entered by means of the MLCA macro call must include channel 3 (for I/O sector 0) or channel

6 (for I/O sector 1). Permissible RWC values are shown as follows.

1/O Sector 0 I1/O Sector 1
53 73
54 74
55 75
56 76

Direct Access Addressing

Direct access bucket addresses canbe relative or actual. A relative bucket address is onein

whichthe address is the same as its ordinal numeric position from the beginning of the file. In

1/05/70 3-70 #5-618

LH]

vt

»

SECTION III. LOGICALI/OC

this case, the first bucketin the file is numbered 0000 (ina 4-character binary field) and each fol-
lowing bucket increments this number by a binary one. An actual bucket address is one thatis the
exact mass storage address of the first recordof the bucket. When actual bucket addresses are
used inprocessing a multivolume direct access file, all volumes of the file must be mounted onthe
same peripheral controlunit. When a bucket address is not included inanactionmacro call, the

address of the bucket used in the last actionmacrocall (either explicitly or implicitly)is used again.

The programmer must generate a field in which bucket addresses are stored. Bucket
addresses are then delivered to Logical I/O C from this field, whose rightmost location is speci-

fied by parameter 02 of the action macro call. This field can have either of the following octal

formats.

1. Relative address field: This field must have four character positions, and the
leftmost of these must be word-marked. This field
contains the exact sequence number of the bucket
within the file. The sequence number of the bucket
is binary.

2. Actual address field: This field must have eight character positions, and

the leftmost of these must be word-marked. This
field contains the address of the first record in the
desired bucket. The record address is in the form

DPCCTTRR,
D = device number,
P = 0,
CC = cylinder number,
TT = track number, and
RR = record number.

NOTE: If the actual address is obtained from the RIC
field of the MCA communication area following
execution of the GET function, the actual
address may be invalid if the block is on a
substitute track, (See page 3-54,) This re-
sults in the normal action taken for an invalid
bucket address,

Item Key Specification

For the get macro routine to retrieve an item, the itern must contain an identifying key.
This key is specified by the programmer. The length and location within the item are specified
when the direct access file is allocated. This information is placed in the file description por-
tion (¥*VOLDESCR*} of the volume directory. When an open function is issued, Logical I/O C
retrieves these fields from *VOLDESCR*.
DIRECT ACCESS

The address of the rightmost location of a field that contains the desired key value is
specified by parameter 03 of the get action macro call. When items are to be retrieved by
searching for the correct item key, parameter 03 of the get action macro call must be specified.
The field that contains the key value is set up by the programmer and must contain a word mark
in its leftmost location. The corresponding key field within the item in the buffer cannot contain

a word mark; yet, if desired, the leftmost character of the item key field may contain a word

3-71, #5-618

SECTION III. LOGICAL I/O C

mark. The word mark set up by the programmer in the key-value field terminates the operation
when the key-value field and the item key field are compared,
INDEXED SEQUENTIAL

In indexed sequential processing, when an item key is specified in an action macro call,
the address of the rightmost location is specified by parameter 02. The field that contains the
key value set up by the programmer must contain a word mark in its leftmost location. Word
marks cannot exist in the buffer at the time an action macro is executed. The word mark set
up by the programmer in the key-value field terminates the operation when the key-value field

and the item key field are compared.

Exits and Halts

There are four exits associated with MCA. They are summarized in tabular form in
Tables 3-11 through 3-14. Each exit pertains to a specific area of Logical I/O C processing.

These exits are specified in parameters 40, 41, 43, and 44 of MCA as follows:

1. Parameter 40 - volume directory exit,
2. Parameter 41 - index exit,

3. Parameter 43 - data exit, and

4, Parameter 44 - device exit,

As explained in Note 7 of Table 3-5, four exits are associated with Logical I/O C. Each
of these exits relates to a specific area of Logical I/O C processing. Since an exit may be taken
for one of a variety of reasons, a code is provided in a single user -provided character one
memory location less than the user's entrance point for each exit routine. The user may
interrogate this code for equality to a subset of the total number of values possible for a given
exit. When an equality does not exist, i, €., when the user has no interest in acting upon the
particular situation indicated by the current code, the user may return to Logical I/O C with a
request that it handle the situation as it normally would, had the exit not been specified. Namely,
it can continue processing in some cases, or it can notify the operator (either through a control
panel or console) of the condition and allow him to take appropriate action. When an equality
does exist (i.e., a situation exists for which the user has provided a programmed solution), he
returns to Logical I/O C with a request that it proceed in a particular direction. The user makes
return requests by placing a return code in the same user-provided location, as described above.

Sometimes an exit is taken because of a situation which causes Logical I/O C toanticipate no return,

For example, suppose that a programmer wants to specify a device exit (parameter 44 of
MCA) only to reattempt to correct read and write errors. The exit code for the read error is
06; the exit code for the write error is 10 (an unsuccessful write verification). The programmer
can specify one of three return codes to Logical I/O C. A return code of 21 means that Logical
1/0O C is to automatically reattempt to correct the error. A return code of 52 means that
Logical I/O C is to ignore the error and continue processing, if possible. A return code of 40

means halt, The following coding illustrates the example described above.

3-72 #5-618

v

SECTION III, LOGICAL 1/0C
“mﬂﬁk LocaTion | OPZATON OPERANDS
" 23 als]s|7]e N 1415, 20[21 N N L P N L L2l i it %)
1NN CALL [TD MCA , A)]) L |) ,)
o k[[FLs, MCA M_’_&&_FQLSJ,..“ \ , e N s ,
3 |t L 4.4 DEXI T, L " , L . A 1 ; t
J 10 USER | EXIT ROUTINE : ‘ R . s . , e
ST T B B
o | ik WHENITHIS ROUTINE 15 ENTERED, THE FOLLOWING DOW WILL | . . . N
7 } } ll: CONTAIN THE| EXIT £OOE. |] R , \ \ N . . .
d 1 N 1 1 i 1 1. 1 A 1 A - 1
[B WHEN RETURN_TO THE 1/0, 15 MADE, THE SAME DCW, WILL ,) ,))
o T T CONTAIN A JODE SPECIFYING THE DESIRED ACTION.
" i i k‘ 1 1 1 i 1 i 1 L 1 1 ad A 1
12 i i k 1 1 A i | 1 1 'S A 1 1 i L
of 1| OCL Ocw 184, ' L 1 . L L M : L .
ol o THIDEXIT [SeR . MYRT, .70 | ... SAVE RETURN
o X BCE . [RDER Del @6 . . READ ERROR, DU NN .
N L. BCE MWTER,DCI 48 WRITE ERROR, . el . .
ol] L MCW _ ¥1c48,DCY . HAVE 1/0 MESSAGE. | el . .
ol 1 TTT] AMYRT }5 o l)
o1 L |TIRDER Jequ) . . s . s N .
of 1 |]]WTER ew . H1e21,.0¢01 . REQUEST RE-ATTEMPT, . . s \
ol 1L LB MYRT-LA . . LA 1S THE LENGTH OF AN ADDRESS & | L
L I 'L ! NOP A n) ' 2 L 1 1 1) 1 -
23 ! 1[L) L L L L L L X 1, l 1 At I
Table 3-11. Exit and Return Codes for Volume Directory Exits
Exit Return Return Code
Code Reason for Exit Code Meaning
0l The volume directory description 10 Continue processing.,
(*VOLDESCR*) for the file in the first
file volume opened has been read into 21 Reopen the file.
memory by the open function and can
now be interrogated. APD points to
the left end of the entry.
03 The file name cannot be located in 40 Halt or typewriter message.
* *VOLNAMES#* by the open function. 21 Reopen the file volume.
04 The units-of-allocation table set up by 40 Halt or typewriter message.
* the programmer is not large enough to
hold all the units of allocation for this file, 21 Reopen the file volume.
05 A discrepancy exists in *VOLALLOC* 40 Halt or typewriter message.
* for this file. 21 Reopen the file volume.
11 At the end of file or file-volume pro-
* cessing (after the close function reads
*¥*VOLDESCR* in memory and before it 10 Continue processing,
writes it back onto mass storage),
VOLDESCR¥ can be interrogated. APD
points to the left end of the entry.
13 The open function is attempting to process a 40 Halt or typewriter message.
* file volume whose sequence number is not
one greater than the last file volume pro- 21 Reopen the file volume.
cessed, or one whose sequence number is
not zero during the open function for the
first file volume of a direct access or
— —————
3-73 . #5-618

SECTION III. LOGICAL I/O C

Table 3-11 (cont), Exit and Return Codes for Volume Directory Exits

Exit Return Return Code
Code Reason for Exit Code Meaning
13 indexed sequential file, The open
* function cannot continue until the volume
{cont) sequence number is corrected,
14 When this file was allocated, a password 40 Halt or typewriter message.
* \gas s.peC1f1ed. ’ljh1s password provided 51 Reopen the file volume.
y this program is not correct.
21 The *VOLDESCR* entry for a file vol- 10 Continue processing.
ume (other than the first of a multi- 21 Reopen the fil olume
volume file) has been read into memory P 1€ voume.
by the open function and can be inter- 42 Halt or typewriter message;
rogated, APD points to the left end of a new file volume is open,
the entry.
23 The open function is attempting to open 40 Halt or typewriter message,
* a file that does not have a legitimate o1 Reopen the file volume
Mod 1 (MSR) file organization. eope tie voiu)
24 When this file was allocated, a password 40 Halt or typewriter message.
was specified and there is no password ;
check requested in the MCA for this file, 2l Reopen the file volume.
33 A file is being opened, and the open 40 Halt or typewriter message,
function has reached the end of the device 21 Reopen the file
table without being able to open all the | 1e.
required file volumes of the file,
34 A new file volume for a multivolume file 40 Halt or typewriter message.
* needs to be opened, and no more entries 1 Continue processin
remain in the device address table, The P g
number of additional volumes to be mounted
should equal the number of entries in the
device address table or those remaining
in the file before continuation is requested.
Not included in this comparison are those
devices reserved for the indexed sequential
master/cylinder index and general overflow
volumes,
43 A sequential file is being opened for input- 40 Halt or typewriter message,
only or .mput/outqu processing, and its 1 Reopen the file.
sequential number is not zero,

52 Continue processing if pro-
cessing was to begin on other
than the first volume,

53 The open function is processing a file 40 Halt or typewriter message,
* volume as an input-only or input/output 21 Reopen the file volume.

file whose data status indicator speci-
fies that there is no data on the file
volume,

NOTES: * Logical I/O C executes a swap function between file volumes which operates
similarly to a close function followed by an open function. This function applies
only to sequential processing of all file types.
tain the phrase "'open function'' or '"close function'' to refer to an action result-
ing from the MSOPEN or MSCLOS macro calls or to the analogous swapping
function, The swapping function is internal to Logical I/O C.

e

e

% Exit codes shown with "%'" apply only to the swapping function,

Exit codes shown with "*'' con-

#5-618

(4]

SECTION III. LOGICA

LI/oC

Table 3-12. Exit and Return Codes for Member Index Exits

Exit Return Return Code

Code Reason for Exit Code Meaning

03 The set member function (SETM) cannot 40 Halt or typewriter message.
locate the specified member in the member
index. No Issue new action, e.g., SETM

return | to another member,

13 The alter member function (MALTER) cannot 40 Halt or typewriter message.
locate the specified member in this file, No Issue new action, e.g., SETM

return| to another member.

04 The set member function (SETM) has been 40 Halt or typewriter message.
requested to create a new member, but there
is no room in the member index for another No Issue new action, e.g.,, SETM
entry. return | to another member.

14 The set member function (SETM) has been 40 Halt or typewriter message.
requested to set the processing mode of an
existing member to the output-only mode, but No Issue new action, e.g., SETM
the status of the member makes it unavailable |[return |to another member.
for output-only processing.

24 The alter member function (MALTER) has been| 40 Halt or typewriter message.
request.ed to deilete a member whose status ‘ No Issue new action, e.g., SETM
makes it unavailable for output-only processing

return| to another member.
Table 3-13. Exit and Return Codes for Data Exits
Exit Return Return Code
Code Reason for Exit Code Meaning

0l The MSGET macro call has been issued, and 40 | Halt or typewriter message.
an end of file condition has been detected.

No | Issue new action to continue
return| processing.

11 The MSPUT macro call has been issued, and 40 Halt or typewriter message.
there is no more room in the file for another . .
item No Issue new action to continue

' return| processing.

12 The buffer contains a data block which will 10 Continue processing.
be altered during processing by the MSINS
macro routine. (This is the first of two exits
specifically requested by parameter 46 of
MIOC to be taken during processing of each
data block of an indexed sequential file in-
sert.)

22 The buffer contains a data block which has 10 Continue processing.
been altered by the MSINS routine and will
be written back into an indexed sequential
file when processing continues. (This is
the second of two special exits. See above.)

34 The SETM macro routine has been requested 40 Halt or typewriter message.
to create a new member, and there is no room R R
. . L No Issue new action to continue
in the file (no data blocks remain in the .

return | processing.

unused area) for a new member.

#5-618

SECTION III.

LOGICAL I/O C

Table 3-13 (cont).

Exit and Return Codes for Data Exits

after ten attempts.

Exit Return Return Code
Code Reason for Exit Code Meaning

03 The MSGET macro routine cannot locate the 40 Halt or typewriter message.
specified item key. - -

No Issue new action to continue
return | processing.

13 The MSINS macro routine cannot locate an 40 Halt or typewriter message.
available item position. The insert item) :

) . No Issue new action to continue
has not been placed in the file. .
return | processing.

— e

04 An invalid bucket address has been specified 40 Halt or typewriter message.
to the current direct access function. X X

No Issue new action to continue
return processing.

23 An item has been inserted in an indexed 40 Halt or typewriter message.
sequential file, and all the overflow areas
are full. Consequently, the last item No Issue new action to continue
previously in the general overflow area return processing.
has been shifted off the file. APD points
to the left end of this item.

14 Key verification has failed while replacing 40 Halt or typewriter message.
an item in an indexed sequential file.) X

No Issue new action to continue
return processing.

24 A duplicate item key has been detected 40 Halt or typewriter message.
while inserting an item into an indexed :
sequential file. No Issue new action to continue

return processing.

INOTE: The data exit must be specified, unless Loigica.l I/O C never reaches a situation
described as a reason for exit, i. e., a situation in the '"Reason for Exit" column
above.

Table 3-14. Exit and Return Codes for Device Exits
Exit
Code Reason for-Exit

01 Device inoperable.

02 Protection violation.

03 Device error (after five attempts to reposition the device).

04 Possible device failure. -

05 The addressed record cannot be located (after five attempts).

06 Uncorrectable read error. The data, however, has been transferred

erroneously after ten attempts.
07 Uncorrectable read error. The data, however, has not been transferred
after ten attempts. (The header may contain a read error.)

10 Uncorrectable write error. The last write could not be verified after
ten attempts. .

11 A track-linking record has been read into memory.

12 The attempt to link to the next track in this file has not been completed

#5-618

g

i

SECTION III. LOGICAL 1/O C

The following return codes are applicable to all device error exits.

- 21 - Reattempt the operation that caused this error.
52 - Ignore the error and continue processing if possible.
40 - Halt or typewriter message.
OPERATING PROCEDURES FOR LOGICAL I1/O C
To communicate with the operator, Logical I/O C (1) halts with the B-address and A-
address registers displaying error information as described below or (2) pauses with messages
at the console typewriter.
Control Panel Operating Procedures
At the control panel, whenever Logical I/O C halts, the B-address register contains a
code describing generally what problem has occurred. For example, a code of 0401d (where d =
' the device number) indicates that the problem is related to the open or close function. The
operator will often be able to locate and correct the error condition with no need for more
information than is contained in the B-address register. However, when he does need more
il information, the operator can consult the A-address register. This register is set to the
beginning of a communication area containing the following fields:
1. Response field A l-character field into which the operator is asked to key
a code indicating to Logical I/O C which action it is to take,
2. Specific code field A l-character field containing, at the time of the halt, a code
indicating the exact nature of the problem for which the halt
~ occurred. Values for this code are found in Table 3-15.
3, File name field A 10-character field that contains the name of the file being
processed when the error occurred,
4. Relative volume A 1-character field containing the relative volume number.
number field The first volume is relative volume zero.
5. Volume name field A 6-character field containing the name of the next file-volume.
- 6. Peripheral address A l-character field specifying (in octal) the control unit currently
assignment field active for the file named in the file name field.
7. Device number field A 1l-character field specifying (in octal) the file's current
" device number.
8. Pack number field A 1l-character field specifying (in octal) the file's current
pack number.
9. Mass storage ad- A 6-character field specifying, in binary, the mass storage
dress address (CCTTRRY), for device error only,
Specific control panel halt codes for Logical I/O C are listed in Table 3-15,
N’

3-77 #5-618

SECTION III. LOGICAL I/O C

Table 3-15, Halt Codes for Logical 1/O C
B-Address
Register Specific
Value Code Condition Operator Action
0401d There is a discrepancy Inspect device and when possible

03

04

14

21

23

24

05

13

33

34

in the volume directory
which the open function
cannot correct; or the
Swap function has fin-
ished processing a vol-
ume or all volumes in a
device table,

The specified file has
not been found.

There are more units of
allocation for the current
file than the program
provides for in the units
of allocation table.

A password check, re-

quested by the program, |

has failed,

A new file volume is
being opened, The pro-
cessing of the previous
volume is complete,

The open function is at-
tempting to open a file
that does not have a legi-
timate Mod 1 (MSR)

file organization,

A password exists on
the specified file and
password checking has
not been requested by
the program,

An uncorrectable condi-
tion has arisen in the
units of allocation por-
tion of the volume
directory,

The open function has
encountered a file vol-
ume whose sequence
number is not one great-
er than the last.

The open function has
reached the end of the
device address table
without opening all of
the required file
volumes,

A new file volume is re-
quired to be opened, and
no entries remain in the
device address table,

3-78

correct the problem. Usually,
the wrong volume will be
mounted,

To reopen the file-volume or, in
the case of specific codes 21 and
34, to continue processing, enter
an octal 27 (G) into the response
field (location specified by the A-
address register) and press RUN,

To exit to the Supervisor's
emergency return address,
enter an octal 25 (E) into the
response field and press RUN,

#5-618

6l

SECTION II1.

LOGICAL I/O C

Table 3-15 (cont).

Halt Codes for Logical 1/O C

B-Address
Register
Value

Specific
Code

Condition

Operator Action

04014
(cont)

43

53

The open function is opening a
sequential file, and the volume
sequence number is not zero,

The open function is processing
a file volume as input-only or as
input/output, and the file's data
status character indicates that no
data exists on the file-volume.

0410d

03

13

04

14

24

An uncorrectable condition has
arisen during processing of a
member index which precludes
any further processing,

The set member function is un-
able to locate the requested
member,

The alter member function cannot
locate the requested member,

There is no space available for
the creating of a new member
index entry in the member index,

The set member function has been

requested to process in the

output-only mode a member whose

status is unavailable for output~
only processing,

The alter member function has
been requested to delete a
member that is unavailable for
output~-only processing.

No corrective action is possible.
To exit to the Supervisor's
emergency exit address, enter
an octal 25 (E) into the response
field (location specified by the
A-address register) and press
RUN,

0430d

0l

11

An uncorrectable condition has
arisen within the data portion of
a file or member,

End of data has been reached on
an input file,

There is no space in a sequential
output file for another item,

No corrective action is possible.
To exit to the Supervisor's
emergency exit address, enter
an octal 25 (E) into the response
field (location specified by the
A-address register) and press
RUN,

#5-618

SECTION III. LOGICAL1/O C

Table 3-15 (cont).

Halt Codes for Logical 1/0 C

B-Address

Register Specific

Value Code Condition Operator Action

0430d 34 The set member function has

(cont) been requested to create a new

member, There is no space re-
maining in the file's unused area,

03 The get function cannot locate an
item with a specified key.

13 The insert function is not able to
locate an available item position,

04 An invalid bucket address has
been specified for a direct access
function,

23 Indexed sequential insert has
inserted an item and found all
overflow areas to be full,

14 Indexed sequential key verifica~
tion failed while replacing an
item,

24 Indexed sequential insert has
discovered a duplicate item key
while inserting an item,

0440d 05 An action macro call has been No corrective action is possible,

issued for a function whose coding| To exit to the Supervisor's

was not requested for this emergency exit address, enter

Logical I/O C specialization, an octal 25 (E) into the response
field (location specified by the
A-address register) and press
RUN,

Oppxd For specif4{ An error condition (x) has arisen | Inspect the device and control
ic halt on device (d) of the mass storage | unit and, when possible, correct
codes, see | control (pp); pp is less than 40 the problem. Choose one of the
following | (octal), following corrective actions.
B-address
register To reattempt automatic correc=
values, tion of the problem, enter an

3-80

octal 27 (G) into the response

field (location specified by the
A-address register) and press
RUN,

#5-618

&l

SECTION III.

LOGICAL I/O C

Table 3-15 (cont).

Halt Codes for Logical I/O C

B-Address
Register Specific
Value Code Condition Operator Action
Oppxd Key an octal 21 (A) into the
(cont) response field and press RUN
to ignore the problem and con-
tinue processing, This action
is not recommended.
Key an octal 25 (E) into the
response field and press RUN
to exit to the Supervisor's
emergency return exit (location
213 octal).
Opp0d The specified device is not Verify that the device is powered
available. up and protection switches on
the control unit are set properly.
01 Device is inoperable. For possible operator actions,
see Oppxd above.
02 Protection violation,
Oppld An uncorrectable read error has | For possible operator actions,
been encountered. see Oppxd above,
06 The read error is in the data
portion of a record, Data trans-
fer has been completed.
07 The read error might be in the
header portion of the record,
Data transfer is not completed.
12 The read error is in a track-~
linking record.
Opp2d An uncorrectable write error For possible operator actions,
has occurred. see Oppxd above,
04 Possible device failure
(format write).
10 A write verification error has

8/29/69

occurred (see Note 1).

#5-618

SECTION IiI. LOGICAL I/O C

Table 3-15 (cont). Halt Codes for Logical I/0O C

B-Address
Register Specific
Value Code Condition Operator Action
Opp4d A positioning or addressing For possible operator actions,
error has occurred. see Oppxd above.
03 Device error (unable to position
to the requested cylinder).
05 The addressed record cannot be
located. Five attempts have
been made,
Opp7d Miscellaneous condition. For possible operator actions,
see Oppxd above.
11 Possible device failure.

ae

1The following two conditions apply to write errors during the allocate function of
File Support C.

If * BADTRACKS and *VOLSPARES files have not been created
on the volume and a defective track is encountered (write error),
the following message appears on the printer: CYLINDER nnn
TRACK nnn ERROR (nnn is a decimal value). The file must be
reallocated around the defective track. If *BADTRACKS and
*VOLSPARES files are later added to the volume, a substitute
track can then be established for the defective track.

If ¥ BADTRACKS and *VOLSPARES files have been created on the
volume and an unusable track is encountered (write error), the
following message appears on the printer: CYLINDER nnn TRACK
nnn UNUSABLE. An unusable track (a very unlikely possibility)
has a bad surface and not even one bad~track track-linking record
can be read from it. The file must be reallocated around the
unusable track., Track substitution is not possible,

Console Typewriter Operating Procedures

When a

console typewriter message indicates an error or requests operator action,

operator performs the following steps:

1, Read the typeout. (To repeat the message, press the space bar twice.)
If necessary, consult the manual for possible action.

2. Perform the desired corrective action.

3. Type the appropriate l-character response (G, E, etc.).

4. If the typein is correct, press the space bar to continue. If incorrect,
type any other character and return to step 3.

s/zelée“

3-82

#5-618

¥

¥,

[¥]

1

SECTION III. LOGICAL I/O C

The first line of messages issued by Logical I/O C is divided into two categories:

peripheral device condition messages and file I/O condition messages.

The first line of a file 1/O condition message has the following format.

pp d FILE file-name description

The first line of the peripheral device condition is:
pp d description

pp d gives the peripheral control unit (pp) and device number
(d) of the peripheral device upon which the condition
exists, The value of pp is less than 40 (octal).

file name is the 10-character name of the file upon which the con-
dition occurred.

description is a message describing the error condition (see Table 3-16).
The second line of all messages has the format:

¢ file-name v volume pd m a

c is a l-character code indicating the exact nature of the
problem (the specific code).

8/29/69 3.82.1

#5-618

SECTION III, LOGICAL I/OC

file-name is the 10-character name of the file containing the error.

v is the relative number of the volume. The first volume is
considered relative 0.
volume is the 6-character name of the next file volume.
p is the number of the control unit containing the device upon
which the condition exists.
d is the device number of the current file,
m is the number of the current disk pack.
a is the mass storage address (in binary),
The error code and all succeeding information is typed out on the console as a supple-
mentary list if the console typewriter is being used.
Character-field
Number of Characters Location (left) Explanation
' 1 A Response character.
1 A+ Error code (applied to mass storage periph-
" eral device or file condition).
10 A+2 Mass storage file name.
1 A+ 12 Relative volume number of the mass storage
file.
6 A+ 13 Volume name,
1 A+19 Mass storage peripheral control unit address.
1 A+ 20 Mass storage device address,
N 1 A+21 Mass storage pack number,
6 A+ 22 Mass storage address in binary (CCTTRR),
for device error only,
The descriptive messages possible and the specific codes are given in Table 3-16.
*
- Table 3-16. Console Typewriter Pause Codes and Messages for Logical 1/O C
Descriptive Specific Code Operator
Message {Alphanumeric) Condition Action
There is a discrepanc‘y in | Inspect device and when
the volume directory possible correct the prob-
which the open function lem. Usually, the wrong
cannot correct, or the volume is mounted.
Swap ful?ctmn h?s finished To reopen the file volume
p;’loce; sing a vothun:le or or, in the case of specific
:ablvo umes in the device codes 21 and 34, to con-
e tinue processing, type G
and confirm.
To exit to the Supervisor's
emergency return address,
type E and confirm.
FILE NOT FOUND 3 The specified file has not
been found.

{0 U A S~
3-83 #5-618

SECTION III.

LOGICAL 1/O C

Table 3-16 (cont).

Console Typewriter Pause Codes and Messages for Logical 1/O C

Descriptive
Message

Specific Code
(Alphanumeric)

Condition

Operator
Action

U-A TABLE TOO SMALL

ERROR IN *VOLALLOCH*

VOLUME SEQUENCE
NUMBER ERROR

PASSWORD ERROR

DISMOUNT PREVIOUS
VOLUME

PASSWORD ERROR

DEVICE TABLE
TOO SMALL

MOUNT NEXT
VOLUMES

VOLUME SEQUENCE
NUMBER ERROR

NO DATA ON FILE-
VOLUME

4

There are more units of
allocation for the current
file than the program
provides for in the units
of allocation table.

An uncorrectable condi-
tion has arisen in the units
of allocation portion of

the volume directory.

The open function has en-
countered a file-volume
whose sequence number
is not one greater than
the last.

A password check, re-
quested by the program,
has failed.

A new file-volume is
being opened. The pro-
cessing of the previous
volume is complete.

A password exists on the
specified file and pass-
word checking has not
been requested by the
program.

The open function has
reached the end of the
device table without
opening all of the re-
quired file-volumes,

A new file-volume is re-
quired to be opened and
no entries remain in the
device address table.

The open function is
opening a sequential file
and the volume sequence
number is not zero.

The open function is pro-
cessing a file~volume as
input-only or as input/
output, and the file's data
status character indicates
that no data exists on the

3-84

file-volume.

#5-618

n

+%

1]

SECTION Iil.

LOGICAL I/O C

Table 3-16 {cont).

Console Typewriter Pause Codes and Messages for Logical I/O C

Descriptive
Message

Specific Code
(Alphanumeric)

Condition

Operator
Action

MEMBER NOT FOUND

MEMBER INDEX FULL

MEMBER NOT FOUND

MEMBER CANNOT BE
OUTPUT ONLY

MEMBER CANNOT BE
DELETED

An uncorrectable condi-
tion has arisen during
processing of a member
index which precludes
any further processing.

The set member function
is unable to locate the
requested member,

There is no space avail-
able for the creation of
a new member index
entry in the member
index.

The alter member func-
tion cannot locate the
requested member.

The set member func-
tion has been requested
to process in the output-
only mode a member
whose status is unavail-
able for output-only
processing.

The alter member func-
tion has been requested
to delete a member that
is unavailable for output-
only processing.

No corrective action is
possible. Type E and con-
firm to exit to the Super-
visor's emergency return
address,

END FILE (INPUT)

ITEM NOT FOUND

INVALID BUCKET

END FILE (OUTPUT)

NO SPACE TO INSERT |

ITEM

An uncorrectable condi-
tion has arisen within
the data portion of a file
or member.

End of data has been
reached on an input file.

The get function cannot
locate an item with a
specified key.

An invalid bucket address
has been specified for a
direct access item.

There is no space in a
sequential output file
for another item.

The insert item is not
able to locate an avail-
able item position.

No corrective action is
possible. Type E to exit
to the Supervisor's emer-
gency return address.

“‘1

3-85

#5-618

SECTION III. LOGICAL 1/O0 C

Table 3-16 (cont). Console Typewriter Pause Codes and Messages for Logical I/O C

Descriptive Specific Codel Operator
Message (Alphanumeric) Condition Action
KEY VERIFICATION dexed sequential key
FAILURE erification failed while
replacing an item.
NO SPACE FOR MOVED C dexed sequential insert
ITEM as inserted an item and
ound all overflow areas
0 be full.
DUPLICATE ITEM D dexed sequential insert
as discovered a duplicate
item key while inserting
n item.
NO SPACE FOR NEW) The set member function
MEMBER as been requested to
reate a new member.
There is no space re-
aining in the file's un-
sed area.

INVALID ACTION 5 n action macro call has No corrective action is
een issued for a function | possible. Type E to exit
hose coding was not re- | to the Supervisor's emer-
uested for this Logical gency return address.

/O C specialization.
IAn error condition has Inspect the device and con-~
larisen on device (d) of trol unit and, when possi-
the mass storage control ble, correct the problem.
(pp); pp is less than 40 Choose one of the following
(octal). corrective actions.
To reattempt automatic
correction of the problem,
type G.
To continue processing
and to ignore the problem
' type A. This action is not
recommended.,
To exit to the Supervisor's
emergency return address,
type E.

INOPERABLE 1 Device is inoperable.

INOPERABLE 2 Protection violation.

READ ERROR 6 A read error has oc-

curred in the data
portion of a record.
Data transfer has
been completed,

3-86 #5-618

SECTION III. LOGICAL I/O C

Table 3.16 (cont). Console Typewriter Pause Codes and Messages for Logical I/O C

~— Descriptive Specific Code Operator
Message (Alphanumeric) Condition Action
READ ERROR 7 A read error has occurred
which is probably in the
header portion of a record,
Data transfer has not been
completed.
READ ERROR ! A read error has occurred
in a track linking record.
WRITE ERROR 4 A possible device failure
has occurred (format
write).
d WRITE ERROR 8 A write verification error
has occurred (see Note 1).
) POSITIONING ERROR 3 A device error has occurred
= (unable to position the
requested cylinder),
POSITIONING ERROR 5 The addressed record can-
not be located. Five at-
tempts have been made.
MISCELLANEOUS 9 Possible device failure.
N— 1The following two conditions apply to write errors during the allocate function of
File Support C.
a. If *BADTRACKS and *VOLSPARES files have not been created
on the volume and a defective track is encountered {(write
error), the following message appears on the printer:
CYLINDER nnn TRACK nnn ERROR (nnn is a decimal value),
The file must be reallocated around the defective track, If

K *BADTRACKS and *VOLSPARES files are later added to the
volume, a substitute track can then be established for the de-
fective track.

- b. If *BADTRACKS and *VOLSPARES f{iles have been created on
the volume and an unusable track is encountered (write error),
the following message appears on the printer: CYLINDER
nnn TRACK nnn UNUSABLE., An unusable track (a very un-
likely possibility) has a bad surface and not even one bad-track-
linking record can be read from it. The file must be reallocated
around the unusable track. Track substitution is not possible.

N

8/29/69 3-87 #5.618

it

SECTION 1V
FILE SUPPORT C

GENERAL DESCRIPTION OF FILE SUPPORT C

File Support C is a set of routines that perform frequently desired functions on files

resident on mass storage. The functions performed by the File Support C routines are:

1. Allocation of files on mass storage volumes,

2. Deallocation of files resident on mass storage volumes,
3. Loading files onto mass storage volumes,

4. Unloading files from mass storage volumes, and

5. Mapping the contents of the volume directory.

The allocate function is used by the programmer to assign a file to specified areas of one
or more volumes and to update each volume directory accordingly. This function also formats
and initializes a newly allocated file automatically. The deallocate function removes all volume
directory entries for a file. This makes all areas used by this file available for future alloca-
tion. The load function is used by the programmer to load a mass storage file from cards, tape,
or another mass storage file. The unload function is used to unload a file from mass storage
onto cards, tape, printer, or another mass storage file. The map function is used by the pro-
grammer to obtain printed listings based on the contents of a volume directory. The informa-
tion can be listed either on an online printer or on a print-image tape.

NOTE: When loading or unloading one mass storage file to another, the files must
be of the same organization, with the following exceptions: the input can be

a sequential file and the output can be an indexed sequential file, or the input
can be a sequential file and the output can be a direct access file,

All File Support C routines are automatically specialized at execution time. The special-
ization is based on parameters supplied by the programmer in the job control statements,

Therefore, it is not necessary for the programmer to perform an assembly operation to special-

ize these routines.

FOREGROUND/BACKGROUND PROCESSING OF FILE SUPPORT C

All File Support C processing functions can be used as background programs in a multi-
programming foreground/background environment, except for the allocate function, which is in-

compatible with interruption by the foreground program.

4-1 #5-618

SECTION IV. FILE SUPPORT C

FUNCTIONS OF FILE SUPPORT C
Allocate ~’

The allocate function is used to assign a file to one or more specified areas of mass

storage. Every file to be stored on mass storage must be allocated before it can be used. The
allocate function checks the areas of each volume specified for the file to ensure that no other file
occupies any of the specified area. The allocate function also updates the volume directory of
each volume being used to include entries for the new file. All tracks for this file are formatted

to the requested record size and are initialized according to the requirements of the file

organization.
Deallocate
The deallocate function is used to free allocated areas on one or more volumes so that =
other files can be allocated to these areas. Before a file is deallocated, checks are made on the
volume name, the file expiration date, and the password for the file. This is done to ensure that g
a file which has not expired or which is protected by a password is not removed from its vol-
ume(s) inadvertently. Directory item space freed by deallocation will be utilized for subsequent
allocation.
~
The load function is used to load data onto a mass storage file from punched cards, mag-
netic tape, or another mass storage file. All standard fixed-length card and tape formats can
be used with the load function. Multireel magnetic tape files and multivolume mass storage
files can be handled.
Unload
The unload function is used to unload data from a mass storage file onto punched cards,
magnetic tape, printer, or another mass storage file. Multireel magnetic tape files and multi- -

volume mass storage files can be handled.

Map

The map function is used to extract selected information about the files on a volume. This
function can be used to produce a description of all or only specified files on a volume, a descrip-
tion of expired files, or a map of the unassigned tracks on a volume. The information is taken
from the contents of the volume directory and is listed on a printer or on a print-image tape.
Samples of printer listings produced by the map function are shown below.

MAP DESCRIPTION OF A FILE
A description of a file's structure (and other selected information) can be listed. A de-

scription of one or more specified files or of all files on a volume can be produced.

4-2 #5-618

SECTION 1V,

FILE SUPPORT C

COMPLETE LISTING FOR VOLUME VOLONE

FILE NAME: DIRACC]

SERIAL NUMBER VOLONE

FILE TYPE: DIRECT ACCESS ITEM SIZE: 120 CREATION DATE:
PASSWCRD: NO RECORD SIzE: 250 CREATION NUMBER: 000
CYLINCER OVERFLOW: 1 TRACKS ITEMS PER BLOCK: 2 MCDIFICATION DATE: 00 000
GENERAL OVERFLOW: YES RECORDS PER BLOCK: 1 MCDIFICATION NULMBER: 000
ACTIVE ITEMS: 0 RECORDS PER TRACK: 15 EXPIRATION DATE: 00 000
KEY PCSITION: 36 KEY LENGTH: 5
BADTRACKS: NONE BLOCKS PER BUCKET: 4
UNITS OF ALLOCATION
FROM T0
CYLINDER TRACK CYLINDER TRACK
15T DATA UNIT 6 0 15 9
FILE CONTINUES ON VOLUME VOLTWO FILE-VOLUME SEQUENCE NUMBER: 0
COMPLETE LISTING FOR VOLUME VOLONE SERIAL NUMBER VOLONE
FILE NAME: SEQFIL2
FILE TYPE: SEQUENTIAL ITEM SIZE: 250 CREATION DATE:
PASSWCRD: NO RECORD SIZE: 250 CREATION NUMBER: 000
CYLINCER OVERFLOW: 0 TRACKS ITEMS PER BLOCK: 1 MCDIFICATION DATE: 00 000
GENERAL OVERFLOW: NO RECORDS PER BLOCK: 1 MCDIFICATION NLMBER: 000
ACTIVE ITEMS: 0 RECORDS PER TRACK: 15 EXPIRATION DATE: 00 000
BLOCKS IN FILE-VOLUME: 180
BADTRACKS: NONE
UNITS OF ALLOCATION
FROM T0
CYLINDER TRACK CYLINDER TRACK
1ST DATA UNIT 170 0 171 2
2ND DATA UNIT 170 3 171 5
FILE CONTINLES ON VOLUME VOLTWO FILE~-VOLUME SEQUENCE NUMBER: 0

#5-618

SECTION IV,

FILE SUPPORT C

COMPLETE LISTING FOR VOLUME VOLONE SERIAL NUMBER VOLONE

FILE TYPE: INDEXED SEQUENTIAL

PASSWCRD: NO

CYLINCER OVERFLOW:

GENERAL OVERFLOW: YES

ACTIVE ITEMS: 0

KEY PCSITION: 55
BADTRACKS: NONE

1ST DATA UNIT

FILE CONTINUES ON VOLUME VOLTWO

1 TRACKS

FILE NAME: INDSEQ1

ITEM SIZE: 100
RECORD SIi2E; 500
ITEMS PER BLOCK: 10

RECORDS PER BLOCK: 2

RECORDS PER TRACK: 8
KEY LENGTH: 5
BLOCKS PER STRING: 2

CREATION DATE:
CREATION NUMBER:
MCOIFICATION DATE:

000
00 000

MCDIFICATION NULMBER: 000

EXPIRATION DATE:

00 000

BLOCKS IN MASTER INDEX: 1

UNITS OF ALLOCATION INDEX AREA

FROM

CYLINDER TRACK

22 0

10
CYLINDER TRACK

23 [

UNITS OF ALLOCATION GENERAL CVERFLOW AREA

24 0

25 0

24 9

55 9

FILE-VOLUME SEQUENCE NUMBER:

FILE TYPE: PARTITIONED SEQUENTIAL

PASSWCRD: NO
CYLINCER OVERFLOW:
GENERAL OVERFLOW: NO

COMPLETE LISTING FOR VOLUME VOLONE SERIAL NUMBER VOLONE

0 TRACKS

FILE NAME: PARTSEQ

ITEM S1ZE: 250

RECORD SIZE: 250
ITEMS PER BLOCK: 1
RECORDS PER BLOCK: 1

CREATION DATE:
CREATION NUMBER:

MCOIFICATION DATE:

000
00 000

MCDIFICATION NUMBER: 000

ACTIVE ITEMS: 0 RECORDS PER TRACK: 15 EXPIRATION DATE: 00 000
BLOCKS IN FILE-VOLUME: 900 BLOCKS IN MEMBER INDEX: 1
BADTRACKS: NONE
UNITS OF ALLOCATION
FROM 10
CYLINDER TRACK CYLINDER TRACK
1ST DATA UNIT 16 0 21 9
4-4 #5-618

$

.
&

SECTION IV,

FILE SUPPORT C

NOTE:

X=USEC

0OO0O00O
VOO0

XXXXXCG000
XXXXXXX XXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXAXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXX XXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
X0000G0000
X0000G60000
XXXXXAXXXX
0

[eReNeNol

C
0
5

OO C

Ow—w OO

UNASSIGNED TRACKS FOR VOLUME: VOLONE

=00

W= OO

CYLINDERS PER VCLUME:

TRACKS PER CYLINDER:

oONOO

oONOO

WMWNOO

VWNO O

TRACKS
0 0
o] 0
3 3
0 5
0 0
0 0
3 3
0 5

oL 00O

[«1F el o

203
10

meH oo

wmeroOo

cweoeco

OwvocC

nwuoo

wmunoo

0=UNUSED
0 0
(¢ 0
6 6
0 5
0 0
0 0
6 6
0 5

The map function produces as many pages as necessary to show unassigned tracks on

all the cylinders on the volume.

produced here.

For purposes of brevity, only one such page is re-

#5-618

SECTION IV. FILE SUPPORT C

MAP EXPIRED FILES
A description of all files that have expired, as indicated by their expiration dates, can be
produced. To do this, the programmer requests a listing of all files whose expiration date is

earlier than or the same as the Supervisor's current date or any specified date.

MAP UNUSED AREAS

A map of all unused areas on a mass storage volume can be produced. This map can be

used to locate available areas for subsequent allocation of files.

CONSIDERA TIONS

There are a number of considerations in using the File Support C routines within the Data
Management Subsystem of the Mod 1 (MSR) Operating System. These considerations are dis-

cussed in the following paragraphs.

Number of Functions Performed

The number of different functions that can be performed in one execution of File Support
C is limited by the amount of memory available. This is because all job control statements for

an execution of File Support C are read initially, and the specified parameters are stored in

memory. The number of functions which can be performed can be increased if additional main

memory is available.

Only one allocate function can be requested in a single execution of File Support C, and
only one file can be requested for allocation. Thus, for example, to allocate three files requires

three separate executions of File Support C.

Block and Record Sizes Within 12K Memory

The maximum block and record sizes for files being processed in a single function are
limited by the amount of main memory available. The following paragraphs are a guide to these

maximum values for allocate and load/unload functions.

The figures given below are approximate and subject to change. They are based on the
assumptions that only one function is being performed for a single execution of File Support C
and that the number of parameters specified in the job control statements is minimal. The main
memory size is assumed to be 12, 288 characters. Additional memory can be used to increase

the values shown below.

The maximum record size that can be formatted by the File Support C allocate function is
1,000 characters. If a partitioned sequential file is being allocated and members are declared,

the maximum block size that can be handled is 1, 400 characters.

4-6 #5-618

4

SECTION IV. FILE SUPPORT C

Memory is used by the load/unload function for mass storage blocks, or card or tape

records, for item work areas, for item key areas, and for an own-code routine.

The steps

listed below indicate the block and record sizes that can be handled by the load/unload function.

1. For each item in the following list, add the number of characters
specified if the condition is met (each item is independent of the
previous item, and the memory required is additive).

a.

b.

h.

Add one buffer (the size of a block plus three characters) for
each file on mass storage.

Add an additional buffer (the size of one block plus three
characters) if the file organization is indexed sequential

and the output file is on mass storage.

Add one buffer (the size of a tape record plus one character)
if one file is on magnetic tape.

If the file is not an output direct access file, add 50 characters;
if it is, add an area whose length, in characters, is equal to 8
times the total number of units of allocation in the file.

If one file is on punched cards and the item size for that file is
greater than 80 characters, add one buffer whose size is a
multiple of 80 and which is large enough to contain the item.

If the file organization is direct access, add one buffer (the
size of the item of that file).

Add the size of the own~code routine. An own-code routine is
required only if the output file is on mass storage and the file
organization is direct access.

If the file organization is indexed sequential and if the input file
is on mass storage, add an area the size of three item keys.

2. If the above total is less than the value shown in Table 4-1, the load/unload
operation can be performed in 12K of memory. If the total is greater
the value shown in Table 4-1, the block or record sizes must be reduced,
additional main memory must be available, or the size of the own-coding
routine must be reduced.

than

Table 4-1. Available Memory per I/O Media for 12K Configuration
Available Memory
Indexed Sequential Other File
1/0 Media File Organization Organization
Magnetic tape to/from mass storage 1100 1200
Punched cards to/from mass storage 1100 1400
Mass storage to mass storage 1000 2100
Mass storage to printer 1800 800
NOTE: If the equipment configuration includes 16K memory with console
typewriter, add 1000 characters to each of the above values.

#5-618

SECTION 1V. FILE SUPPORT C

JOB CONTROL LANGUAGE FOR FILE SUPPORT C

The information below stresses the common job control language and its operation for File

Support C. First, the Execute statement is described. Next, a single operation and a sequence
of operations are described. A complete description of the job control language for each function
of File Support C is included in the appropriate subsequent paragraph of this section.

NOTE: All numeric values are decimal unless otherwise noted.

Execute Statement

To perform a disk-resident File Support C function, the programmer must submit an
Execute statement., This statement must be the first statement in the job control file for the
particular File Support C run. The format of this statement is illustrated in Figure 4-1. Rules

for loading from tape can be found in this section under "Operating Procedures for File Support C.

CARD OPERATION
NUMBER |Elf| LOCATION CODE OPERANDS

1 203 eTsfeir]e i LGN 20[2! L Leideiand i T L L s2e N i i

L . EX MEILESUP, \ . . .) .) .

Figure 4~1. Format of File Support C Execute Statement

When a File Support C job is to be performed, the parameter of the Execute statement is
*FILESUP. This is the program segment name used for File Support C. Like all parameters
in the operating system's job control language, this parameter must have a terminating comma,
The Execute statement is followed by one or more Function statements in the job control file

which name the functions to be performed.

Job Control for a Single Operation

To request a single operation (or function), the programmeér must submit at least two job
control statements. Job control statements are submitted through the job control file, which

must be in a card reader.

The job control statements which the programmer must supply are the Execute statement

(just described), a Function statement, and any other statement required for that function. The

Function statement names the operation to be performed,

There must be a single indication of the end of job control statements per execution of
File Support C. This indication is an E in the mark field (column 7 of the Easycoder Coding

Form), and it must be on or immediately following the last line that contains job control state-

ment information.

4-8 #5-618

Ny

SECTION IV. FILE SUPPORT C

Suppose the desired operation is to obtain a description based on the contents of the volume
directory for all the files stored on the volume. The job control statements required for opera-
tion are coded as shown in the following example. In this example, it is assumed that the resi-

dence file is on the volume being mapped (pcu 04, device 0]}.

Noneer [B[a] LocaTion | OPERamon OPERANDS
i 213 alsfe]7]e . 14lis, 21 N | L o . N PN N | 82| RPN), N
| . EX FILESUP, | e
o L 1LE FUNCT MAP, DESCR,, , \ . \ . N P .

Job Control for a Sequence of Operations

A sequence of operations can be executed by submitting Execute and Function statements
for each operation desired, as just described. However, a sequence of operations can also be
performed by submitting a single Execute statement and several Function statements. The
operations are performed in the sequence in which the Function statements are submitted and,

for certain functions, other job control statements are required.

The indication of the end of job control statements (the E in column 7) for a sequence of
operations must be on or immediately follow the last line containing job control statement infor-
mation. If the E is on any line preceding the last line, then the sequence of operations stops at

that line.

Suppose the desired sequence of operations is to allocate a new sequential file and to de-
scribe all files on that volume. The minimum job control statements required for this sequence

of operations are coded as illustrated in the following example.

PROSLEM PROGRAMMER . _ = = OATE____ ___ PAGE.. . OF __
woneen (B8] wocarion | oFeRaTow OPERANDS
\ 2]3 alsfel7]s \ [DIN 21 N N N . L N \ i W R N N R 90
o L IEX FILESUP, | e
o . EUNCY [ALLOCATE, |, Opthr\i .
: | . EILE _|NAME=FILEAA ORG SEQ.. e . e ,
J N . UNITS NAME=VOLA, e .
I . From=.(1¢.), T0=(19,9),
. Tl G EUNCT MAP,DESCR, e |Operation, 2
S T 1 2 Y T .

ALLOCATE FUNCTION

The allocate function is used to assign a file to specified areas on a mass storage volume

or volumes. Every file to be stored on mass storage must be allocated before it can be referred
to by any program. The allocate function checks the volume directory of each volume specified
for the file to ensure that the file name is unique and that no ¢onflicting units of allocation exist
on the volume; it also updates the volume directory of each volume to include information about

the new fild. All tracks of the new file are formatted to the specified record size. If a track is

4-9 #5-618

SECTION IV. FILE SUPPORT C

encountered which cannot be successfully formatted,

the printer, prior to a halt or console message.

must have the same data transfer rate.

its cylinder and track address is listed on

All volumes of a multivolume file must belong to the same device class, and their devices

To allocate a file, the programmer must supply, as a minimum, the name of the file, the

file's organization, the volume name, and the units of allocation for each volume of the file.

Job Control Langua.ge for Allocate Function

The allocate function is requested by a Function statement whose first parameter is

ALLOCATE. The Function statement is followed by File, Size, Units, Member, File list, and

Day statements.

statement,

When used, these statements must be submitted in that order after the Function

Figure 4-2 shows all the job control statements that can be used in the allocation of

Noveer (|8 LocaTion | OPERuON OPERANDS

t 2(3 als N [20{21) 4 s N N N | &2le3 N | N 80|
! ! : . EIX Fi LEISQEA 1 1 P i L 1%"“'0& ¢ i ol 1
R . FUNCT |ALLOCATE, | 0 . L Reguired e -
s |) FILE INAME={ile-name,, . e Requirgd-, . . .
of T \) ORG: = SEQ 3, . L . L. .Ri'qvimd \ , K N
s ; l A i .PA._I 1) i 2 1 PPN | A 1 I 1 L
o IS N . DIR |, L . b
T S] 1 i N‘ ND 1 N " X N L P 1 1 L
. ! . . NOV.= {NO } s . , . Optionol. Diced . | L
* ! 1 i 1 YEs 1 i i L 1M§§ Q!F‘Y L n 1
of T A . KEY 1 (lpouf.l on, bength), . . Req. {or ivect Accoss é‘“"‘”&“‘i‘ﬁy_
" T { 1 i PW = pas 5w°"d N i ‘ 1 1 L IOF{{an| i PR
| ||) . EXP *yyddd.,, L . \ N DgﬁonQL R L
3 ' i 1 PROT__L 3 st I 1 L Opﬁoh l- | L i
. Il I 4 1 No 1 1 1 1 1
o : \ DEVA‘D.'D= chu dr uvaJ e e Op'honq\ (Su. agte , \ .
o 1 " S\ZE [REC=recovd-length, .. . The he Size ‘>T°T°[men*‘ L.
! | ; ITEM=item- \o/nqglh . : \ 8 Off\on ol L, .
. } N L Il LQCKJ' |TQ,|Y‘,5 P‘-’rn' bl ocxkA\J 1 — I 1 1 < J " 1 A .
b4 i L t 1 BULKET= b‘ Oﬁké [bue kd—" si i ID;““} 1A Q"\(\’L-l i
of 1 R . INDEX*b) 0 ks -1 n-1ndex.,) \ Partiti 599(; P‘D‘yf L
h : Ix) i CY Lovn-num °4C|'+"Dclk5 N \ D, A, ond(1.S. Qn&)QLl 1
w | : . STRING:=bloe r-stiving,, A deyed 9 qeonlys . . ¢, L .
sl 1] L UN(TS MNAME=voloume-name, . Reg.oired . - .
o S . . MCI NDEX.7 (£ ROM=(i€ o T 310 (et))on MCINDEX and OVERFLOW
= | . . OVERFLOW= (FROM= (e, $,, TO.= (e, 4D, requived dor LS., . .
o , , FROM=(¢, #), TO-(1e 4y ieney N A least Qe PRIT regoived
L 14 I | i ME&& AM,E'\!!S !!!b&t,‘j!ﬂ!ﬂ‘, 1 " lovt‘QV\qt‘ Y ft E 1= t Q.
o 11 . . LENGTH=numbo b - of- blocks . _Sequental oaly, et
» T i‘ L Fll LE Lt ST) DEVADD'(L‘P‘U) 1 " L . n 10 ; e, . 1.
» I i L DAY J .d él_. 1 1 1 I " I AD P.hlo *15] k mﬁ“t* PR
! i } L 1 L 1 1 “~ L ALR‘qvlr?d' l L | "

NOTE: Ellipses on.lines 17 and 28 (. . .) indicate that the
keyword and its values can be specified more than once.

Figure 4-2,

4-10

Job Control Statements for Allocation of Files

#5 -618

2

SECTION IV. FILE SUPPORT C

files. Each statement and its parameters are described in subsequent paragraphs. Note that no
single file requires all the statements shown. Default values should be studied before deciding if
a parameter can be omitted, A review of the newly allocated file using the description option of

the map function is advisable prior to loading that file.

If the file organization is direct access or indexed sequential, the position and length of the
item key must be specified. The number of characters per record, characters per item, and
items per block may be specified, although default values of 250 characters per record, 250
characters per item, and 1 item per block are used if these parameters are omitted. (The Size

statement itself can be omitted if default values can be assumed for all parameters.)

‘The volume name and unit(s) of allocation for each volume of the file must be specified.
For aln indexed sequential file, the units of allocation for the master/cylinder index and for the '
general overflow area must be specified, in that order. For all file organizations, at least one
data unit of allocation and one volume name must be specified, The FROM parameter specifies
the mass storage address of the beginning of the unit of allocation, and the TO parameter speci-
fies the mass storage address of the end of the unit of allocation. The ¢ stands for a cylinder

number and the t stands for a track number.

Additional parameters can be used to specify such information as the size of the cylinder
overflow area (direct access or indexed sequential files), password protection, file protection,
expiration date, record size, bucket size (direct access files), string size (indexed sequential
files), member index length (partitioned sequential files), additional Units sta:Ltements (for multi-

volume files), additional data units of allocation, members to be named and allocated within a

'partitioned sequential file, the creation date, and the general overflow option for direct access

files,

EXECUTE STATEMENT

The Execute statement with the program segment name *FILESUP directs the Supervisor

to load File Support C. The format of the Execute statement follows.

NOMBER LocaTion | OPZpoM OPERANDS

1 2]3 alsjelvie | 1lis, 20021 N L il N C L P
! ! L E‘X £l LE.SUPu " : PN e —) i 1. i L N
2 T! A ' j I - 1 i I e . P | 'l At a§ S BN ' By s

4-11 #5 -618

SECTION IV. FILE SUPPORT C

FUNCTION STATEMENT
The Function statement specifies to File Support C what function to perform. This state-
ment is required. Only one allocate function is permitted per execution of File Support C. To

perform the allocate function, the statement must be coded in the following format.

CARD OPERATION
NUMBER]EIE LOCATION CODE OPERANDS
v 2]3 als]e|7]8 | 1818, 20[2) | i a1 n L 1 L s2es e e 80|
1
! :7 5 L FJUNCT AL.L OCAT.E P n ’ i ' 1, i L 1 £
2 4 ! 1 i P s 1 1 1 1 1 A . i A s} A A

FILE STATEMENT

The file which is being allocated is identified by the File statement. This statement is re-

quired. Only one File statement is permitted per allocate function.

File-Name Parameter
The file-name parameter specifies the name of the file being allocated. The format of

this parameter is as follows.

NAME-=file-name,

This parameter is required. The file name specified as the value of this parameter can
be up to 10 characters long. When it is less than 10 characters, trailing spaces are automat-
ically added. A file name can consist of the letters A through Z, the digits 0 through 9, and
space; the space cannot be the first character of the name. The special character * (asterisk)

is used as the first character of the names of systems files only.

File-Organization Parameter
The file-organization parameter specifies the type of file organization of the file being

allocated. The format of this parameter is as follows.

ORG = { SEQ
PART
DIR
IND

»

The parameter is required. The value chosen for this parameter will have the significance

described below.

SEQ = A sequential file is being allocated,

PART = A partitioned sequential file is being allocated.
DIR = A direct access file is being allocated

IND = An indexed sequential file is being allocated,

4-12 #5-618

<

SECTION IV. FILE SUPPORT C

General Overflow Parameter
The general overflow parameter specifies whether or not the direct access file being

allocated will have a general overflow area. The format of this parameter is as follows.

GENOV= {NO |,
YES

This parameter is optional and applies only to direct access files. When a value for this
parameter is not specified, the allocate function assumes a value of YES (the file will have a

general overflow area). The value chosen for this parameter has the significance described

below.

NO = The file will not contain a general overflow area.

YES = The file will contain a general overflow area consisting of all
the assigned tracks of the last cylinder of each unit of allocation.

Item Key Parameter
The item key parameter is used to specify the length and position of the item key. The

format of this parameter is as follows.

KEY=(position, length)},

This parameter is relevant only for direct access and indexed sequential files, and it is required
for such files. The position element of the parameter indicates the position in each item of the
left end of the key field., The leftmost character of the item is position one, The length ele-

ment of the parameter indicates the length in characters of the key field.

Password Parameter

The password parameter specifies the password required for all subsequent access to

the file being allocated. The format of this parameter is as follows.

PW=password,

This parameter is optional, When a password is not specified for the file being allocated,
no password protection is assigned to the file. The password specified for the file can be up to
eight characters long. If the password is not eight characters, trailing spaces are added auto-

matically, The first character of the password cannot be space (A).

4-13 #5.618

SECTION IV. FILE SUPPORT C

File Expiration Date Parameter
The file expiration date parameter specifies the year and day the user expects the file being

allocated to expire. The format of this parameter is as follows.

EXP=yyddd,

This parameter is optional. When an expiration date for the file is not assigned, the
allocate function uses the date 00000 in the volume directory entry for the file. The yy portion
of the date represents the last two digits of the year of expiration and the ddd portion represents
the number of the day. For example, the date 15 December 1967 is represented as 67349
because the year is 1967 and the fifteenth of December is the three hundred and forty-ninth day

of the year.

Protection Status Parameter
The protection status parameter specifies the type of write protection to be assigned to the

file being allocated. The format of this parameter is as follows,

PROT =§B
{nol

This parameter is optional. When this parameter is omitted from the File statement, the
allocate function assumes a value of NO (write protection is not being assigned to the file being
allocated). The value chosen for this parameter has the significance described below,

B

The file is assigned B-file write protection,

NO = Write protection is not assigned to the file.

NOTE: A-file write protection cannot be specified during allocation. It
can be specified, however, for load and unload functions, since

it may be necessary to load and unload system files (e. g,
*BADTRACKS).

Appendix F of this manual contains a complete description of write protection.

Device-Address Parameter

The device-address parameter is used to specify the peripheral address assignment of the
control unit and the drive number of the device(s) containing the volume(s) on which the file is
being allocated. This parameter can be specified as many times as required for a multivolume
file. Each Units statement specifies one volume of the file, When this parameter is specified,
it must follow all other parameters of the File statement. The format of this parameter is as

follows.

4-14 #5-618

SECTION 1V. FILE SUPPORT C

DEVADD=(pcu, drive),. . . ,

When specifying values for this parameter, the peripheral address assignment is written
as two octal digits. The high-order bit is not significant. The drive number is written as one
octal digit. This parameter is optional. When a device address is not specified, the allocate

function assumes that the peripheral address assignment is 04 and that the drive number is 0.

When specifying a multivolume file for allocation, multiple device address parameters
can be used. When more volumes than device addresses are specified, the addresses are used

cyclically. (See example on page 4-23.)

To summarize the File statement, the file name and file organization parameters are
required. The remaining parameters are optional except that the item key parameter is required
for direct access and indexed sequential files. If the programmer omits the optional parameters,
the allocate function assumes that no password is assigned to the file, the expiration protection
is not required, write protection is not required, the device address is 04, 0 for all volumes of
the file, and that there is to be a general overflow cylinder for each unit of allocation if the file

is direct access,

SIZE STATEMENT
The Size statement is used by the programmer to specify the sizes of various parameters

of the file being allocated.

Record Length Parameter
The record length parameter specifies the number of characters in each record of the file

being allocated. The format of this parameter is as follows.

REC = record-length,

When this parameter is not specified, the allocate function assumes that the size of each

record in the file is 250 characters. The number of characters must not exceed 4095.

Item Length Parameter
The item length parameter specifies the number of characters in each item. The format

of this parameter is as follows.

ITEM = item-length,

4-15 45-618

SECTION 1IV. FILE SUPPORT C

When this parameter is not specified, the allocate function assumes that the size of each
item in the file is the same as the record size. A status character is added onto each item in
direct access and indexed sequential files and must be included when specifying the value of

this parameter. This parameter value must not exceed 4095,

Block Size Parameter

The block size parameter specifies the number of items in each block in the file being

allocated. The format of this parameter is as follows.

BLOCK = items-per-block,

When this parameter is not specified, the allocate function assumes that the block size is
equal to the number of whole items that will fit into one record. If the record size is smaller
than the item size, then the block size is one item per block (and two or more records compose
a single block).

NOTE: The record length is the prime determinant of assumed values of item

and/or block size., Appendix C can be useful in determining proper
record and block sizes.

Bucket-Size Parameter

The bucket size parameter applies only to direct access files and is used to specify the
number of blocks per bucket., When this parameter is not specified, the allocate function assumes
that there is one block per bucket in the file being allocated. The format of this parameter is as

follows.

BUCKET=blocks -per-bucket,

Index-Size Parameter

The index-size parameter is used to specify the number of blocks in the member index of
a partitioned sequential file. When this parameter is not specified, the allocate function assumes
that there is one block in the member index. The format of this parameter is as follows, and its
value establishes the maximum number of active member names that can be contained in the in-

dex (see Appendix B).

INDEX=blocks-in-index,

Cylinder Overflow Size Parameter
The cylinder overflow size parameter is used to specify the number of tracks in the cylinder

overflow area for direct access or indexed sequential files. When this parameter is not specified,

4-16 #5-618

)

5

SECTION V. FILE SUPPORT C

the allocate function assumes that the file being allocated has no cylinder overflow area. The

format of this parameter is as follows.

CYLOV=number-of-tracks,

String-Size Parameter
The string-size parameter is used to specify the number of data blocks per string for an

indexed sequential file. It is not relevant for other file organizations.

STRING=blocks-per-string,

If this parameter is not specified, the assumed value is one.

UNITS STATEMENT
One Units statement specifies the units of allocation for one volume of the file. There must

be exactly one Units statement for each volume of the file. There may be up to eight volumes.

Each Units statement specifies the units of allocation on that volume. There must be exactly
one pair of from and to parameters for each unit of allocation. There may be up to 6 units of

allocation on each volume and up to 16 total units of allocation for a multivolume file.

For a sequential or direct access file, there must be at least one Units statement with at
least one pair of FROM and TO parameters. For an indexed sequential file, there must be at
least one Units statement and at least three units of allocation; these are the index unmit, the
overflow unit, and at least one data unit. For a partitioned sequential file, there must not be

more than one Units statement,

Volume-Name Parameter
The volume-name parameter must be the first parameter; it is used to specify the name

of the volume to which the Units statement applies. The format of this parameter is as follows.

NAME=volume-name,

The volume name specified is checked against the volume name of the volume mounted at
the relevant device address. The volume-name parameter must be specified for each volume on

which the file is to be allocated.

4-17 45-618

SECTION IV. FILE SUPPORT C

Master /Cylinder Index Parameter
The master/cylinder index parameter specifies the unit of allocation for the index area of
an indexed sequential file. It is not relevant for any other file organization. The index area

includes both the master index and the cylinder index.

The first unitofallocation specified for the indexed sequential filemust be the index area,

as specified by the master/cylinder index parameter. The format of this parameter is as follows.

MCINDEX=(FROM=(c, t), TO=(c, t)},

The FROM parameter specifies the low cylinder (c) and track (t) addresses of the unit of
allocation. It must be followed immediately by a TO parameter, which specifies the high ¢yl~
inder and track addresses of the same unit of allocation, Both cylinders and tracks are nums=
bered starting at zero., The cylinder address specified by the FROM parameter must be less
than or equal to the cylinder address of the corresponding TO parameter. The track address of
the FROM parameter must be less than or equal to the track address of the corresponding TO

parameter.

The TO parameter specifies the high cylinder and track addresses of the unit of allocation,

It is paired with the immediately preceding FROM parameter,

Overflow Parameter
The second unit of allocation specified for an indexed sequential file must be the general

overflow area, specified by the overflow parameter,

The overflow parameter specifies the unit of allocation for the general overflow area of
an indexed sequential file, It is not relevant to any other file organization. The format of this

parameter is as follows,

OVERFLOW=(FROMz=(c, t), TO=(c, t)),

The FROM and TO parameters for the overflow area are specified as described for the
master/ cylinder index parameter.

NOTE: The units of allocation for the master/cylinder index and general
overflow can be any width (tracks per cylinder), but no unit of
allocation may begin on the cylinder on which the previous unit of
allocation for that file ended,

4-18 #5-618

SECTION IV. FILE SUPPORT C

Data Unit of Allocation

A data unit of allocation is specified by a pair of FROM and TO parameters, At least one
data unit of allocation must be specified for all file organizations. If a file is assigned more
than one unit of allocation, the number of tracks per cylinder in all data units of allocation for

the file must be the same.

FROM Parameter

The FROM parameter is used to specify the low cylinder and track numbers of the unit of

allocation, The format of this parameter is as follows.

FROM=(c, t),

The FROM parameter must be followed immediately by a TO parameter which specifies the
high cylinder andtrack numbers of the unit of allocation. The cylinder number of the FROM parameter

must not exceedthe cylinder number of the TOparameter. The same istrue for the track numbers,

TO Parameter
The TO parameter is paired with the immediately preceding FROM parameter and is used
to specify the high cylinder and track numbers of the unit of allocation. The format of this pa-

rameter is as follows,

TO=(c, t),

All cylinder and track values specified must be consistent with the device type of the current

mass storage volume,

MEMBER STATEMENT

The Member statement is used to reserve space in a partitioned sequential file for a
specific member. When space is being reserved for members, there must be one Member
statement for each member to be entered. The use of this statement is optional. When used,
the member name and member length parameters are required.

NOTE: A member can be created by use of Logical 1I/O C, the load function,
or the Member statement in the allocate function.

Member.Name Parameter
The member-name parameter is used to specify the name of the member for which space
is being reserved. The value of this parameter can be up to 14 characters and can consist of

the letters A through Z, digits 0 through 9, and blanks; the blank cannot be the first character

4-19 #5-.618

SECTION IV. FILE SUPPORT C

of the name, If duplicate member names are requested, only the first is allocated. The for-

mat of this parameter is as follows.

| NAME=member-name,

Member-Length Parameter
The memberlength parameter is used to specify the number of blocks to be reserved for
this member. When data is subsequently loaded into the member, it may occupy all or any part

of the reserved space. The format of this parameter is as follows.

|LENGTH=number-of-blocks, |

The value of this parameter must not exceed 4,095, If it is expected that the data area of a
member will occupy more than 4, 095 blocks of its file, that member should not be requested
during allocation. That member can be created at the time its data enters the file by means of

the load function.

FILE STATEMENT FOR THE LIST FILE
The peripheral device address of the list file may be specified by a File statement whose
first parameter is LIST, If this statement is omitted, the list file is produced on a printer with

the device address of (02).

CARD |7 OPERATION
NUMBER |p|§| LOCATION CODE OPERANDS
6

1 2(3 al5 8 A 1ahs, 20120 | N L. | N

L . FILE [LiST,, .

L i L 1

RETs |

1 4 £ 1

w A W N =

1) i L

L F O+ F
r 3 E b
T

. L 1 1

The list file is used only to print the cylinder and track address of any track which cannot
be successfully formatted during allocation of a file, If all tracks are successfully formatted, no

list file is produced. The message is produced in the following form:

CYL nnn TR nnn ERROR, {nnn denotes decimal values.)

Device~Address Parameter
The device-address parameter allows changes to be made in the standard assignment for

the peripheral device used for the list file,

DEVADD=(pcu),

4-20 #5-618

6

SECTION 1V, FILE SUPPORT C

The peripheral address is written as two octal digits. All bits including sector bits must

be specified. The default assumption is device address (02).

DAY STATEMENT

A Day statement is used to specify the value to be placed in the creation date field of the
volume directory entry for the file being allocated. When a Day statement is not specified, i.e.,
when this statement is omitted from the allocate function job control statements, the allocate
function places the contents of the Supervisor's current date field in the creation date field. The

format of the Day statement is as follows.

NUMBER Location | PN OPERANDS
1 2]3 aTs]e]r{e | \afis, zo[21 N N P T N . T e2]e3 | N N 60)
! . DAY . lyyddd, R , e . Ll . ,

!

L A A It " I 1 i S 1 i SR | L

} 1
! 1 1 1 1 1 L F - 1 as 1 L PR SO SO T W | 1
I L
i ,

@ N -

+ 1 I 1 -1 I 1 F—.) .

The parameter of the Day statement is used to specify the actual creation date of the file,
The yy portion of the parameter specifies the last two digits of the year, and the ddd portion
the number of the day. For example, if the creation date of a file is 15 December, 19@_, then

the value of the parameter is 69349.

Job Control Language Example for Allocate Function

The following job control statements request the allocation of a sequential file named
FILEAA, This file's item length is specified as 100 characters, and each of its blocks contains
six items, This means that the block length is 600 characters. The record size is specified as
600 characters. Since values are not supplied for the password, expiration date, and protection
parameters, the allocate function does not assign password protection, expiration date protec-

tion, or write protection.,

In this example for a Type 259 Disk Pack Drive, one unit of allocation consisting of all the
tracks on cylinders 05 through 09 inclusive is requested. The volume name is VOLA., The allo-
cate function assumes that the volume's peripheral address assignment (pcu) is 04, drive number

0, since a device address is not supplied.

A Day statement is not submitted, so the allocate function assigns the value of the Super-

visor's current date field as the creation date of the file,

4-21 #5-618

SECTION IV, FILE SUPPORT C

NOMBER LocaTiON | OFReron OPERANDS

1 2]s alsfe]7]s . 14]iS, 20|2¢ N |

L L EX kF1LESUD.
] , FUNCT ALLOCATE. |
. FILE NAME-F\LEA.A o)

n

,.rF-

o

1
N
s 4
"
1

51ZE |\TE 0K =,
NiTs NAME VOLA ,, N .
. FROM= &5;‘) To=(g9, 9\

- o & e N -
-+ Ok
L
3

]
}
L
7
|
|
T

The following example, for a Type 273 Disk Pack Drive, requests the allocation of a
sequential file ROBYN. The volume name is RESVOL and the device address is assumed to be
pcu 04, drive 0. The item, record, and block sizes are specified. In this example, the unit

of allocation is placed on the volume on cylinders 07 through 14 inclusive,

NOMBER wocation | %o OPERANDS

1 2]3 alsfs]7]e N 14li8, 20§21 J N)) N Y N | e2es | N N 0]
et . EY XE\LESUP,, . e
o o . FUNCT ALLOCATE., . . , ; N . . . ,
s | . EiLE INAME=RORYN ORG=SEG.]
. 4 L BIZE ITEM=200 RLO(K=5 REC=108d, .) . L —
s i , NITs INAME=RESVOL, . . T .
. | B . FROM=, (7 ,0), T0=(44. 493 , s N . i .

The following example requests the allocation of a partitioned sequential file FILEBB,
The item, record, and block sizes are specified, Note that two records form one block of nine
items, which gives a larger data capacity on each track of the Type 259 Disk Pack Drive than
would be achieved using a record size of 900 characters (refer to Appendix C). Because the
member index size is not specified, one block is reserved. Two members are reserved during

allocation in this example,

Noanoer [EIS| LocaTion | OPERATION I OPERANDS

1, 213 4/5/617]8 . a8, 24 1 NP S [M 1 L sle N Lo P
oy . EX FlLEé,LLL e
o o [FUNCT [ALLOCATE. . . . s . . e .
:] ... _FILE NAME:=FILEBR ORA= PART, . . e e .
. | o BIZE NYEM=Y =458 BLOLK=9,, s . e e
3 . UNITS INAME=VOLA , . . R e
: ' : , FROM= 5(18,9),. 1269, blocks for defa, . |
I . E AME:= TH=98 . . . ; . ATS, blocks unassigned. | |
o BRI . NAME-MEMBERR, LENGTH=5¢, 0329 blocksuncssigned. .

8/29/69 4.22 #5-618

%]

<

L 23

U

SECTION 1IV. FILE SUPPORT C

The following example requests the allocation of a sequential file which extends over three
volumes. The mass storage device on which each of the three volumes is to be mounted is speci-
fied through two device address parameters in the File statement. As many device address pa-
rameters are written as there are devices to be used, In this example, the unit of allocation for
the first volume (specified in the first Units statement) is placed on the volume at address 04,
drive 1; for the second volume at address 04, drive 2; and that for the third volume at address
04, drive 1 (which is thus used again)., The number of volumes on which the file is allocated
(this is equal to the number of Units statements) does not have to equal the number of devices
used (this is obtained from the device address parameters). Before the allocate function allo-
cates the third volume of the file, the volume originally mounted on drive 1 (VOLA) must be re-

placed by the volume named VOLC, which is to be the third volume for the file.

8/29/69 | 4-22.1 #5-618

t

£

SECTION IV. FILE SUPPORT C

EASYCODER
CODING FORM
PROBLEM PROGRAMMER . DATE____ . __ == PAGE__OF____
numeen [5[g] LocaTion | *TEro OPERANDS J
1 2]y «TsTe]7ie N 1afis, 20[2; N N RN NN N , 42163 N 4
! ! : 1 EX *F(LEISUPI A . L L i A L 1 1 1 | S PP Y
| T] FUNCT ALLOCATE, |)]])] L)
3 | N FILE INAME=FILESR) R))]])])
. e I X i ORG sEQ; Y 1 I 4 1 L i A 1 A
N . . DEVADD=(94, 1), DEVADD=(84.,2) {Cyclical .oddreseing
of 11) S1ZE [ITEM:=425 RECs588, | N R ol e
N .\ UNITS [NAME=VOLA, . R , : , , . i
L] ; ‘ N FROM’ ("_A‘ ¢) To-.(sﬁ_j.) . N ‘ P i a1 .
o . UNITS INAME=VOLS . . \ , . . .
of 1 s . FKOM'(M) Tor44,9),
O : . FROM= (168 &5 To=(144,9), . . . 1 . : : s
2 ! !) L\N|T§ NAME' Vol—cn L b X et L 1 " 1
" : | . . EROM= (_.Q,A) To=(4 MLS) . : :
14] i 4 1 " 1 L 1 i i 1 L i

The following example requests the allocation of an indexed sequential file on three vol-
umes, each on a Type 259 Disk Pack Drive. The master/cylinder index and overflow units are
assigned to the volume named VOLEE; the data units of allocation are assigned to the two vol-
umes VOLED and VOLEF in that sequence, All three volumes are to be mounted at address 04,
drive 2; volume VOLED is mounted after volume VOLEE has been processed, and volume VOLEF

is mounted after volume VOLED has been processed.,

EASYCODER
CODING FORM

PROBLEM PROGRAMMER ==~ === OATE___ . PAGE__OF___

NOMBER wocation | OFERATION OPERANDS

1 2]3 als]efr]e N 1a)is, 20[2 . 4) L | | | 62463 . N N N 80)
] . EX ¥EILESUP.. ,
JIN . FUNCT IALLOCATE. _ |) N)
s 1 , FILE [NAME:=FILE2 . : .) N e
. I 1 i QRG“ND KEY'A(6111 ¢’ i " A a1 1 i 1 i
R . . DEVADD= (@4 2), | . . e , e .
s 1 . QIZE (STRING=4 . I TEM=58 |))) 1)])
o] . UNITS INAME=VOLEE, . . el . .
RN : . MCI NDEX = (FROM=(A gg) To: cn ¢)) Onefeak only.. ., .. .,
’ ! \ : VERFLOW:= (FROM= (4 Y, Twelvg fracks only. .
0 i _I}V 1 uN' Ts NAME’ VOL E Dn i n L F“"G‘t’ da "’“‘l‘* : N
i s . FROM=(18 @), To=(5g, 9) . Lo fedhysong cylinders. .
el || . UNITS [NAME=VOLEF, . . , Second dista unit. . .
'3 l l 1 1 FROM’L(.S,Q\I-T°=(42 9.) 1 A 4“‘\“'"'/1"@! " ¢Y“mf 1 1
. E % |C FALE . LI ST DEVADD=(83).. PrmId_Lm_p_c.uld'b . .
. I } L 1 i A 1 1 I3 ' L 1 at i P
r ! i L 1 i L 'y - 1 1 F i J 1

423 #5-618

SECTION IV, FILE SUPPORT C

The default assumptions for this file are as follows:

. Record size = 250 characters,
. Block size = 5 items,

. Strings per cylinder = 36 strings, !

1

2

3

4. String index = 5 blocks, 1

5. Items per string = 20 items,2 and
6

. No cylinder overflow,

Summary of Job Control Statements for Allocate Function

Table 4-2 contains a complete summary of the job control statements for the allocate

function.

1 .
Calculated by allocate function from record size, string size, and track width.

2Calculated by allocate function from item size, block size, and string size.

4-24

#5-618

D

X4l 4

819-6#

Table 4-2. Summary of Job Control Statements for Allocate Function

Parameter
Command Value
{(Operation | Parameter (Operands
Statement || Code) Name Field) Function Comments
Execute EX Program *FILESUP, Directs Supervisor to load File | Required when running under
Segment Support C. control of mass storage
Name Supervisor C.
Function FUNCT Function ALLOCATE, The allocate function is to be Required.
Name performed.
FILE Defines the file being allocated. | Required.
File Name NAME = file- Names the file being allocated,
name, Required.
File File ORG= f’i?{T Defines the file's organization.
Organization DIR ,
IND
General GENOV= lNO } Specifies whether file is to con-| Optional; applies to direct
Overflow YES/) *’ tain a general overflow area. access files only. Assumed
value = YES,
Item Key KEY = Specifies leftmost position and Required for direct access
(position, length), length of keyfield. and indexed sequential files;
does not apply to other file
organizations.
Password PW = password, | Specifies the password to be Optional. Assumed value =
assigned to the file. no password.
Expiration EXP = yyddd, Gives date of file's expiration. Optional, Assumed value= no
Date expiration date protection,
Write PROT = ¢(p Specifies the type of write Optional, Assumed value =
Protection {NO} ’ protection to be assigned, NO.
Device DEVADD = Gives the device address of the | Optional. Assumed value =
Address (pcu, drive), volume. More than one can be (04, 0),. If more than one

specified for multivolume files.

value, use is cyclical.

D 1L390ddnSs dATId Al NOILLDJES

92~V

819-6#

Table 4-2 (cont).

Summary of Job Control Statements for Allocate Function

Parameter
Command Value
(Operation | Parameter (Operands
Statement || Code) Name Field) Function Comments
SIZE
Record Size REC = Gives the number of characters | The Size statement is normal-
record-length, in each record, ly present, It may be omitted
v i
Item Size ITEM = Gives the number of characters on Y if the assumed values. for
. all its parameters are satis-
item-length, in each item including status factor
character when applicable. v
Block Size BLOCK = Gives the number of items in
items-per-block, each block.
Bucket Size BUCKET = Gives the number of blocks per |Optional. Meaningful only for
Size blocks-per-bucket, | bucket. direct access files., Assumed
value = 1.
Index Size INDEX = Gives the number of blocks in Optional, Meaningful only for
blocks-in-index, member index, partitioned sequential files.
Assumed value = 1,
Cylinder CYLOV = Gives the number of tracks in Optional, Meaningful only for
Overflow Size | number-of-tracks, |the cylinder overflow area. direct access and indexed
sequential files. Assumed
value = 0,
String STRING = Specifies the number of blocks Optional. Meaningful only
Size blocks-per-string, |per string for an indexed for indexed sequential
sequential file, files, Assumed value = 1,
UNITS Specifies the units of allocation |One required for each volume
for the file. of the file.
Volume NAME = Names the volume to be used for |Required for each volume,
Name volume-name, this Units statement. Must be first parameter.
Units Master/Cyl- MCINDEX = Specifies the unit of allocation Required. Allowable only
inder Index (FROM=(c, t), for the master/cylinder index, for indexed sequential
TO=(c, t)), files. Must be first unit,

‘Al NOILDES

D L¥0ddNs 3114

Le-v

819-G#

Table 4-2 (cont).

Summary of Job Control Statements for Allocate Function

Parameter
Command Value
{(Operation | Parameter (Operands
Statement || Code) Name Field) Function Comments
UNITS Overflow OVERFLOW= Specifies the unit of allocation Required, Allowable only
{cont) (FROM=(c, t), TO= | for the general overflow for indexed-sequential
(c,t)), area, files. Must be second unit,
Units FROM FROM = Gives the low cylinder and track | At least one pair required.
(c,t), addresses of the data unit of Additional pairs must have
allocation, same track width,
TO TO = (c,t), Gives the high cylinder and
track addresses of the data
unit of allocation,
MEMBER Reserves space for a member Optional. Meaningful only for
of a partitioned sequential file, partitioned sequential files.
Member Member NAME = Gives the name of the member May appear more than once.
Name member-name, that space is reserved for,
Member LENGTH = Gives the number of blocks in
Length number-of-blocks, | the member,
File FILE File LIST, Specifies the list file device Optional, When omitted,
address. listing is produced on a
printer with peripheral con-
trol address of (02),
Device DEVADD=(pcu), Allows changes in the standard
Address device assignment for the list
file,
Day DAY Date yyddd, Gives the year and day the file Optional, Assumed value =
is created. Supervisor's current date
field.
L

‘Al NOILDJS

D 1L390ddns d714d

SECTION 1V, FILE SUPPORT C

DEALLOCATE FUNCTION

The deallocate function is used to delete files from a mass storage volume or volumes,
File deallocation is the only means by which allocated areas on a volume can be freed for the
allocation of new files, Before a file is deallocated, checks are made on the volume name, the
file expiration date, and the password. This is done to avoid inadvertent removal of a file which

has not expired or which is protected by a password.

To deallocate a file, the programmer must supply the volume name of the first volume
containing the file, the name of the file, and its password if the file is protected by a password.
The deallocate function is requested by a Function statement whose first parameter is DEALLO-
CATE, This statement must be followed by a Volume statement and at least one File statement.
A Day statement may follow the last File statement. The Volume, File, and Day statements

must be submitted in that order after the Function statement,

Job Control Language for Deallocate Function

Figure 4-3 shows all the job control statements that are required for, or that can be used
in, the deallocation of files from mass storage volumes, Each statement and its parameters are

described in subsequent paragraphs.

EASYCODER

_|ostional Pa 2r.
Oglional Staterment.

F il 1

DEVADD=(pew, drive)
DAY . hyddd,. . \

CODING FORM
PROBLEM PROGRAMMER DATE PAGE __OF ___
R 7| LocaTion ool OPERANDS
1 23 als]ef7]e N i4lis, 20l21 N N L N N) | e2es |) . 80|
g . EX . KFILESUP L. [Req.e Statement. . |
I . FUNCT [DEALLOCATE, [Req. Stefement,
: | : VOLUME A : ' X e L. |Res,. Statemert. ,
o 1] .) NAME= vol yme -nama..) e . \ ‘?c%k. Farameter.
s } { n F. ‘ LE N 1 1 N 1 1 I 1 Rm‘ Sr‘irmﬂfr I
o o1)) NAME~>£1 | ¢ ~hame,,,) L _ |Reg,. far:
f 31 \ \ EXP={NO) ., [Optional faramdter. . .
. ! A1 L 11\(568 ’1 ! A 1 1 i L ISP
b l . X PW=password, . . .) . [Req.: for ile with,
© ; = i 1 1 1 1
! 1 1 1 L
]) .)
| .) L

i
1
1
1
1
1

. |password grofaction. .

Figure 4-3. Job Control Statements for Deallocate Function
EXECUTE STATEMENT

The Execute statement with the parameter *FILESUP directs the Supervisor to load File

Support C. The format of the Execute statement is shown in Figure 4-1,

4-28 45-618

O

SECTION IV. FILE SUPPORT C

FUNCTION STATEMENT
The Function statement specifies to File Support C what function to perform, This state-

ment is required, and to perform the deallocate function the statement must be coded as follows.,

NUMBER LOCATION ol OPERANDS

) 23 aTs]e]7]s N 1ais, 20{21

. FUNCT |DEALLOCATE, ;

i I A A 1 . 1 . 1 i L P s Y

VOLUME STATEMENT

The Volume statement is used to specify parameters that pertain to the first or only vol=-
ume containing the files to be deallocated. There can be only one Volume statement per deallo-
cate function; i.e., all files to be deallocated with this execution of the deallocate function must

begin on the same volume.

Volume Name Parameter
The volume name parameter is used to specify the name of the first or only volume on

which a file to be deallocated resides. The format of this parameter is shown below,

NAME=volume-name,

FILE STATEMENT
Each file to be deallocated is named by a File statement whose first parameter contains
the name of the file. This statement is required. To deallocate more than one file with a single

Function statement, there must be a File statement naming each file to be deallocated,

File Name Parameter
The file name parameter is required and is used to specify the name of the file to be deal-

located. The format of this parameter is as follows,

NAME-=file-name,

Expiration Date Check Parameter

The expiration date check parameter is used to specify whether the expiration date of the
file to be deallocated is to be checked by the deallocate function. This parameter is optional,
When it is not specified by the programmer, the deallocate function automatically checks the
expiration date of the file' being deallocated against the date specified by the user (see the Day

statement), The format of this parameter is as follows:

4-29 #5-618

SECTION IV. FILE SUPPORT C

EXP= JNO
YES |’

NO = The expiration date will not be checked, and
YES = The expiration date will be checked.

Password Parameter
The password parameter is used to permit only authorized deallocation of a file. The

format of this parameter is as follows.

I PW=password,

The password parameter must be specified if the file being deallocated is protected

by a password. When the password specified in this parameter is not the same as that assigned

to the file, the file is not deallocated,

Device Address Parameter
The device address parameter is used to specify the peripheral address assignment of the
volume or volumes containing the file to be deallocated. The format of this statement is as

follows.

I DEVADD=(pcu,drive),«..,

When specifying values for this parameter, the peripheral address assignment (pcu) is
written as two octal digits. The high-order bit is not significant. The drive number is written
as one octal digit. As many of these parameters as are required for multivolume files may be

specified., This parameter, however, is optional.

If the device address parameter is omitted, the default assumption depends on whether or
not this is the first file being deallocated by this deallocate function. If it is the first file, the
default assumption is that only one device is to be used (04, 0). If it is not the first file, the
default assumption is that the devices used for the preceding file specified with this deallocate

function are to be used again.

4-30 #5-618

A

3l

® o 2 w N -

SECTION IV. FILE SUPPORT C

DAY STATEMENT

The Day statement is used to specify the date against which the expiration date for the file
is to be checked. This statement is optional. When a Day statement is not specified, the deal-
locate function compares the contents of the Supervisor's current date field with the expiration date
assigned to the file. This check is not made if the value of the expiration date check parameter is

NO. The format of the Day statement is as follows.

NOMBER ;ﬂ Location | OPERnoM OPERANDS

i 2]3 als[e][7ie | 1815, 202) | L N N N | e2les | T
! ; L QAY ?Y'dd.du I 1 L i " 1 L i L A
I{ ! 1 1 1 L i i A A A L. i Ao L 14
! l 1 1 1 1 1 1 A 1 1 1 L L '

The parameter of the Day statement is yyddd and is used to specify the last two digits of
the year (yy) and the day of the year (ddd). Thus, if the date submitted was 15 December, 1969,
it would be coded as 69349,

Only one Day statement may appear for each request for the deallocate function. All files
named in the File statements following the Function statement have their expiration date checked

against this same date.

Job Control Language Example for Deallocate Function

The following job control statements request the deallocation of two files on the volume
named A00000, If the two files being deallocated are multivolume files, the deallocate function
assumes that both begin on volume A00000. Because only one device address is specified for
the files, the deallocate function assumes that the peripheral address assignment (pcu) is 04 and
that the drive number is 1 for both files. The first file to be deallocated is named FILEEE, Its
expiration date is automatically checked against the current date field of the Supervisor., The
file's password is specified as DEPT, 100, The second file to be deallocated is named FILECC.
Its expiration date is not checked. A password parameter is not specified for the file, but the

deallocate function automatically checks to ensure that the file is not protected by a password.

R ;Q LocaTIoN | OPERATION OPERANDS
1 213 alsfe]7]s N [20]20 . | . | | | | e62/63 [. L 801
|] EX FILESUP, | X .) , . \ . s .
) FUNCT |DEALLOCATE,, L A A 1 L TN .

VOLUMEINAME : ARBORE N .

, FILE INAME=F)LEEE ‘fpw-lbep‘m¢¢.b.£vmn=gg4,1)’: . . .

. FILE INAME=FILECC, . . A

—_—4 ——4
—b 41 4 1]

E L e ExpzNol i 1 L L i 1 1 A i i 1

4-31 #5-618

SECTION IV, FILE SUPPORT C

The following example illustrates a request to deallocate several files, all beginning on the
same volume. If the files did not all start on the same volume, their déallocation would have to
be done through separate requests for the deallocate function. Three files are deallocated in this
example, FILEA is a multivolume file and three device addresses are specified for it; its volumes
are mounted on drives 1, 2, 3, 1, and so forth as necessary., Since device addresses are not
specified for FILEB, its volumes are assumed to be mounted on the same set of devices as FILEA,
with the first volume of FILEB mounted on drive 1. FILEC is specified to begin on drive 1. If it
is a multivolume file, all subsequent volumes also will be mounted on drive 1, in sequence, each
volume replacing the previous volume. All three files must begin on the volume named VOLA;
this volume name will be checked for each file. The name of each subsequent volume (not required

in the job control file) is taken from the directory of the current file volume.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER - DATE PAGE .. OF __
NOMBER 'EIE wearion | o™ OPERANDS
1,213 4ls]s]7]s i 1418, 20}21) i L) PPN " 1 L s e . Lo

! EX .. MFILESUP, | .
' FUNCT |DEALLOCATE,, , . . . , \)
VOLUMEINAME =VOLA ,, , : e . bl
FILE NAME-F!LEA . L

. DEVADD=(g4, 1), MADD=C¢4-..2) DEVADD= (M 3),
. FILE [NAME=FILER. .

) FILE INAME=F|LEC.
. DEVADD= (84,13,

1
)3
1 A 1 i
i

- - F F

n 4 . L 1 1 L il o L
I
i
L

* @ ~N O u b W N -

4 4 41— — =1 -]

s
4
i
1
1

1

I

A A
1

1

- F F F F

I
Il
N

1 i
1

1
i
1
1
i s

1 1 1

The following example illustrates a request to deallocate three multivolume files, each of
which starts on a different volume. File FILER begins on volume A (VOLA) and continues thréugh
VOLB, VOLC, and VOLD, File FILEX begins on VOLC and continueson to VOLA, File FILET
begins on VOLD and continues on to VOLA, The volumes reside on the following device addresses
(all using pcu 04).

VOLA - drive 1

VOLB - drive 2

VOLC - drive 3

VOLD - drive 4
Disk changing is not required during the deallocation of these three files. Three Function

statements are required for this operation.

4-32 #5618

N

SECTION IV, FILE SUPPORT C

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE __OF
CARD OPERATION
NUMBER LOCATION CODE OPERANDS
v 2]3 als]ef7]e N 145iS, 2021 N N 4 L N N | 62163 N { 1 L
! . EX KELLESUP,. | . . . R

' —_ FUNCT |DEALLOCATE. . .
. NOLUMENAME =VOLA._. . o
. _IFILE INAME=FILER EXP=NO PW=DEADFILE. ...

. 1 DEVADD: (#4,4), DEVADD=(#4 ,2) DEVADD=(84,3) | .,

£ Loaoaooa fd

1 1 A i L

F + F F B

—+—i—

® B N e e woN -~

bt —F A = —}— 4]

1

1 1

1 " N Y
1 i

i i

- F F
L

1
1 5 1 1
1 i 1 i]]
] I 1 Il 1 'l
1 1 1 1 1

) . DEVADD:=(@4, 4) L e . e
. FUNCT DEALLDCATEL . R \
) V,OLUMEINAME =VOLC , . . \ \ . N e
o 1 \ FILE INAME=FILEX EXP-YES, . s . . . e
ol . : DEVADD=(&4, 3, gevmn (B4 A4).,. . L , . L
@l | . DAY @720»25 \ . . , N . . .
"’ l 1 1 1 1 1 1 L 1 a4 . i
) !] FUNCT DgALLOCATE.’ — . \ A \ . L . .
of 1 . VOLUMEINAME=VOLD,, . . e , s , \ L
1. I | 1 E‘LE NA!!E'F| L.E.ru i 1 i 1 ol s i n A I
[T . DEVAQMkauféﬁ A)y. . i L .
o e e o
] .
I 1
|
1 i

+

Summary of Job Control Statements for Deallocate Function

Table 4-3 contains a complete summary of the job control statements for the deallocate

function,

LOAD AND UNLOAD FUNCTIONS

The load function is used to load a file onto a mass storage volume from punched cards,

magnetic tape, or another mass storage file of the same organization. The unload function is
used to unload a file from a mass storage volume onto punched cards, magnetic tape, printer,
or another mass storage file. However, at least one of the files in the load/unload function
must be on mass storage When loading or unloading one mass storage file to another, the
files must be of the same organization, with the following exceptions: the input file can be se-
quential and the output file can be indexed sequential, or, the input file can be sequential and
the output file can be a direct access file, All standard fixed-length card and tape formats
can be used with the load and unload functions.

A load or unload function is requested by a Function statement whose first parameter is
either LOAD or UNLOAD. (The File statements specify whether the operation is to or from
mass storage.) The Function statement is followed by two File statements, one for the input file
and one for the output file., When a File statement is for a mass storage partitioned sequential
file, it may be followed by one or more Member statements. The Member statements associated
with a File statement must follow immediately after that statement. There may also be one
Exits statement per load or unload function. This is explained under "Exits Statement" later in

this section.,
4-33 #5-618

ve-v

819-g#

Table 4-3. Summary of Job Control Statements for Deallocate Function

Command Parameter
{Operation | Parameter Value
Code) Name (Operands
Statement Field) Function Comments
Execute EX Program *FILESUP, Directs the Supervisor to load |Required when running under
Segment File Support C, control of mass storage
Name Supervisor.
Function |FUNCT Function DEALILOCATE, Required,
Name
VOLUME Required,
Volume Volume Name | NAME = Gives the name of the first Required,
volume-name, volume containing the file to
be deallocated.
FILE Required,
File Name NAME = Names the file to be deallocatedd Required.
file -name,
Expiration EXP = | NO Specifies whether the file's Optional. Assumed value =
File Date YES| , expiration date is checked. YES.
Password PW = paésword, Gives the password for the file. | Required if file is protected
by a password.
Device DEVADD = Gives the physical device Optional. Assumed value =
Address (pcu, drive), address of a volume. May be (04, 0), for all volumes of a
repeated for multivolume files, | file,
Optional. Assumed value =
Day DAY Expiration yyddd, Specifies year and day against Supervisor?s current date
Date which the file's expiration date |[field.

is to be checked.

< A

D 190ddNS d1IAd °AI NOILDJIS

SECTION IV. FILE SUPPORT C

Job Control Language for Load and Unload Functions

The job control language is similar for load and unload functions. Figure 4-4 shows all
the job control statements that are required for, or that can be used in, the loading and unload-
ing of files. Each statement and its parameters are described in following paragraphs. Many

of these parameters can be omitted for any given load or unload function.

EASYCODER

CODING FORM

PROBLEM PROGRAMMER =~ DATE_ = _PAGE___ OF .

NOMBER | LOCATION o oe OPERANDS

\ 2]3 alsfe{7]s \ N '« 20]2t N | L L NN P . e2les L, } N
ot . EX XEILESUP, | . . e . R ired.
J , FUNCT [(LOAD) . . s . . |Reguired., e
: | , . UNLOADY N A .
. . FALE J(IN) . . . et o Raquited. Ore Lor,
Sl . . fouT), b e gile. L
sl L . . NAME =i le - .nomg,.. o &ovlr@i{mﬁg?_,__
I X A DEVTYPE-device- -TNpe,, . \ . A 4-27.
s ! L 1 DEVAQQ‘(FCN d\'\l\l¢) 9.010.% RPN P L oﬁ“ | S
d ! 1 1 ‘TEM- 1 fLm' 1 Q“O"-h L 1 L ' 1y OP(\Q“M Tm?" c“r4 9‘)\
0 ‘!T ; I 1 REC= ¢ 2 Ccoy ,C_l, ‘&nﬁfh. L L L L) oﬁQha\‘qu" only.,
" lr I t i N=(NES 1 3 1 1 L L e .“P‘\Q\\Tﬂ_m. W\Vu e
2 l . 1 21N° i 3 1 4 L 1 1 i I L 1 o
3 1 i Lm-f 1 1 1 1 1 i 1 il oaoa s
* Il 3 1 PAR : (nODD 1. PN 1 ' I 1 1 ional.,
s ‘: i 1 1 i mEN (I‘ 1 ! I y 1 i ﬁ
18 1)\ PAD ﬂgéd‘.\:hQ. \ L 1 L il 0 LQQQ.L.XQF._._.M_._._.__
T . , MODE={SPEC. Y. .., OpfamLQ&_._._,___.__
. ; " i 1 1 STAND‘ L ' L L L it c“? .Oh\y‘ s
'* | !) 1 w’merd‘ 1 1 i 1 ! e R or £i ¢
20 | { L 1 1 i 1 L 1 | N 1 mrd~l a1
2 Il ! 1 1 BUCKET= REL) L " 1o L N 1 oﬁ“@“%s D\rgd’_m_‘_._
2z ; ‘ I L 1 LAQ“Q‘ > ' L i L ' i oU"pq‘\' °“\Y el
3 ! i 1 i PROT:II A i 1 1 1 1 1 A s 161 \
2 ; ! 1 1 B 1’ i i i N r 1 mQ‘Jﬁ_ﬂQquQx 1.
= I 1: 1 ! 1 Ag 1 L ' 4 1 s 1 Ol.d'nu" c\‘Gp 1
2 l | 1 1 ILNO L 1 1 Xk I 4 1 I | PP 1 "
al 1 , , IMBED: ynueed -t tems-per-styi Optional, Indexed , |
» ! ! 1 i L i 1 N L 4 (J . |
ud IR X . RELEASE={VES) . , ‘ Lo . oPﬁ-onql.wiﬁmd'x e
»| | . . . Ino O N . . . _ ovteut fileonly,
o . . REPORY =veport-number, 5 ,] R QQMMM
I . MEMBERINAME = member - ngme,,. . ., R _,_Ophonal. farftioned ,
3 | . . i e R e 2 M@My_“___@
sf o X EXITS PRofa*lvroqrom—nm v div
st 1t)) LMA= | ow~ ma/morv -address, .. , X | s outpt (ile. |
o 1 ,)]] o) L | loptignal for gl gther {iles.
7 [l E .) R)) N :)) L v) L]) . ¥]
s J ! 1 L 1 I3 A i ' 1 IR | I3 1 1 i
* I l i 1 ' 1 i A 1 L 1 . - I3 i 1 e

Figure 4-4, Job Control Statements for Loading and Unloading Files

4-35 #5-618

SECTION IV, FILE SUPPORT C

EXECUTE STATEMENT
The Execute statement with the parameter *FILESUP directs Supervisor C to load File

Support C. The format of the Execute statement is shown in Figure 4-1,

FUNCTION STATEMENT
The Function statement specifies to File Support C what function to perform. This state-
ment is required; and to perform either the load or the unload function, it must be coded as

shown in the following example.

oeen [LI8| LocaTion | OPERATON OPERANDS J
t 213 alslef7]s J 1415, 20f21 | n Lo g N N 1 T R N |
oty R FUNCT [{LOAD . :) . .) . e)
o . . UNLOAD {* s , .
3 ! ! 1 1 A 1. i L A J. 1 1 L WS ¥ L e

The value chosen for this parameter may be either load or unload. However, the input

and output File statements specify the direction of data flow.

FILE STATEMENTS

Both the input and the output File statements are described here, since they are essentially
the same in form. The input file for a load or an unload function is identified by a File statement
whose first parameter is IN; the output file is identified by a File statement whose first pa-

rameter is OUT.

The file name parameter is required to specify the name of the mass storage file. This
parameter can be omitted for other device types, in which case label checking is omitted also.
For printer output, the file name is always taken from the input mass storage file. The device
type parameter specifies the storage medium used to contain the file and describes the type of
device used to access the file. The device address parameter allows the physical device address
of the file to be altered from the assumed value. When operating with multivolume mass stor-
age files, more than one device address parameter may be specified. Both the input and output

files may be assigned to devices connected to the first, second, or both I/O sectors,

The remaining parameters apply to specific storage media. For a mass storage file, size
parameters are obtained from the volume directory. The item size, record size, banner,
padding, and parity parameters apply to a magnetic tape file. Item size and mode parameters
apply to a punched card file, The password parameter applies to a mass storage file. The
bucket parameter applies only to an output direct access file on mass storage. The protect
parameter applies to an output mas s storage file. The imbed parameter applies to an output,
indexed sequential mass storage file., The release parameter applies to an output, partitioned

sequential mass storage file. The report parameter applies to print-image files.

4-36 #5 =618

~

SECTION IV. FILE SUPPORT C

In/Out Parameter
The in/out parameter is required to specify whether the File statement applies to the input
file or to the output file. This parameter must be the first parameter of the File statement. The

format of this parameter is as follows.

lIN
out!’

The value chosen for this parameter will have the significance shown below,
IN = The input file is being described by this File statement.
OUT = The output file is being described by this File statement.

File Name Parameter

The file name parameter is used to specify the name of the file being used as input or out-
put. This parameter is required for mass storage files and optional for files stored on other
device types. This parameter does not apply to an output printer file. The format of this param-~

eter is as follows.

NAME=file-name,

The name of the input or output file specified here can be up to ten characters long, Trail-
ing spaces are automatically added by the load or unload function. When this parameter is omitted

for a non-mass storage file, the file name is not checked on that storage medium by the load or

unload function.

Device Type Parameter
The device type parameter is used to specify the storage medium used for the file, as

well as the type of peripheral device used to access the file. The format of this parameter is

as follows,

DEVTYPE=device~type,

If this parameter is absent, the assumed value is mass storage. When present, this para-
meter specifies the device type on which the file resides; the parameter value must be chosen

from the following list.

Device-Type Description
227 Card reader or card punch
224-1 Card reader/punch
223 Card reader
224-2 Card reader/punch
214-1 Card punch

4-37 #5-618

SECTION 1IV. FILE SUPPORT C

Device Type Description
214-2 Card reader/punch
204B 1/2-inch magnetic tape
155 Mass storage
258 Mass storage
259 Mass storage (259, 259A, 259B)
261 Mass storage
262 Mass storage
273 Mass storage
222 Printer
206 Printer

Device Address Parameter

The device address parameter allows the programmer to change the peripheral address

assignment used to access the file.

Card or Printer

DEVADD = (pcu),

This parameter is optional.

must be specified as two octal digits.

Tape

The format of this parameter is as follows.

Mass Storage

I DEVADD = (pcu, drive),

DEVADD = (pcu, drive), ..

When it is used, the peripheral address assignment (pcu)

The high-order (I/O) bit is ignored, but all other bits,

including the sector bits, must be specified. Also, the sirve number must be specified as one

octal digit. When this parameter is not used, the load or unload fucntion assumes that one of

the following standard peripheral addresses (depending on the device type) is to be used.

I1/0 Media Peripheral Address
Punched card input pcu 41
Punched card output pcu 01
Magnetic tape input pcu 40, drive 1
Magnetic tape output pcu 00, drive 1
Mass storage input pcu 44, drive O
Mass storage output pcu 04, drive O
Printer output pcu 02

If the file is on magnetic tape, it can be stored on multiple reels.

same device address.

They all must use the

If the file is on mass storage, more than one device address parameter can be submitted;

the specified devices are used cyclically. For a multivolume mass storage file, two or more

1/05/70

4-.38

#5-618

(9]

SECTION IV. FILE SUPPORT C

device address parameters can be specified to avoid volume changing. For some operations,
multiple mass storage device addresses are required. The load/unload function uses these

addresses in the order in which they appear on the File statement.

Table 4-4 illustrates the minimum device requirements for each file organization.

Table 4-4. Minimum Device Requirements for Mass Storage File Organizations

Minimum Number of Devices

Mass Storage File Organization File Usage Required
Sequential or Partitioned Sequential Input or One.
Output
Direct Access Input One.
Output One for each file volume,
Indexed Sequential Input One for MCINDEX; one for OVERFLOW

if not on same volume as MCINDEX;: and
one for current data unit if not on same
volume as MCINDEX and OVERFLOW.

Output One for each file volume.,

Item Length Parameter

The item length parameter is used to specify the length in characters of each item in a
non-mass-storage file. This parameter is optional and does not apply to mass-storage files or

output printer files. Item size must not exceed 4, 095 characters. The format of this parameter is

is as follows.

ITEM = item-length,

The default assumptions for this parameter are as follows.
Mass storage - Obtained from the volume directory.
Magnetic tape ——— Equal to the item size of the mass storage file,
Cardinput —— 80 characters.
Card output ———— Equal to the item size of the mass storage file,

Printer —— Obtained from the volume directory.,

Record Length Parameter
The record length parameter applies only to a file stored on tape and is used to specify the

number of characters in each record in the file, including the banner character, if present. The

format of this parameter is as follows.

REC = record-length,

4-39 #5-618

SECTION IV. FILE SUPPORT C

This parameter is optional, When it is omitted, the load or unload function assumes that
the record length of a tape file is equal to the mass storage file block length plus one character
if the magnetic tape file is bannered, Record length has no meaning in a printer or card file,
If the file is a mass storage file, this parameter is ignored since the record length is obtained

from the volume directory.

Banner Character Parameter

The banner character parameter is used to specify whether a magnetic tape file is ban-

nered, The format of this parameter is as follows,

BAN=} banner
NO ,
YES

This parameter applies only to magnetic tape files and is optional. When this parameter
is not specified, the load or unload function assumes that the file is unbannered. The value

chosen for this parameter will have the significance shown below.

banner = The file is bannered and the parameter specifies the banner character
written as any two octal digits.

The file is unbannered.

NO
YES

The file is bannered and File Support C assigns 41 (octal) as the banner
character for an output file.

Note that for an input file, the banner character parameter specifies only the presence or
absence of the banner character; the actual value is irrelevant. For an output file, the value
specified is written as the first character of the output data records. To specify record size,

refer to ''"Record Length Parameter'" above.

Parity Parameter

The parity parameter is used to specify the parity of recording for magnetic tape files.

The format of this parameter is as follows.

PAR= | ODD
EVEN/| ’

This parameter applies only to magnetic tape files and is optional. When this parameter
is not specified, the function assumes that the parity is odd. The value chosen for this parameter
has the significance shown in the following.

ODD = The parity of recording is odd.

EVEN

The parity of recording is even.

4-40 #5-618

SECTION IV. FILE SUPPORT C

NOTE: A Honeywell file containing the octal character 12 should be handled in odd parity.

If this is not done, 128 is unloaded as 008 and loaded as 008.

Padding Character Parameter

The padding character parameter is used to specify the padding character to be used with
magnetic tape files. The padding character that is specified must be two octal digits. The

format of this parameter is as follows.

PAD=padding,

This parameter applies only to magnetic tape files and is optional. When this parameter
is not specified and the file is an odd parity file, the load or unload function assumes the padding
character is 77 (octal), When the file is an even parity file, the function assumes the padding
character is 11 (octal). If the first character of an item on the input tape is equal to the padding
character, the tape input/output routines assume that this is not a valid item, bypass it, and
advance to the next item,

Mode Parameter

The mode parameter is used to specify the reading or punching mode to be used for card

files. The format of this parameter is as follows.

MODE= | STAND
SPEC '

This parameter applies only to card files and is optional, When it is not specified, the
function assumes that the "special" punching or reading mode is used. The value chosen for
this parameter has the significance shown below,

STAND = The standard card mode is used.

SPEC The special card mode is used.

NOTE: Refer to the appropriate programmer reference and card reader/punch
manuals for a description of the differences between the standard and
special modes.

Password Parameter
The password parameter is used to specify the password value to be checked against the

password assigned to the mass storage file. The format of this parameter is as follows.

PW=password,

This parameter applies only to mass storage files and is required if the file has password

protection. When specified, the password can be up to eight characters; trailing spaces are

4-41 #5-618

SECTION IV. FILE SUPPORT C

added automatically. If the file has password protection, the password check is made regardless
of the presence or absence of the password parameter. If the file does not have password pro- ~—

tection, a request for password checking must not be made.

Bucket Addressing Parameter

The bucket addressing parameter is used to specify the type of bucket addressing used for

an output direct access file. The format of this parameter is as follows.

ABS

BUCKET-= {REL}

This parameter is optional and applies to output, direct access files only., When this pa-
rameter is not specified, the function assumes that absolute (actual) bucket addresses are being &
used. When this parameter is specified, the value chosen has the significance shown below.

REL = Relative bucket addresses are supplied by a user-written routine.

ABS = Actual bucket addresses are supplied by a user-written routine.

Parameters describing the user-written routine are supplied in the Exits statement

(described under "Exits Statement'' which follows).

~
Protection Status Parameter
The protection status parameter is used to indicate the write protection assigned to an
output mass storage file when the file was allocated. The format of this parameter is as follows.
PROT= (A
B -
AB |’
NO
This parameter is required for an output mass storage file which has write protection.)
When this parameter is not specified, the load or unload function assumes that the file has no
write protection. When a file has been allocated with a protection parameter containing a value
other than NO (described under '"Protection Status Parameter' earlier in this section), the same
value that was used during the allocation must be used when describing the output mass storage
file. When this parameter is specified, the valuechosen has the significance showninthe following.
A = The file was assigned A-file write protection.
B = The file was assigned B-file write protection.
AB = The file was assigned both A- and B-file write protection.
NO = The file was not assigned write protection.
L

4-42 ' #5-618

a

SECTION IV. FILE SUPPORT C

Imbed Parameter

The imbed parameter specifies the number of item positions that are set aside as unused

at the end of each data string of a file when the file is loaded. This parameter applies only to

an output indexed sequential file on mass storage.

If these unused item positions (identified by 41 octal) are left within the data strings of an
indexed sequential file when it is loaded, items can subsequently be inserted in those files with-

out having to use the cylinder overflow or general overflow areas until all unused item positions

are used.

IMBED=unused-items-per-string,

The default assumption is that item positions are not set aside. The value of the imbed
parameter must be less than the number of items per string (as specified by the block and string

parameters when the file is allocated).

Release Parameter

The release parameter specifies whether or not the contents of an output, partitioned se-
quential file are to be released before data is loaded. (Releasing a file consists of removing all
member names from the member index so that the entire data area of the file is available as un-

used space.) This parameter applies only to a partitioned sequential output file on mass storage.

RELEASE-= [YES
NO ’

YES - The file is to be released before loading.
NO - The file is not to be released before loading.

The default assumption is that the file is not to be released before loading. Thus, datafrom

input members is either added to the file as new members or it overlays existing members of

the same name.

Report Number Parameter

When a sequential print-image file containing one or more reports is being unloaded onto
the printer, the report number parameter specifies the number of the report to be printed.

This parameter has the following format.

REPORT = report number,... J

4-43 #5-618

SECTION IV. FILE SUPPORT C

The report number given is the decimal number which is contained (in binary) in locations 2 and

3 of each item of the mass storage file. This parameter is specified when unloading a mass
storage print-image file to the printer. It is optional and can be repeated for as many reports
as the user wishes to print. When this parameter is used, character position 56 of the
VOLDESCR entry for the file must contain 42. Refer to '"Unloading Mass Storage Files to

the Printer" in this section and to Appendix G.

MEMBER STATEMENTS

The input File statement and the output File statement may be followed by member state-
ments if that input or output file is a partitioned sequential file on mass storage. Each Member
statement used specifies the name of one member to be loaded or unloaded. There must be one
Member statement for each member to be loaded or unloaded. However, if the programmer

desires, he can omit all Member statements, and all members of the input file will be loaded

onto the output file, Refer to page 4-58 for more detailed information,

CARD OPERATION
NUMBER [P LOCATION CODE OPERANDS
1" 2]3 als]s{7]e | 1alis, 20(21 ~ 1. N L L o | 6263 .,)) 601
! |L 5 EMBE RINAME =Jm¢¢!!!.b.°q! -namg, i PN " . 1 t Y 1
i L i 1 A A P ad -y " A . 1 - 1 PR R R -

Member Name Parameter

The member name parameter is used to specify the name of the member to be loaded or
unloaded. When used with an input file, each named member is extracted for output to any media;
when used with an output file, each incoming member is renamed by the corresponding member
statement prior to entry in the mass storage file, The format of this parameter is shown in the
preceding example. The member name specified in this parameter can be up to 14 characters

long; trailing spaces are added automatically,

The status of 2 member loaded by File Support C allows unrestricted processing.

EXITS STATEMENT

The Exits statement enables the load or unload function to exit to a user-supplied routine
just after retrieving the input item and just prior to writing the output item. This statement is
required for loading a direct access mass storage file, because bucket addresses must be
supplied by the user. It is optional for all other load/unload operations. The Exits statement

is used to describe the user-supplied routine.

4-44 #5-618

SECTION IV. FILE SUPPORT C

Program=-Segment-Name Parameter
The program-segment-name parameter is used to supply the name of a single-segment

user-written routine. The format of this parameter is as follows,

PROG=program-segment-name,

The first six characters of this parameter are the program name; the last two are the

segment name. Imbedded spaces are significant; trailing spaces are added.

Low-Memory-Address Parameter
The low-memory address parameter specifies in decimal the lowest memory address used
by the user-supplied routine. The value of this parameter must indicate a memory location

below 32K. The format of this parameter is as follows.

LMA-=low-memory-address,

The highest location occupied by the own-code routine cannot exceed the location specified

in the Supervisor communication area as the highest memory location available.

Job Control Language Examples for Load and Unload Functions

The following job control statements request that a file be loaded onto mass storage. It
is specified that the input file is a bannered magnetic tape file named FILEXX, The output file
is on mass storage and is also named FILEXX. Own-coding is employed to modify items while

loading the file, (See next page for coding example,)

For this example, it is assumed that the mass storage file FILEXX was allocated as a
sequential file with the following values.
No password protection

No write protection

Item length 150 character
Record length 450 characters
Block length 900 characters (6 items per block)

The following figure is the assumed value for the mass storage file,
Device address (04, 0)

The following assumed values will be assigned to the tape input file,
Item length 150 characters

Record length 901 characters (same as mass storage block size plus one
character for banner)

Device address ‘ (40, 1)
Parity Odd
Padding 77 (octal)

4-45 #5-618

SECTION 1V, FILE SUPPORT

file on mass storage be unloaded to the printer,

® ® N ® 6 » w4 N -

nen [EA| ocATioN | " Zonro™ OPERANDS J
1 2[3 aTsfel7]e . 143, 20021 f N L . N | | N 'R
T) EX #FILESUP . .]])))] \)
1) FUNCT LOAD .,] . ,) ,))]
s] ; FILE lIN, : , , . , . N , .
‘ —y I n | INAME= FILEXX, e A \ \ i L) L P
s)| { N a DE.VTY.PE’ g@d’&. i N L " " L n 1. N
of 11 e . BAN:=NYES | N \ N ,) R : . ,
o . FiLE lout, . .~ . , R , , , , . . .
. ! K , NAME=F\ LEXX, DEVIYPE=259 4) . . . baea
, : . EX{TS |PROG=XXCODES1, LMAZA 5988, |

In the following example, job control statements request that two reports in a print-image

In the example below, the following assumptions have been made:

The input mass storage file is named FILEAP.

1, For the mass storage file FILEAP:
a. That it was allocated as a sequential file without password protection.
b. That, at a time prior to unloading, character 56 of the *VOLDESCR#*
item for this file was set to 42 octal and that character 57 of the
VOLDESCR item was set to indicate the number of control chars
acters in each item of the file (in binary). These characters must
have been set by a means other than File Support C. See Appendix
G for description of items of a print-image file. See Table 3~11 for
information on own-coding Exit 01,
C. The device address is (04, 0).
2. For the on-line printer file:
The device address is (02).
Nomser [E[g| LocaTion | *Cooe" OPERANDS)
v 213 ais|e{7]e A 1415, 202+ i | | L . 1 i i L | .
[] EX wE1LESUP,. | ; . i :
' . FUNCT JUNLOAD, \ : . . .
. FILE IN, L . \ . . L . . L .
L A NAME ‘lF‘ LEAIP i 1 1 1 i A 1 A 1
L) REPORT=9 REPORT =12, . \ \ A ;) y)
N F“LE« OUTA 1 n 1 L 1
-t " EVTY.pE = 22.2; i i

A

[SN N RS N EpU SNy SN B
Ll 1l 4} dde] e]
M

L F F F F

-~ - + +

1
1 1
1 L
' 1
1 1

i
2.
1
1
-
1
1

-+ + F

Parameters for file name, item size, and record size are irrelevant to the

statement when unloading onto the printer.

4-46

output File

#5-618

SECTION 1IV. FILE SUPPORT C

In the following example selected members of a partitioned sequential file are unloaded

onto the printer.

CARD V%] OPERATION
NUMBER [p|R| LOCATION CODE OPERANDS

1 213 als5(6l7[8 \ 14]i5, 20|21 | | | . | Ly , | R L | L 80
!) EX XFILLESUP,, | , . L e . .
! , FUNCT [UNLOAD .) . e L

L

~ ==

. FILE N, NAME F!PARM1 bevae 259.‘. .

. . PW= SESAME , DEVADD = (64 A),. . .

. MEMBE R NAME = FIPAR.TMEMERAH . .

. BERNAME=FIPART MgMgezxx.. .
. EMBERINAME = F1 PARTMEMBERAA
. FILE . OUT DEVTYPE=22Z , . . .

E 1l 1 1 1 1

I
1
i]

I 1 1 1 1 | -
1 1

@ @ ~ o » A w N -

35
(R U N

1 1 i 1

Y SN N SN (R UV D SHVRI DRSS SEFSN ER S

4+ 4+ 4+ 44 —1-

In the above example, the three named members are unloaded onto the printer in the order

named, The file is on device 1, second sector. All permit switches on the control unit can be

in PROTECT position.

In the following example, a tape file is loaded onto a mass storage partitioned sequential

file,

NUMBER EF Location | OFERSTION OPERANDS

) 2]3 4l5]6]7]8 X 14]15, 2021 | | N L . . 4 | 62163 i . | R 80)
L , EX ¥FILESUP,, | , , e 1 , L .
I . FUNCT_[LOAD , s , . .
3 | . FiLE__|IN NA.ME'TA.PEFL¢¢4»A nsvas-zws . . L s
s 11 l . PAR=0DD. PAD= 63 .EANzYEs REC =8, . L l e
sl]) 1 ITEM=8¢ DEVADD= (44 2), | . . e .
e 1o) FILE . |OUT NAME=FI1PARTZS1 DEVTYPE=2.59...‘
] , 1 PW=OPENDOOR ,DEVADD =(@4 1), ‘ :
of 11 , MEMBERNAME = PARTMEMBER GB4A.,. . . l . 1)
s : } , EX) TS |PROG=TAPEPTS , LMA=47¢¢¢. 1 A
0 % % E 1 i L 1 1 ! L 1 1 | L I I
" | ! L i 1 1 t L L 1 I I i !

In the above example, the tape file (single file on one or more reels) enters as a single
member (renamed PARTMEMBERO004A). If the member does not already exist in the mass
storage member index, a new member is created in as many mass storage blocks as are nec~
essary to contain the tape file. The own-code program will perform user-desired modifications
of the data. The mass storage item, record, and block sizes are as previously determined by

the allocate function.

In the following example, the statements request that a file on magnetic tape be loaded on-
to mass storage. Assume that the mass storage file named FILEC was allocated as an indexed
sequential file on three volumes with an item size of 252 and a record and block size of 1,512

(6 items). Also assume that the index area, the general overflow area, and the first data unit

4-47 45-618

S o @ vw 6 & b wu.n -

SECTION IV, FILE SUPPORT C

were allocated on the first volume and that additional units were allocated on the second and third
volumes., Three device addresses must be specified, The first volume of the file, containing
the index and general overflow areas (and the first data unit of allocation), is mounted on drive

1. The second volume of the file is mounted on drive 2. The third volume is mounted on drive
3. The imbed parameter requests that three item positions be left unused in each string of the
file's data area when items are loaded from the input file. This value of the imbed parameter
implies that the file was allocated with a data string that will hold at least four items. (String

size equals one or more blocks, each with a capacity of six items,)

nomaen (L8] wocaTion | OPERATON OPERANDS
v 213 a13]e]7]e N 1a)is, 2 s N RN L N f e A i L
! . EX #E)LESUP, | . . : . , . .
i . EUNCT [LOAD | s
| . AT (1Y R s . . e N D .
" : i : [PEVIVPE-244B, A :) 1 ; L . .
| A A ‘Tem. 1 L 1 s L 1 J 1 1 i
! ' I 1 gec’&‘) i " A A " A 1 oy s 1 1
L : . BAN=YES,)) \ . R L . \ .
: . FALE | louT, | . R . e . P .
! A 1 NAME’ F‘Lgc‘ﬁ 1 'l 1 L 1 A L ' A1
: i i 1 IMBEQ’ 3 1 Iy o L 1 2 L o
e A : D:VM,MMS —s A . :
L i1, A EVADD* (B4 3) ,) : A N ;

Summary of Job Control Statements for Load and Unload Functions

Table 4-5 contains a complete summary of the job control statements for the load and

unload functions.

4-48 #5-618

6v-¥

819-G#

Table 4-5. Summary of Job Control Statements for Load/Unload Functions
Parameter
Command Value
(Operation | Parameter (Operands
Statement J| Code) Name Field) Function Comments
Execute EX Program *FILESUP, Directs Supervisor to load Required when running under
Segment File Support C. control of mass storage
Name Supervisor.
Function FUNCT Function l LOAD Specifies the function to be Required.
Name UNLOAD/ ’ performed.
FILE File IN Identifies the file as input or Two required; one for input
Function ourt)’ output. file and one for output file.
File Name NAME = Names the file for the function. | Required for mass storage files
file-name, only, Optionalfor other media.
Device Type DEVTYPE = Gives the type of device used Optional for mass storage.
device-type, for the file. See list on pages Required for other media.
4-37, 4-38. Assumed value is 259,
Device DEVADD = Allows changing the assignment |} Optional. See device-type list
Address (pcu, drive), of the peripheral device. for assumed values, page 4-38,
File Item Size ITEM = Gives the number of characters | Optional. See item length
item-length, in each item (card or tape). parameter, page 4-39,
Record Size REC = Gives the number of characters | Tape only.Optional. Assumed

record-length,

in each tape record including
banner character, if any.

value=mass storage block size
(adjusted for banner character).

Banner BAN= (banner For tape files only. Gives the Optional. Assumed value =
Character NO , | banner character to be used, NO.

YES or the function assigns 4l (octal]

as the output banner character.

Parity PAR= {ODD For tape files only. Optional. Assumed value =

EVEN] '’ ODD.
Padding PAD = For tape files only. Gives the Optional. When omitted, 77
Character padding, padding character to be used. (octal) is used for odd parity

' file; 11 (octal) is used for
even parity file.
Mode MODE= {SPEC For card files only. Gives the | Optional. Assumed value =
STAND/|’| card reading or punching mode. | SPEC.

D 190dd4dNSs ITIA °“AI NOILDJS

0s-¥%

819-g#

Table 4-5.(cont).

Summary of Job Control Statements for Load/Unload Functions

Parameter
Command Value
(Operation| Parameter (Operands
Statement || Code) Name Field) Function Comments
Password PW = For mass storage files. Gives | Required if file is protected
password, the password for the file. by a password.
Bucket BUCKET= Gives the bucket addressing Direct access files only.
Addressing [REL mode for direct access output Optional. Assumed value =
Mode ABS)’ files on mass storage. ABS.
File {cont) e o s X
Protection PROT=(A Gives the type of write protec- Required if file was assigned
Status B tion assigned to the file when write protection when it was
AB|}’ it was allocated. allocated. Assumed value =
NO NO.
Imbedded IMBED= Unused- Specifies the number of item Optional. Applies only to
Overflow item-positions- positions that are set inactive indexed sequential files.
per-string, in each data string of a file Assumed value = 0
when the file is loaded.,
Release RELEASE=}YES Specifies whether the contents Optional. Applies only to
NO J’| of the file are to be released output partitioned sequential
before data is loaded. files. Assumed value =
NO.
Report REPORT = Specifies the report number Optional. Applies only to
report-number, of the report(s) to be printed. sequential files unloaded to
' the printer in print-image
format.
Member MEMBER | Member NAME = Each member statement Optional. When omitted, all
Name member-name, names a member to be pro- members are processed.
cessed. Applies only to partitioned
sequential files.
EXITS Required for direct access
Program and | PROG = Names the single-segment mass storage output file;
Segment program- own-code routine. optional otherwise.
Names segment-name,
Exits Low LMA = Gives the lowest main memory
Memory low-memory location used by the own-code
Address address, routine, in decimal.

‘ATl NOILDJS

D 1390ddns 3T1Iid

SECTION 1V, FILE SUPPORT C

MAP FUNCTION

The map function is used to extract selected information about the files on one volume.
This function can perform three actions: it can produce a description of all files or specified
files on the volume, produce a description of expired files, or list unassigned tracks on the
volume. The information produced is taken from the contents of the volume directory and listed

by means of a printer or print-image tape.

The map function is requested by a Function statement whose first parameter is MAP. The
second parameter of the Function statement gives the type of mapping desired. In most cases,
these two parameters are sufficient. The Function statement may be followed by a Volume state-
ment, one or more File statements, and a Day statement. The Volume, File, and Day statements
must be submitted in that order after the Function statement. They serve to restrict map informa-

tion, as required. If a File List statement is specified, it must follow all other File statements.

Job Control Language for Map Function

The following list shows all the job control statements that are required for, or that can
be used in, the mapping of a volume. Each statement and its parameters are described in the

following paragraphs.

EASYCODER

CODING FORM

PROBLEM PROGRAMMER DATE . PAGE __OF ____

nnoer [E[B] Locamion | oremew OPERANDS

1 2]3 alsTs]7]e | 1415, 20[2¢ , | " . N N | e2es N N N N 00|
g . EX *FILESUP, . . ‘ . . . Reguired. ., ...,
SN , FUNCT MAP, (DESCR, . . e 1 .. Reguired. | e
s ! . , EXPIRED] | . . e s P .
SN . j \UNUSED \ e s . e .
SR . NOLUMENAME=volume-name. b L. [Ogtionale,
o I . . DEVADOD: (peu, drive),. . i . . X N
o] . FILE INAME={ile-name,. . . . , . Opfional. . . :
b ! 2 DAY Y.Y. ddd_. ' 1 1 L 1 1) I oﬂ'l on Q‘ Sdoe :
' ! . FALE JL1sT,, e . e . T
o : } 1 1 DEVTYLPE bd d"lv ' c¢'lf¥?&i 1 i il A P P T 1
" i i E L i PEVAQD’QGN-d";NQ) o~ 1. 2 " 1 - Al L
2 l l Il 1 i i 1 4 I 1 1 [A 1 1

EXECUTE STATEMENT

The Execute statement with the program segment name *FILESUP directs the Supervisor

to load File Support C.

FUNCTION STATEMENT
The Function statement specifies to File Support C what function to perform. This state-
ment is required. Its format is shown in the preceding example, The format of the Function

statement's first two parameters is shown in the following example.

4-51 #5-618

SECTION IV, FILE SUPPORT C

MAP, (DESCR
EXPIRED } ,
UNUSED

Both of these parameters are required. The value assigned to the second parameter has
the significance shown in the following list.

DESCR = A description based on the volume directory information for
selected f’les, or for the whole directory, is produced.

EXPIRED = A description is produced based on volume directory information
for all files whose expiration date is less than or equal to the date
specified by the Day statement or the current Supervisor date.

UNUSED = A listing of all unassigned tracks on the mass storage volume is

produced.

VOLUME STATEMENT

The name of the volume to be mapped and its device address are specified by the Volume
statement. This statement is optional. When this statement is omitted, the volume name is
not checked and the map function assumes that the peripheral » 1ress assignment (pcu) is 04,

drive number O.

Volume Name Parameter
The volume name parameter is used to specify the name of the volume to be mapped. The

format of this parameter is as follows.

NAME=volume-name,

This parameter is optional. When a volume name is not specified, the map function does

not check the volume name in the volume label.

Device Address Parameter
The device address parameter is used to specify the peripheral address assignment (pcu)

and the drive numtar of the mass storage volume. The format of this parameter is as follows.

DEVADD=(pcu, drive),J

This parameter is optional. When a device address is specified, the peripheral address
assignment (pcu) is given in two octal digits. The high-order bit is not significant. The drive
number is given in one octal digit. When a device address is not specified, the map function

assumes the peripheral address is 04, drive number 0.

4-52 ‘#5-618

SECTION IV, FILE SUPPORT C

FILE STATEMENT
If a listing of the volume directory information for selected files is desired, one or more

File statements must be submitted. The format of the File statement is as follows.

CARD OPERATION
NUMBER ;g LOCATION CODE OPERANDS
1, 2]3 alslefr]e i 14lis, 202 1 L PR | I PR A . LN N . T 50)
| .
: } 1 Fn‘LE NAME.A'F‘ \Q'.nom; i I ' i i 1 P S I
‘!7 ! L 1 A A 1 A 1 1 1 1 - ' . Aol A

The File statement is optional. If a File statement is not submitted, the volume directory
information for all files on the volume is listed. This statement can be used only with the DESCR
option. When the volume directory information for selected files is desired, a File statement for
each desired file must be submitted. Files are listed in the order in which they appear in the
volume directory. The names of files not found in the directory appear at the end of the printed

listing.

DAY STATEMENT
The Day statement is used to specify the date against which each file's expiration date will
be checked when the function specified is the mapping of expired files. The format of the Day

statement is as follows.

CARD
NUMBER EE‘ Locarion | oo™ OPERANDS
+ 2]3 alsle[7]s N 1415, 2021 N L . N N . . 6263 . N | L 80|

0 DAY, . lyyddd,, R e

| L 1 L 1 1 1 ! I X 1 Loaa 4l Lk

~

- 4 —

This statement is optional. When a Day statement is submitted, the yy portion of the
parameter specifies the last two digits of the year, and the ddd portion specifies the number
of the day in the year. For example if the day is the first of January and the year is 1975,
the parameter is coded 75001. When a Day statement is not submitted, the file's expiration

date is checked against the current date field of the Supervisor.

FILE STATEMENT FOR THE LIST FILE
The device type and peripheral device address of the device to be used for the map listing
may be specified by a File statement whose first parameter is LIST. If no such File statement

appears, the listing is produced on a printer with the device address of (02).

NUMBER §| LOCATION oo OPERANDS
1203 alslefr]e " 1415, 20[21 N 5 Lo ' Lt A Lo T ...
3 , FALE [LisT, , . . , , . . . o .

SECTION IV, FILE SUPPORT C

Device Type Parameter

The device type parameter specifies the storage medium and the peripheral device on which

the list file will be created.

I DEVTYPE=device-type,

The device type number may be one of the following values:
206 - Type 206 Printer,
222 - Type 222 Printer, or
204B - Type 204B Magnetic Tape Unit

The default assumption is a Type 222 Printer,
Device Address Parameter

The device address parameter allows changes to be made in the standard assignment for

the peripheral device used for the list file.

Tape Printer

DEVADD=(pcu, drive}, DEVADD=(pcu),

The peripheral address assignment is written as two octal digits. All bits including the

sector bits must be specified, The drive number is written as one octal digit.

If the device address parameter is omitted, the default assumption depends on the device

type as follows.

Device Assumed Address
Type 222 Printer (02)
Type 206 Printer (02)
Type 204B Magnetic (00, 3)
Tape Unit

Job Control Language Examples for Map Function

In the following example, the job control statements request a listing of the volume direc-
tory information for files named FILEFF and FILEGG. The volume name is not checked and the
map function assumes that the device address is 04, drive number 0. In this case, File Support

programs are resident on the volume being mapped.

Nowser [Es] LocATIon | g OPERANDS
1 2]3 aisfsi?]e) 1a]is, 20(21 N Y C L, DTN N 4 | &6 . I | 80!
ot . EX HEVLESUP,, | . . e .) . l .
3 I , FUNCT MAP, DESCR., .) , . . . s .
3 { , FILE [NAMESFILEFF,)))) |]))
o Y e FILE INAME=FILEGG, .) | . , \)

4-54 #5-618

&

SUPPORT IV, FILE SUPPORT C

on volume PTMS04.

In the following example, the job control statements request a listing of the unused tracks

The volume is mounted on device 3.

will be created on tape unit 5.

EASYCODER

A print-image tape (for offline listing)

CODING FORM
PROBLEM PROGRAMMER DATE .____ . PAGE __OF ___
numBen [pla| LocaTion | oo™ OPERANDS
1 2]3 als . | 14015, 20(21 s | TN N L | | e2fes i | 80
e . EX EILESUP.,. : . et
IR . FUNCT MAP UNUSED, o
3 | . V.OLUMEINAME = PTMS@4 DEVADD = FTRES) . . e .
o I R FALE [LIST, DEVIVPE=2048 og.vmo-(gg sb . . P ,
s } } 1 1 1 1 ad] P U
s l ’ i A A1 A e 1 i 1 1 i 1 e 1
4 i ‘ 1 1 1 1 - A i 1 1 1 A 1 1
.]] 1 i 1 L 1 1 i 1 1 L Al .] A

assigned information.
have not been used.

changing disk packs.

The following example illustrates a request to map three volumes for descriptive and un-

EASYCODER

In the descriptive operation, assumed values for the volume statements
Three disk drives are online, so all three volumes are mapped without

All output is on a printer whose pefipheral address is 02.

CODING FORM

PROBLEM PROGRAMMER DATE ____ _ PAGE ___OF ___

NUMBER [p|g| LocaTioN | PTG OPERANDS

i 2]3 als N 1afis, 2021 N N | T L N | | 62[63 . L, N 80|
Lty . EX PELLESUP, . e . . . e
o) FUNCT |MAP DESCR ., . | . . e e
3 ! . 0L UME|NAME = PTMS(ZH oevwo-(gm Q \ . . i -
- : . FUNCT. [MAP . DESCR.,, e . . : . A
s | |) VOL UMEINAME » PTMS@2 . DEVADD (m 4),.)) .)) .
e 1 , FUNCT MAP DESCR. k . . , . \
U }) VOLUMEINAME = PTMS@D | DEVADD=(¢4- 2).. X \ b . . .
]
J ! . EX ¥FILESUP, . e . .) .
ol 41 . |FUNCT MAP UNUSE DEV @ VOLUME MAPPED. NO_NAME CHECK.
il I v FUNCT, UNUSE, DEV. 4 VOLUME MAPPED. NO NAME CHECK.]
el , VOLUMEIDEVADD=(F4, 1), : . —
ol | A FUNCT |MAP UNUSED, DEV z VOLOME, Musr s.e PTM$¢§‘.__L, B]
“l —_ NOLUMEINAME = PTISE3 DEVADD=(E4 2), . . e
1]
. I : i I3 t i 1 1 L i 1 j _—t at 1 - 4_:;

When a file is multivolume, each map listing will give the relative volume number (0-7) of each

file volume and name the subsequent volume on which the file continues. Combining map listings in

the relative volume order appropriate to each file produces a complete description of a multivolume file.

Summary of Job Control Statements for Map Function

Table 4-6 contains a complete summary of the job control statements for the map function.

#5618

Table 4-6. Summary of Job Control Statements for Map Function

*Al NOILDJS

956~V

8T19-6G#

Parameter
Command Value
(Operation | Parameter (Operands
Statement |l Code) Name Field) Function Comments
Execute EX Program *FILESUP, Directs Supervisor to load Required when run under
Segment File Support C. mass storage Supervisor.
Name
Function [|[FUNCT Function MAP, Names the function and Required.
omend .| pmscn) | pruciies the e oftatng
g 2yP EXPIRED produced.
UNUSED
VOLUME Optional.
Volume NAME = Names the valume to be Optional., When omitted, the
Name volume-name, mapped. volume name is not checked,
Volume Device DEVADD = Gives the physical device Optional. Assumed value
Address (pcu, drive), address of the volume to be (04, 0).
mapped.
File FILE File Name NAME = Names each file to be mapped. Optional (any number)., When
file-name, omitted, all files on the vol-
ume are mapped. Applies
only to MAP, DESCR,.

Day DAY Date yyddd, All files whose expiration date Optional. Assumed value =
is less than or equal to this Supervisor's current date.
value are listed if the expired Applies only to MAP,
option is requested. EXPIRED.

File FILE File LIST, Specifies the output listing Optional. When omitted,
medium, listing is produced on a

printer with peripheral
control address of (02).
Device DEVTYPE= Specifies storage medium Optional, See device type
Type device type, and peripheral device on parameter for possible
which file will be created. values, Assumed value=
Type 222 Printer.
Device DEVADD= Allows changes to the stan- Optional. See device
Address (pcu, drive), dard device assignment for address parameter for
 m— the list file. assumed values,

D LY0ddNs dTIdA

SECTION IV, FILE SUPPORT C

PROGRAMMER'S PREPARATION INFORMATION FOR FILE SUPPORT C

File Considerations

DIRECT ACCESS FILES

When allocating a direct access file, the item length is interpreted as including the status
character (rightmost character of the item). The allocate function sets this character to "inactive"
for all items in the file. For any item loaded, the value is set to "active' during the load process.

The possible values (in octal) of this character after loading are as follows.

Last Block All Other
of File Volume Blocks Meaning
76 77 Inactive item,
00 01 Active item,
F 40 41 Deleted item, 1

1Deleted items can appear in a direct access file only if
some interim processing has occurred between successive
loads,

Unloading a Direct Access File

Direct access files are unloaded in a sequential manner in the physical order in which
the active items are encountered on the file, Only active items are unloaded, The programmer
is never requested to supply a bucket address; but he may, however, specify an own-code routine

to modify, omit from the output file, or examine the item being unloaded.

Loading a Direct Access File
When loading a direct access file onto mass storage, the Exits statement must always be
specified, since the programmer must supply the bucket address (in binary) for each item in the

file via an own~code routine.

A direct access file is loaded in a cumulative manner; thus, all items being loaded are
added to the data already in the file. A direct access file containing previously loaded data can

be initialized by deallocating the file and allocating it again.

SEQUENTIAL FILES
A sequential file is always loaded and unloaded in a sequential manner. An own-code routine

may be used as described for unloading a direct access file.

4-57 #5-618

SECTION IV. FILE SUPPORT C

PARTITIONED SEQUENTIAL FILES

Each member of a partitioned sequential file is processed individually. During loading, S
the entire output file can be made available for new members by the use of the release param-
eter, Within each member, the items are processed in a sequential manner in the physical

order in which they are encountered.

Unloading a Partitioned Sequential File

UNLOADING BY FILE: To unload an entire partitioned sequential file, no member names are
specified in the job control file; only the file name is specified. All active members of the
partitioned sequential file are unloaded in the order in which their names appear in the member

index for the file.

UNLOADING SELECTED MEMBERS: To unload selected members of a partitioned sequential

[

file, the desired member names are specified in the job control file after the file statement for

the input file. These are unloaded in the order in which the names appear in the job control file.

4)

Loading a Partitioned Sequential File
LOADING BY FILE: The programmer may load an entire partitioned sequential file by either
of the following means.

1. Specify no member names in the job control file., In this case, the member
names are taken from the input file.

2. Specify in the job control file after the File statement for the output file, the
member names of all members which enter the output mass storage file.
Input members are renamed in the order of encounter with the specified out-
put member names.

LOADING SELECTED MEMBERS: The programmer may load selected members of an output
mass storage partitioned sequential file by specifying the desired member names in the job
control file after the File statement for the output file. Input members are again renamed in

the order of encounter with the specified output member names.

Processing a Partitioned Sequential File by Member Names

When loading an output mass storage file, the load function takes the output member names
from the job control file if specified or from the input file if not specified, When mass storage
is input, names are found in the input member index. When card or tape is input, columns 51

through 64 of each 1HDRA record contain each member name.

If the name under which the member is to be loaded already exists in the member index of
the output mass storage file and if the member can be processed in the output-only mode, the
input data replaces the member's data on the output mass storage file. This is true whether
loading by file or member name. If the member name does not already exist in the output file's
member index, the input member and its data are added as a new member to the output mass —
storage file,

4-58 #5-618

SECTION IV, FILE SUPPORT C

When member names are specified and the output member names in the job control file
are exhausted before all indicated input members have been processed, loading is terminated with
an appropriate halt (see Table 4-10). Member names are specified in the job control file only for

a file which is on mass storage, not for card or tape files,

Loading from Mass Storage to Mass Storage
When a partitioned sequential file is being loaded or unloaded from mass storage to mass
storage, both input member names and output member names may be specified. If one set of

member names is exhausted before the other, an appropriate halt occurs,

INDEXED SEQUENTIAL FILES

Allocating an Indexed Sequential File
When allocating an indexed sequential file, the item length, as expressed by the item length

parameter, must include the item status character (rightmost character of the item),

It is recommended that the master/cylinder index unit of allocation and the general over-
fiow unit of allocation be placed on the same volume, with data units on other volumes. This will
result in efficient use of mass storage drives during unloading and sequential processing. If
sufficient drives are available, processing may be speeded up by placing the master/cylinder

index and the general overflow area on separate volumes with data units on still other volumes.

Loading an Indexed Sequential File
The load function is the only method in the Mod 1 (MSR) Operating System by which an in-
dexed sequential file can be created, All indexes are created during the load operation. A sub-

sequent load operation will recreate all indexes while loading.

The load function reads the input file from cards, magnetic tape, a sequential or an in-
dexed sequential file on mass storage. An input file must be ordered in ascending binary se-

quence by item key as specified in the file allocation. Duplicate keys are not allowed.

The load function performs the following actions.

1. It creates the master index and the cylinder index,
2. It creates the string indexes,
3. It loads the prime data area of the file with items from the input file,

The item-status character of any item loaded is set to active. No
active items are loaded into any of the overflow areas.

4. If requested by the user, the load function can create imbedded inactive
items in each string processed. The item-status character of each
imbedded item is set to deleted.

4-59 #5-618

SECTION IV, FILE SURPPORT C

5. It initializes the cylinder overflow area of each cylinder containing a loaded
item. The item status character of each item in the cylinder overflow
area is set to inactive.

6. It initializes the general overflow area. Each item status character is
set to inactive.

7. For the string containing the last item loaded, the load function sets
the high key in the string index to all 1 bits, so that an item having a
key higher than that of the last itern loaded may be inserted in the file.

8. For the cylinder containing the last item loaded, the load function sets
the key in that cylinder index item to all 1 bits, Prime data areas

and cylinder overflow areas beyond the last string containing a loaded
item are not processed. These areas are not available for data. An
own-code routine may be used to examine, modify, or omit from the
output file any processed item. The contents of the item key field must
not be disturbed.

When a multivolume indexed sequential.file is loaded, all volumes must be on-line.

Unloading an Indexed Sequential File
An indexed sequential file is unloaded in ascending sequence by item key field. Only active

items are unloaded.

When a multivolume indexed sequential file is unloaded, the volume or volumes containing
the master/cylinder index and the general overflow area must remain mounted throughout the

unloading. The other volumes of the file are processed one at a time sequentially.

MIXED FILE ORGANIZATIONS
Loading or Unloading

When loading or unloading one mass storage file to another, the files must be of the same
organization, with the following exceptions: the input can be a sequential file and the output can
be an indexed sequential file, or the input can be a sequential file and the output can be a direct
access file., The items of the sequential file must contain a key field acceptable to the indexed

sequential file,

Own-Coding Considerations

During a load or unload function, the user may execute an own-coding routine for further
item processing. In the case of direct access files which are being loaded onto mass storage,

an own-code routine is required. In all other cases this own-coding routine is optional. The

user may examine, modify, or omit items at this time. File Support C branches to an own-
coding routine for each active item. Whenever a difference in item size exists, the item is
moved to the larger of the two storage areas before the branch to own-coding. When the item
is returned to File Support C, only the original punctuation (a leftmost word mark) should be

present,

4-60 #5-618

')

g

R

SECTION IV. FILE SUPPORT C

NOTE: During loading of an indexed sequential file, the own-code routine
must not modify the value of the key, If it should accidentally
change the value, one of the following actions would occur.

1. If the key of the current item is changed to a value less than
or equal to the key of the preceding item, the change is not
detected and loading of the file continues until completion.
This file cannot be successfully processed by Logical I/O C
or the FiIeS—upport C unload routine since it contains an out-
of-sequence key.

2. If the key of the current item is changed to a value greater than
or equal to the key of the next item to be read in, the current
item is read in successfully and the key-out~of=sequence exit
occurs during processing of the next item.

STRUCTURE OF OWN-CODING ROUTINE

The own-coding routine must be written and assembled as a single-segment program.
This program should have its origin located at a point'in memory such that the program occupies
the memory area immediately below the floating portion of the Supervisor or below location
32,768, whichever is lower. File Support C loads the own-coding routine only from the same

storage medium (and the same executable program file) as File Support C itself.

When the user wishes to load an own-coding routine by means of the load/unload function,
the following rules must be obsexrved.
1. If the console typewriter is used during the File Support C run, the highest

memory location which can be used by the own-coding routine is 3, 000
locations below:

a. The address specified in the communication area of the
Supervisor as the highest available memory location, or
b. lLocation 32, 767,

whichever is lower.

2. If the console typewriter is not used during the File Support C run, the own-
coding routine should occupy memory immediately below the Supervisor
or below location 32,767, whichever is lower.

OWN CODING CONSIDERATIONS FOR TAPE-RESIDENT OPERA TION

When File Support C is tape resident, the own-coding routine must be placed on the binary
run tape (BRT) beyond thé load/unload routine with which it is being used. Otherwise, a halt
or console typeout occurs when Floating Tape Loader-Monitor C searches for the next segment
of the load/unload routine on the BRT. In this case, a response must be made to Floating Tape
Loader-Monitor C to reverse direction and search again. When the segment is found, normal

operation continues.

4-61 #5-618

SECTION IV. FILE SUPPORT C

OWN-CODING COMMUNICA TION WITH LOAD/UNLOAD FUNCTION

In the Exits statement of the load/unload function, the user is required to specify the
lowest memory address (LMA) of the own-coding routine. One word-marked character should
be reserved at that address for communication with File Support C. When File Support C gives
a new item to the user, the communication character is set to zero. More detailed information
on the use of this character is given in subsequent paragraphs. The branch to the own-coding
routine occurs at the next character location (LMA+1). This location must contain an instruction

to store the contents of the B-address register for return to File Support C.

Address communication is made through index registers 1 and 5, Index register 1 is set

by File Support C to the leftmost character of the current item before branching to the own-

coding routine. Index register 5 is set by the own-coding routine to the rightmost character of
a user-supplied field into which the user places his binary bucket address when loading a direct
access file. The field is four characters if a relative bucket address was specified, and eight
characters (in the form DPCCTTRR) if an actual bucket address was specified. The leftmost
character of the field must contain a word mark; no other punctuation may appear in this field.
If the own-coding routine modifies index registers other than X5, it must save their contents

and restore them prior to returning to File Support C.

Omitting Items from the Output File

The communication character is set to zero (00) when the item is given to the user. If
the item is to be written onto the output file, the communication character must remain zero. If
the user desires to omit the item, he sets the communication character to one (0l) prior to

return to File Support C.

Invalid Bucket Addresses (Direct Access Files)

If the branch to the own-coding routine shows a communication character of one (01), then
the last bucket address supplied to File Support C for a direct access file was an invalid address.
When this is the case, the user may do either of the following:

1. Return to File Support C with a communication character
of zero to have that item bypassed, or

2. Return to File Support C with a communication character of one to
terminate the loading of this file. In this case, processing proceeds
to the next File Support C function, if any.

Insufficient Space (Direct Access Files)
If the branch to the own-coding routine shows a communication character of two (02) there
was no room left in the bucket or overflow area(s) of a direct access file for the last item given

to the load function. In this case, the user may do either of the following:

4-62 #5-618

¥

SECTION IV. FILE SUPPORT C

1. Return to File Support C with a communication character of
zero to have the item bypassed, or

2. Return to File Support C with a communication character of one
to terminate the loading. In this case, processing proceeds to
the next File Support C function.

Entrance to General Overflow (Direct Access Files)

If the branch to the own-coding routine shows a communication character of three (03),
this indicates that the item which was last loaded into the direct access file was placed in the
general overflow area. The user may:

1. Return to File Support C with a communication character of zero to
continue loading the file, i. e., process the next item from the input file, or

2. Return to File Support C with a communication character of three to
terminate loading of the file. In this case, processing proceeds to the
next function, if any.

I

) NOTE: At this exit the user can only examine the item which overflowed. It
- has been added to the file and remains there. For purposes of infor-
mation, index register 1 still points to that item in memory.

Key Out of Sequence (Indexed Sequential Files)

If the branch to the own-coding routine shows a communication character of one (01) while

loading (creating) an indexed sequential file, this indicates that the key of the current item is

—
not greater than that of the last item processed. The user may:
1, Return to File Support C with a communication character of zero
to have the current item bypassed and continue processing, or
2. Return to File Support C with a communication character of one to
terminate loading of the file; the index areas of the file will be
completed and control will be transferred to the next File Support C
¥ function, if any.
Tape and Card File Considerations
1/2-INCH TAPE FORMATS
Header Label
The tape header label is 80 characters in length and must be the first record of a file.
It consists of the following fields:
Field Characters Contents
1 1-5 1HDRA
2 6-10 Tape serial number
3 11-15 File serial number
4 16 Minus (-)
5 17-19 Reel sequence number
6 20 Blank
N 7 21-30 File name

4-63 #5-618

SECTION IV. FILE SUPPORT C

Field Characters Contents
8 31-35 Creation data
9 36 Minus (-)
10 37-39 Retention cycle
11 40 Blank
12 41-50 Reserved
13 51-64 Member name (partitioned
sequential only)
14 65-80 Reserved

File Support C uses only fields 1, 2, 5, and 7, except for a partitioned sequential file,

which uses field 13 also, The 1EOFA record terminates loading of all files except partitioned

sequential, which may consist of multiple members., The 1ERIA record terminates loading of

a partitioned sequential file,

When a partitioned sequential file exists on tape, each member is one file of a multifile

reel or reels. To identify the member on tape, the header includes an additional field in char-

acters 51 through 64 giving the member name, The load/unload function assumes that tapes are

properly positioned. No searching for the file name or member name is performed.

The load/unload function operates according to the following rules.

1.

When using the load function to load a partitioned sequential file and the
output member names are specified in the job control file, the member
name field is not required in the header. The output member name is
taken from the job control file and the tape file currently positioned is
loaded as that member. If the output member names in the job control
file are exhausted before all input files have been processed, processing
of the load functicn is terminated without halting and the next function is
executed.

When loading a partitioned sequential file and the output member names
are not specified in the job control file, the member name field in each
header is required. All files on that reel of tape are loaded as members
until a 1ERIA record is encountered on that tape, The member name is
assumed to be correct and is entered into the member index of the mass
storage file., Note that multifile reels are processed only for a single
volume partitioned sequential file.

When unloading a partitioned sequential file, the member name field in the
file header is always filled in by File Support C.

When member names are specified, only those members will be unloaded.
When no member names are specified, all active members on the file will
be unloaded.

4-64 #5-618

SECTION IV. FILE SUPPORT C

When loading a mass storage file from tape with no name specified on the job control file
for the input tape file, the file name on the tape is not checked. If a name was specified for the
input tape file, the name in the tape header label is checked for equality with the name specified
in the job control file. In either case, the header label of the input tape is checked for the

presence of 1HDRA in positions 1 through 5, and the value of the reel sequence number in posi-

tions 17 through 19 is also checked,

When unloading a mass storage file to tape with no name specified in the job control file
for the output tape file, the file name field in the tape header label is not checked and the mass
storage file name is written onto the output tape header label, If a name was specified for the
output tape file, its header label is read and the file name field is checked for equality against
the specified name; if it is equal, the specified file name is then written onto the tape header label.
In either case, the output tape header label is read and checked for the presence of 1HDRA

in positions 1 through 5.

Whenever any of the preceding equality checks fails, a program halt or console message

will occur, at which point the operator must enter the proper response. See Table 4-10 or 4-13,

When an out-of-sequence input tape has been accepted by the operator, the sequence num-

ber of the next reel will be tested for a value one greater than the sequence number of the

accepted reel,

Data Records

Data records processed by File Support C must be fixed in length (blocked or unblocked)

but may use any combination of parity and bannering. The following combinations exist.

Parity Odd Odd Even Even

Banner* Yes No Yes No

*When banner is specified, one additional character
should be provided in the REC = parameter.

The four types of data record blocking and bannering can be illustrated as follows.

1. Unblocked, Unbannered

L 1 ITEM

2. Blocked, Unbannered

| ITEM 1 | ITEM 2 ITEM 3 ITEM 4 |

4-65 #5-618

SECTION IV. FILE SUPPORT C

3. Unblocked, Bannered
B

A
N 1 ITEM |

4, Blocked, Bannered
B

fj ITEM1 | ITEM2 | ITEM3 | ITEM4|

For those installations trying to decide which type of file to use, the odd parity, bannered file

is the Honeywell recommended standard.

PADDING ITEMS: On an input tape file, File Support C examines the first character of each
item for equality to the specified (or assumed) padding character. In the case of equality, the

item is bypassed.

Trailer Label
The trailer label is 80 characters in length and must be the first record following the

last data record of a file, Only two fields of that record are used by File Support C.

Character
Field Positions Contents

1 1-5 Must be lIEOFA or 1EORA.

2 6-10 Is not checked on input; on
output (UNLOAD), the tape
record count (decimal) is
entered,

A N - R

In the normal situation, this record is followed by two 80-character records containing 1ERIA
{end of recorded information) in the first five characters. However, in partitioned sequential
files, each 1 EOF recordis followed by the next 1HDR record until all members are accounted

for. Only the last IEOF record is followed by the two 1ERI records. The trailer label contain-

ing 1IEORA (end of reel) signifies a reel to be an intermediate reel of a multireel file.

Tape Marks

Tape marks on an input tape are ignored. On output files, tape marks are not created.

CARD FILE FORMATS

Header Label

Each card file must have a label card with the 1HDRA in columns 1 through 5 and (option-
ally) the file name in columns 21 through 30. Partitioned sequential files are handled in exactly
the same way as in the 1/2-inch tape files previously described, except that 6nly one 1ERI

card terminates the file.

4-66 #5-618

SECTION IV, FILE SUPPORT C

Data Items

Card format is always unblocked and unbannered. The item consists of the minimum
number of cards which can handle one item, Any character positions left over are ignored.
Each item is assumed to start in column 1. For load/unload operations, only the item length
parameter is used to describe the card item size. Thus, if the item length parameter is

specified as

ITEM=120,

two cards will contain one item.

Trailer Label
Trailer labels for cards are the same as for 1/2-inch tape, as previously described, except

that field two (item count) is not used.

Unloading Mass Storage Files onto Printer

Mass storage files may be unloaded onto the printer, Partitioned sequential and sequential
files may be either print-image files or non-print-image (data) files; direct access and indexed
sequential files are always unloaded as data files, In addition, for sequential print-image files,

it is possible to print only selected portions of the file by using the report number option,

The last item in each sequential file or in each member of a partitioned sequential file must
have the standard end-of-data configuration (3 EOD¢) in positions 1 through 5. All partitioned
sequential and sequential print-image files must contain at least one, and may contain more,
control characfers as the first (leftmost) character(s) in each item, If more than one character
is present, partitioned sequential files use only the first and possibly the fourth of these charac-
ters; sequential files use the first four. (Specification of the format of a print-image file is

described in Appendix G.)

The first control character always acts as the C3 variant of a PDT instruction to a Type

222 Printer. (For details, see the Programmers' Reference Manual.) The second and third

c¢haracters, if present, can divide a sequential file into one or more reports, Each report con-
sists of all information to be printed as a single unit. Reports may be unloaded in a specific
order, as indicated by the job control file REPORT parameter(s) or in sequential order by report
number. In partitioned sequential print-image files, each member is considered a report, re~
gardless of report numbers, When the report number is present, the fourth control character
indicates one of the following actions.

1. If the fourth bit from the left is a 0, the item is printed under control of the

first control character and the next item is read from the input mass storage
file,

4-67 #5-618

SECTION IV. FILE SUPPORT C

2, If the fourth bit from the left is a 1, the item is printed as in 1 above, and a
5465 halt or a console typeout occurs to allow the printer form to be adjusted.
A = go on to the next item of the file,
G = reprint this same item and halt again,
F = go to the next File Support C function, or
E = go to the Supervisor.

The control characters must be located at the beginning of each item,

When a data file is unloaded, the contents of each item are printed in alphanumeric format;
each item includes as many 120-character print lines as are required to accommodate it, Each
item is preceded by an item header line which gives the item number within the file. The file
name (and member name if the file is partitioned) appears at the top of each page of the listing,

along with a page count. (See Figure 4-5.)

Print-image files are unloaded in the format in which they appear on mass storage. Ina
partitioned sequential file, each member is treated as one report. A sequential file may contain
interspersed reports with the report number in characters 2 and 3 of each item. If character
56 of the *VOLDESCR* entry for a sequential file is 42 and if the output file device type is an
online printer, reports are unloaded according to the numbers specified on the job control file.
If report numbers were not specified, the unload function attempts to unload reports by generated
number, beginning with report number 00 and continuing in binary increments. of 01 until a
nonexistent report number is sought on the file. At this point the function comes to a normal
end-of-file exit. If the generated report number 00 or a requested report number of any value
cannot be found on the mass storage file, a normal file support halt or console miessage occurs

awaiting an operator response,

OPERATING PROCEDURES FOR FILE SUPPORT C

Loading File Support C

The File Support C program may be loaded in either of the following ways.

1, From mass storage by the Supervisor of the Mod 1 (MSR) Operating
System or

2. From magnetic tape by the Floating Tape Loader-Monitor C program of
the Mod 1 (TR) Operating System. (Loading from mass storage is signif-
icantly faster, especially when programs are frequently used.)

MOD 1 {(MSR) OPERATING SYSTEM
When loading from mass storage, an Execute statement with the program and segment

name *FILESUP should be submitted in the job control file and followed by the desired statements
for File Support C. Mass storage device 0 must contain a resident program file (¥\DRS1RES)

and the bootstrap records (cylinder 0, track 0).

4-68 #5-618

)

FILE SUPPORT C

SECTION IV.

uoouUNn g I9jUlLJ-03-peorun ardweg jo Sunysvy

*G=% 2an31g

39099993939990393393399939325333323933393

EREEEEREEFEREEREREEEREEREEREREERFEREREEE]

EEEEFEEEEREREREFRERREEEREREERERERRERE R

EREEEEPEEFEFEERERRERREERERERERRERERER R

EREFEEERERFRFERREREEEREEEREREERERREREE R]

239333990933395399999300339392339333333935

PEEFEEEERERERRERREERERERREFEEEEREREE R

FREEEEREFRREFEFREEEEEERFEEREEREREERE R]

DID939X00529939093339923939309339393233990

1 39vd

09

29

€9

%9

s9

89

L9

v3alld 4831 3IWYNILY

IvANT

19 NODIW

G3HDOLVW 41 ¥OVIQ

NODIW

G3HDLVW 41 ¥OVIQ

VAN

99 IWNLW

Q3HOLVYW 41 ¥OVIQ

NODIW

01 ON W3ll
392999293999233393999239929399
2 $3a0un: MDa
6 ON W3l1
399993992392309999399993259993993
b $D3dSe MOa
8 ON W3ll1
39999399999933933322999299399
p] 1001= MOa h|
L ON wW3ll
392933333333333232333999333090
b} tANViS: M2a
9 ON W3ll
390099933390033333522092939399
p] 20D1= MOa h
[ON W3l1
33299399999930939999933099399)
<] $yvd: MOQ
L] ON W3lL1
393299939939923339339999593993
q H[«[eH MDQ
€ ON W3ll
39393933999322329939393223399
] 1001= M>a b
2 ON W3ll
990992932030339999399933999990
] INIATS MDa
1 ON W3ll

!

#5-618,

4-69

SECTION IV. FILE SUPPORT C

MOD 1 (TR) OPERATING SYSTEM

Loading from magnetic tape is the same as for mass storage except that a console call

card with the program and segment name *FILESUP is used instead of an Execute statement.

Protection of Mass Storage During Execution of File Support C

Protection switches on the mass storage control must be set as shown in the following.

PROTECTION DURING ALLOCATE

Format write — PERMIT
Data write — PERMIT
B-file — PERMIT, if specified for the file being allocated

PROTECTION DURING DEALLOCATE
Data write == PERMIT

PROTECTION DURING LOAD/UNLOAD

If the function includes an output file on mass storage:

Data write — PERMIT
A-file — PERMIT, if the file being loaded is a system file with A protection
B-file — PERMIT, if specified at allocation for the file being loaded

If the function includes no output files on mass storage, all protection can be set to

PROTECT,

PROTECTION DURING MAP
All protection switches can be set to PROTECT.

Operator Control and Messages for File Support C

This section describes the messages to the operator and the responses he may make,,

This information comprises the operator control file.

OPERATOR CONTROL WITH CONTROL PANEL
When the operator control device is a control panel, information is conveyed to the

operator through a Halt instruction. The B-address register indicates the meaning of the halt

by means of a coded value. The A-address register usually contains the address of a response

field. The user must enter a response character into this character location as indicated under

4-70 #5-618

v

W&

RN

SECTION IV. FILE SUPPORT C

the specific halt. In the case of most halts, additional information is provided in memory

locations immediately higher than the response character as described on page 4-69.

Peripheral Conditions

If the contents of the B-address register are in the range 0000 to 3777, the condition

relates to a peripheral device. The general form for the B—addfess register value is ppxd,

pp = peripheral control address;
x = code indicating type of condition:
0 = device not operable,
1 = uncorrectable read error,
2 = uncorrectable write error,
3 = end of storage medium,
4 = positioning or address error, or
7 = miscellaneous condition; and
d = device number.

The operator should determine the peripheral control unit involved and take appropriate
action. If the control unit addressed is mass storage, the meanings of the B-address register
values can be found in Table 3-15. If the control unit addressed is for some other device, the

meanings of the B-address register values are listed in Table 4-7.
NOTE: If a peripheral condition occurs on mass storage during allocation, in
conjunction with a ¢ylinder and track message on the printer, see para-

graph entitled "Failure During Allocation and Deallocation, " in this
section,

Table 4-7. Conditions Related to Non-Mass Storage Files

B-Address

Register

Value Condition Function Operator Action (see note)

ppld Uncorrectable Load ’ Tape File

(If pp = read error. To attempt rereading, enter G

magnetic tape into response location. Press

control unit, RUN. To bypass record and go

the A-address on to next record, enter A into

register con- response location. Press RUN.

:‘a;::o:xhsece All Card File

location.) Correct card in error if possible
and refeed, starting with that
card. Press RUN.

4-71 #5-618

SECTION IV. FILE SUPPORT C

Table 4-7 (cont).

Conditions Related to Non-Mass Storage Files

B-Address
Register
Value Condition Function Operator Action (see note)
pp2d Uncorrectable Unload and Tape File
write error. Map To attempt rewriting, enter G
into response location. "Press
RUN.
Unload Card File
Remove erroneously punched
card and press RUN to repunch.
Map and Printer
Unload An erroneous line has been
printed. To ignore error and
go on to next line, press RUN.
pp3d End of storage Load/Unload Tape File
medium and Map When next reel is ready, enter
G into the response location.
Press RUN.
: = =27
INOTE. A 218, G 8

File-Related Conditions

If the value of the B-address register is in the range 4000 to 4777, the condition is related

to logical operations with mass storage files. See Section III for a description of these halts.

Job Control File Conditions

If the value of the B-address register is in the range 5000 to 5777, the condition is related

to errors in the job control file statements.

list of information in the following format:

LR F 1 s]

The A-address register contains the address of a

R is a2 response field.
F indicates the function being performed (response field plus 1);
01 = Deallocate
02 = Allocate
03 = Load/Unload, or
05 = Map.
I is an indicator (response field plus 2).

a 5040 halt occurs.

This field is significant when
Its values and their meanings are listed in Table 4-9.

S Indicates the type of statement in which the error has been detected

(response field plus 3).

This field is always 00 at a 5040 halt.

#5-618

"

4

SECTION IV. FILE SUPPORT C

00 = Statement is irrelevant,
01 = File statement,

02 = Volume statement,

03 = Units statement,

04 = Exits statement,

05 = Size statement,

06 = Member statement, or
07 = Day statement.

The operator decides what action to take and enters a character into the response location; the

punctuation of this character is irrelevant. Each specific condition allows certain possible re-

sponses, as shown in Table 4-8. The geheral meanings of the various response characters are:

G (278) = Attempt to perform the operation again. The operator corrects
the erroneous statement (if possible), refeeds job control state-
ments beginning with the Function statement for the function con-
taining the statement in error, enters a G, and presses RUN.
The program searches for the next Function statement in the
job control file.

F (268) = Go on to next function. If the operator cannot correct the erro-
neous statement, he may skip to the next function by entering an
F and pressing RUN. The program searches for the next Function
statement within the File Support C job control file,

E (258) = Emergency exit to the Supervisor. If the entire file support run
must be discontinued, the operator enters an E and presses
RUN. The program exits to the Supervisor.

Table 4-8. Job Control Halt Codes
B-Address
Register

Value Meaning Possible Operator Responses

5000 Syntactic error. G
F
E

5001 Invalid command field. G
F
E

5002 Invalid positional parameter. G
F
E

5003 Invalid keyword. G
F
E

5004 Required parameter missing. G
F
E

5005 G
F
E

o _________________a

Invalid keyword parameter-value.

#5-6]58

SECTION IV. FILE SUPPORT C

Table 4-8 (cont). Job Control Halt Codes

B-Address
Register
Value Meaning Possible Operator Responses
5010 Invalid combination or sequence G
of parameters, F
E
5040 Same as 5010, See below. F
E
5077 Job control file too large for E
available memory. F
NOTE: G=278, F=268, and E=258

When any of the above halts occur with the exception of the 5040 and 5077 halts, the erro~
neous card can be punched and the entire set of statements, starting with the Function statement

in which it is located, can be entered by means of the card reader.,

When a 5077 halt occurs, available memory has been exhausted for the storage of the pa-
rameters in the job control file., The job control file can be broken into smaller units and
File Support C rerun, following an operator response of E. If a response of F is entered, the
Function satement read just prior to the halt, and all subsequent Function statements, will be

bypassed. They must be included in a later run of File Support C.

When a 5040 halt occurs, the four fields starting at the response character can be displayed
to determine the nature of the error. At this halt, no corrective action is possible and the func-

tion in which the error has occurred must be bypassed,

The F-field (at response plus 1) indicates the File Support C function within whose param-

eters error has been detected.

The I-field (at response plus 2) contains a value which indicates the specific error condi~

tion that has been detected. The possible values of the I-field are listed in Table 4-9.

Table 4-9, File Support Diagnostics for 5040 Halt

I - Field Meaning
Console Control
(Alpha) {Panel(Octal) Allocate Diagnostics (allocation is not performed)
A 21 Allocation has been requested for a file whose
name starts with an illegal character.
B 22 No file organization was specified.

4-74 #5-618

SECTION IV. FILE SUPPORT C

Table 4-9 (cont).

File Support Diagnostics for 5040 Halt

I - Field

Meaning
Console Control
(Alpha) Panel (Octal) Allocate Diagnostics (allocation is not performed)
C 23 1. Key length was unspecified for a direct access
or indexed sequential file,
2. Key position was unspecified for a direct
access or indexed sequential file,
3. Specified key position and size are incompatible
with item size,
E 25 The number of tracks in the cylinder overflow area is not
less than the number of tracks requested per cylinder for

a direct access or indexed sequential file,

F 26 Records-per-block is greater than records-per~cylinder,
G 27 The total number of blocks requested for members exceeds
the total data blocks in the file,

H 30 1. No Units statement appeared for this file,

2. The to cylinder in a unit of allocation is smaller
than the from cylinder.

3. A cylinder has been specified in a Units statement which
exceeds the allowable maximum (Type 258 Disk Pack
Drive: cylinder 103; Types 155, 259, or 273 Disk Pack
Drive: cylinder 202; Type 261 or Type 262 Disk File:
cylinder 127).

4. The to track in a unit of allocation is smaller than the
from track,

5. A track has been specified in a Units statement which
exceeds the allowable maximum (Type 155 Disk Pack
Drive: track 1; Type 258 or Type 259 Disk Pack Drive:
track 9; Type 273 Disk Pack Drive: track 19; Type 261
or Type 262 Disk File: track 127),

6. Less than two cylinders for a unit of allocation for a
direct access file have been specified and general
overflow has been requested.

7. The number of tracks per cylinder for each data unit
of allocation is not the same.

8. The second of two adjacent units of allocation on
the same volume begins on the same cylinder
on which the first one ended.

I 31 A volume name was not specified as the first parameter
of this Units statement,
. 33 In requesting the allocation of the *BADTRACKS file,

one of the following events has occurred.

1. File organization was not specified as sequential,

2. A parameter of the Size statement was specified,

3. A password was specified,

4, More than one unit of allocation was specified.

5. More than one Units statement was specified.,

% 35 Indexed sequential file: number of records per block
exceeds records per track,

1/05/70

4-75 #5-618.

SECTION IV, FILE SUPPORT C

Table 4-9 (cont). File Support Diagnostics for 5040 Halt

I - Field .
Meaning
Console Control
(Alpha) Panel (Octal) Allocate Diagnostics (allocation is not performed)
n 36 A requested unit of allocation includes either the boot-
strap track or the volume label track.
? 37 1, The requested member index is too small (contains
less than 75 characters).
2. The requested member index is too small to contain
the names of all the requested members,
J 41 The number of records per bucket or string exceeds the
number of records in the data area of a cylinder.
L 43 Either name or length was omitted for a member in a
partitioned file,
M 44 Indexed sequential file -

1. String index item length is greater than a block size,

2. MCINDEX unit of allocation area is too small for the
file's data area size.

3. Block length exceeds one track,

N 45 The MCINDEX and/or OVERFLOW units of allocation
were specified in the wrong sequence or were omitted,

0] 46 The requested track width per cylinder of an indexed se-
quential file data unit is not large enough to contain a string
plus a string index block,

Deallocate Diagnostics (deallocation is not performed)

51 No file name was specified.

52 No volume name was specified,

Load/Unload Diagnostics (load/unload is not performed)

/ 61 No file name was specified for a mass storage file,

S 62 No mass storage file was specified, (Both input and output
media are non-mass-storage),

T 63 The input file, the output file, or both files were not
specified.

U 64 Either the program segment name or the low memory ad~

dress was not specified in an Exits statement.

A2 65 A memory location greater than 32, 767 was specified for
the low memory address in an Exits statement,

w 66 The ¥*VOLSPARES file has been specified as a file to be
loaded or unloaded.

General Diagnostics

C 15 Insufficient memory for this call of the function indicated
in the F character. {(A-address plus one.)

— — 00

4-76 ‘ #5-618

[

«©

SECTION 1V. FILE SUPPORT C

Conditions Specific To File Support C
If the B-address register contains a value in the range 5400 to 5477, the halt condition is
specific to File Support C processing. The A-address register is the address of a list of

information which is presented in the format shown in the following.

The error code and all succeeding information is typed out on the console as a supple~

mentary list if the console typewriter is being used.

Character-field
Number of Characters Location (left) Explanation
1 A Response character,
1 A+1 Error code (applied to mass storage peripheral
device or file condition),
10 A+2 Mass storage file name,
1 A+12 Relative volume number of the mass storage file,
6 A +13 Volume name,
1 A+19 Mass storage peripheral control unit address,
1 A +20 Mass storage device address,
1 A +21 Mass storage pack number,
6 A + 22 Mass storage address in binary (CCTTRR),
for device error only,

If a mass storage partitioned sequential file is being loaded or unloaded, the member
name is placed ina l4-character field to the right of the preceding list of information (A +28).
If a mass storage print-image file with report numbers is unloaded, the report number appears

in a 2-character field to the right of the above list (A+28).

The operator decides what action to take and enters a character into the response loca-
tion. Each specific halt allows certain responses, as indicated in Table 4-10. The general
meanings of the various response characters are:

A(218) Accept the last operation as correct and continue,
G(278) Attempt to perform the operation again,

S(628) Skip to next logically permissible operation,
F(268) Go to next function, and

E(258) Emergency exit to the Supervisor.

4-77 #5-618

SECTION IV, FILE SUPPORT C

Table 4-10. File Support C Halts

B-Address
Register

Value Function Condition Operator Action (see note 1)

5400 any Volume name check failed. Enter G, F, or E,

5401 A,D Volume name check failed Enter G or E.
on second or subsequent
volume of the file (see
note 2).

5402 A Directory has no space for Enter ¥ or E.
new file (see note 3).

5403 D Mass storage file name not Enter G, F, or E,

L/U found (see notes 4 and 5),
For deallocate, can also enter
A to accept condition and
continue to next volume of file;
enter S to go to next file,

5404 L/U Mass storage file name Enter F or E,
not specified.

5405 A Duplicate file name (see Enter S, F, or E.
note 3),

5406 L/u File name check failed on Enter A to accept the file
card or tape input or tape (tape only), G, F, or E.
output.

5407 D Error detected in units of Enter A or E,
allocation portion of volume
directory, due to incom-
plete deallocation on a prior
run (see note 5),

5410 D Wrong password supplied. Enter G, F, or E, For de-

L/U allocate, can also enter S to
skip file,

5411 D No password was supplied, Enter S (for deallocate),

L/u but file has a password, F, or E,

5412 D Expiration date check failed, | Enter S, F, or E,

5413 A Error in units of allocation. Enter F or E.
There is a conflicting unit
of allocation already on the
mass storage volume (see
notes 3 and 6),

5414 D Volume sequence check Enter G or E,

L/U failed (volume mounted out

of sequence),

#5-618

R

vy

SECTION IV, FILE SUPPORT C

Table 4-10 (cont).

File Support C Halts

N
B-Address
Register

Value Function Condition Operator Action (see note 1)

5415 A An illegal combination of Enter G or E,
device classes has been de-
tected while allocating a
multivolume file (see
note 3),

5416 A During allocation of a multi- | Enter G or E,
volume file, a request for a
unit of allocation in which a

a cylinder or track exceeds
the allowable maximum for
the device being addressed
has been encountered (see

¥ note 3),

5417 L/U Reel sequence check failed A = accept the current reel;
on input tape (reel mounted G = re-open the tape reel;
out of sequence), F = go to next function;

E = go to Supervisor,
5420 L/U Member name not found in Enter
) member index of input S to skip member; go to next

N’ mass storage file, member;
F to close file; go to next
function;
E to close file; go to
Supervisor,

5421 L/U Member unavailable for out- | See halt 5420.
put processing,

o

5422 L/U No space in member index See halt 5420,
for new member.

5423 L/U No member name in input Enter

- file header (non-mass G to re-open file;
storage). F to close file; go to next

function; or
E to close file; go to
Supervisor,

5424 L/U No data space to create new See halt 5420,
member,

5425 L/U Member names of output Enter
mass storage file exhausted F to close file; go to next
before those of input mass function; or
storage file. E to close file; go to

Supervisor,
N—
.
4-79 #5-618

SECTION IV, FILE SUPPORT C

Table 4~10 (cont). File Support C Halts

Register
Value

B~Address

Function

Condition

No member names in mem-
ber index of input mass
storage file.

Operator Action (see note 1)

See halt 5425,

5427 M An item with invalid con- Enter S, F, or E.
tents has been detected in
the volume directory.
5430 L/U No data space to add next Enter
item to output mass stor- A to close member and/or
age file. file; go to next function;
S to close member; go to
next member; or
E to close the file and/or
member; go to Supervisor.
5431 L/U No more input members, Enter
but not all specified output A to close file; go to next
members have been function;
processed, G to re-open input file; or
E to close file; go to
Supervisor.
5432 L/U End of file between two Enter
cards of an input item. A to close member and/or
file; go to next function.
S to skip member; go to
next member,
E to close member and/or
file; go to Supervisor,
5433 L/U File header is missing Enter A to accept the file
from input card or tape file (tape output only), G, F, or E,
or output tape file.
5440 L/U Invalid device type speci- Enter F or E.
fied (see list on pages
4-37 and 4-38).
5441 L/U Invalid mass storage file Enter F or E.
organization,
5442 L/U Invalid combination of file Enter F or E.
organizations specified for
mass storage to mass
storage operation.
5443 L/U No own-coding program Entet F or E.

name specified when a
direct access file is to
be loaded.

4-80

#5-618

L4

el

SECTION IV, FILE SUPPORT C

Table 4-10 (cont). File Support C Halts

B-Address
Register

Value Function Condition Operator Action (see note 1)

5444 L/u An attempt is being made to | Enter A to continue function
load data into the ¥*BAD-~ and to load the file,
TRACKS {ile. Enter F to skip to next function.

Enter E.

5445 L/U. Specified or assumed tape Enter F or E,
item size is greater than
tape record size.

5450 L/U Indexed sequential load- Enter
input data item key not high- S to skip out-~of-sequence
er than prior key. Xl item and continue processing.
= lefthand end of item. F to close file; go to next

function; or
E to close file; go to
Supervisor.

5451 L/U Insufficient device address Enter F or E.
parameters have been
supplied for a multivolume
file (see DEVADD,

Table 4-4).

5452 L/u Indexed sequential load- Enter A (file will be loaded
requested number of im- with one active item per data
bedded overflow items per string), F, or E.
string is not less than num-
ber of data items per string.

5453 D An attempt is being made to Enter A, S, F, or E,
deallocate the *\BADTRACKS | Enter A to continue function
file, and to deallocate the file.

Enter S, F, or E.

5454 A An attempt is being made to Enter F or E,
allocate the *BADTRACKS
file, but no ¥*VOLSPARES
file exists on the volume.

5455 A A bad track has been de-~ Enter E.
tected in the data area of a
file being allocated, and
the structure of the file
does not permit it to con-
tain bad tracks.

5456 A There are no unused substi~ | Enter E,

tute track addresses in the
*BADTRACKS file, A sub-
stitute cannot be estab-~
lished for the latest bad
track detected or declared.
(see note 2).

4-81

~

wj
#5-618 .

SECTION IV. FILE SUPPORT C

Table 4-10 (cont).

File Support C Halts

B-Address
Register
Value Function Condition Operator Action (see note 1)
5465 L/U (Unload to printer,) Enter
Printer form may re= A to print the next item from
quire adjustment. the mass storage file,
G to print the same item and
reexecute this halt, F, or E,
5466 L/U Unload to printer- print- Enter
image items in a parti- A to ignore all report num-
tioned file being unloaded bers and print each mem-
to printer contain a report ber as a separate report,
number, F, or E,
5467 L/u Unload to printer- report Enter
number is not found in a A or S to go on to next re-
sequential print-image port number, F, or E,
‘ mass storage file.
5475 A, L/U Allocate - insufficient Enter
memory to declare mem- A to allocate file without
bers. members, F or E.
Load/Unload: Enter
Insufficient memory A to unload those members
to build table of all in the existing table,
input member names., F or E.
5476 Any Insufficient memory for Enter F or E.
buffers,
NOTES:

1. Operator response codes are interpreted as shown below, unless otherwise indicated.

Enter

A (21g)
G (27g)
S (62g)
F (26g)
E (25g)

Eglanation

Accept the condition or file, Continue.

Reopen volume or file.

Skip file; go to next file,

Skip function; go to next function,

Skip function; go to Supervisor.

2., This halt may occur during allocation or deallocation, If the allocation or deallocation
is not completed, see '"Failure During Allocation and Deallocation, ' below,

3. These halts may occur during allocation, If the allocation is not completed, the file
must be deallocated, See '"Fallure During Allocation and Deallocation, ' below.

4. This halt may occur during deallocation, If the deallocation is not completed, the
file must be deallocated promptly, See ""Failure During Allocation and Deallocation, "

below,

5. These halts may occur during a deallocation that is correcting a prior allocation or
deallocation that was incomplete, See "Failure During Allocation and Deallocation, "

below,

6. This halt may occur if allocation of a file was not completed and the required deal-
location was not done or was not completed, (It may also occur due to an error in

specifying the units of allocation,)

below,

See "Failure During Allocation and Deallocation, "

4-82

#5-618

g

SECTION IV. FILE SUPPORT C

OPERATOR CONTROL WITH CONSOLE TYPEWRITER
When a console typewriter message indicates an error or requests operator action, the
operator performs the following steps.

1. Read the typeout. (To repeat the message, press the space bar twice.)
If necessary, consult the manual for possible action.

2. Perform the desired corrective action.
3. Type the appropriate l-character response (G, E, etc,).
4. If the typein is correct, press the space bar to continue. If incorrect,

type any other character and return to step 3.

Peripheral Conditions
When a peripheral condition causes a console typeout, a 1- or 2-line message is given,
With all files, the first line below is given.
pp d description

pp d gives the peripheral control unit (pp) and device number
(d) of the peripheral device containing the file in error.

description is a message describing the condition. (See Table 4-11).
With mass storage files, the second line is given which identifies the disk device containing the

error.

The operator should determine the peripheral control unit involved and take appropriate
action. If the control unit is mass storage, the possible description messages in line 1 and the
contents of the second line are described in "Console Typewriter Operating Procedures' in
Section III. For control units for some other device, the message, the error condition, the

function which may issue the message, and any possible operator actions are given in Table 4-11.

Table 4-11. Typewriter Messages for Conditions Related to Non-Mass Storage Files

Message Condition Function Operator Action
READ ERROR | Uncorrectable Load Tape File
read error. To attempt rereading, type G.

To bypass the record and goon
to the next, type A.

All Card File

Correct card in error if
possible and refeed, starting
with that card, Type G.

WRITE ERROR| Uncorrectable Unload and Map Tape File
write error, To attempt rewriting, type G.
Unload Card File

To repunch, remove the
erroneously punched card, and
type G.

4-83 #5-618

SECTION IV. FILE SUPPORT C

Table 4-11 (cont). Typewriter Messages for Conditions Related to Non-Mass Storage Files

Message Condition Function Operator Action
WRITE Uncorrectable Map and Unload Printer
ERROR write error An erroneous line has been
(cont), printed. To ignore the error
and go to the next line, type G.
END End-of-storage | Load/Unload Tape File
VOLUME medium. and Map When next reel ready,
type G.

File-Related Conditions
When using File Support C, messages in the format
pp d FILE filename description
c filename v volume pdm a

may be given. These are related to logical operations with files and are discussed in Section III.

Job Control File Conditions
All console typewriter messages that deal with the job control file begin with the words
JOB CONTROL FILE ERROR,
Certain messages, as indicated in Table 4-12, are preceded by the words
CANNOT REFEED,
Following these words, there is a general message to describe the condition and three fields
of characters that further isolate the condition and indicate the function being performed. These

fields have the format: F IS

where F indicates the function being performed:

1 = Deallocate
2 = Allocate

3 = Load/Unload
5 = Map

i is an indicator. This is significant when a PARAMETER COMBINATION
message is given, preceded by the indicator CANNOT REFEED. The
possible values I may have and their meanings are given in Table 4-9.

S indicates the type of statement in which an error has been detected.
This field has the value 0 if I is greater than 20 (octal). The possible
values of the S field are:

Statement is irrelevant,
File statement,

Volume statement,
Units statement,

Exits statement,

Size statement,
Member statement, or
Day statement.

0w uonu

N OO dh W= O

4-84 #5-618

L¥]

SECTION IV. FILE SUPPORT C

The operator decides what action to take and types the appropriate response character.

condition allows certain responses as shown in Table 4-12. The general meanings of the

various response characters are as follows,

G

Attempt to perform the operation again. The operator corrects the
erroneous statement (if possible), refeeds job control statements
beginning with the Function statement for the function containing the
statement in error, and types G. The program searches for the next
Function statement in the job control file.

Go on to next function. If the operator cannot correct an erroneous
statement, he may skip to the next function by typing F. The program
searches for the next Function statement within the File Support C job
control file.

Each

E Emergency exit to the Supervisor.

If the entire file support run must be

discontinued, the operator types an E. The program exits to the Supervisor's
emergency return address.

Table 4-12.

Job Control File Console Typewriter Messages

Message

Meaning

Possible Operator Responses

SYNTAX

Syntactic error,

COMMAND FIELD

Invalid command field.

POSITIONAL Invalid positional
PARAMETER parameter.
KEYWORD Invalid keyword,
PARAMETER

MISSING PARAMETER

Required parameter
missing.

PARAMETER VALUE

Invalid keyword
parameter value.

PARAMETER
COMBINA TION

Invalid combination or
sequence of parameters.

CANNOT REFEED,
PARAMETER
COMBINA TION

Invalid combination or
sequence of parameters
(used in conjunction with
I-field).

BB IB"QIBRQ IO IBROIBRQ(EROQ

CANNOT REFEED, JOB
CONTROL FILE TOO
LONG

Job control file too large
for available memory.

H

#5-618 .

SECTION IV. FILE SUPPORT C

When any of the messages indicated above appear, with the exception of those preceded by
the message CANNOT REFEED, the erroneous card can be repunched and the entire set of
statements, starting with the Function statement in which it is located, can be entered by means

of the card reader.

When a PARAMETER COMBINATION message occurs, preceded by CANNOT REFEED,
the value of the I-field following it should be checked. The possible values this field may have

are given in Table 4-9.

When the message JOB CONTROL FILE TOO LONG is given, available memory has been
used for storage of the parameters in the job control file. The job control file should be broken

into smaller units and File Support C rerun,

Typewriter Messages Specific to File Support C

The messages given in Table 4-13 pertain to error conditions that are specific to File
Support C processing. The operator decides what action to take and types the appropriate
response character. Each error allows certain responses, as indicated in Table 4-13. The
general meanings of the various response characters are:

A Accept the last operation as correct and continue,

G Attempt to perform the operation again,

S Skip to next logically permissible operation,
F Go to next function, and
E

Emergency exit to the Supervisor.

Table 4-13. Typewriter Messages Specific to File Support C

Message Function Condition Operator Action
FIRST VOLUME Any Volume name check G = Reopen volume,
NAME WRONG failed. F = Skip function; go to next

function.
E = Skip function; go to
Supervisor.
SUBSEQUENT A, D Volume name check G = Reopen the volume.
VOLUME NAME failed on second or E = Skip function, go to
WRONG subsequent volume Supervisor.
of the file.
(See note 5.)
VOLUME A Directory has no F = Do not allocate; go to
DIRECTORY FULL space for new file. next function,
{See note 1.) E = Do not allocate; go to
Supervisor.

4-86 #5618

[

%

SECTION IV, FILE SUPPORT C

Table 4-13 (cont). Typewriter Messages Specific to File Support C

Message Function Condition Operator Action
FILE NOT FOUND D Mass storage file A = Accept the condition.
name not found. Continue to the next
(See notes 2 and 3.) volume of the file.
(Deallocate)
G = Reopen volume,
S = Skip file; go to next file,

(Deallocate)
F = Discontinue function; go
to next function,
E = Discontinue function; go
to Supervisor,

FILENAME L/U Mass storage name F = Discontinue function; go
UNSPECIFIED not specified. to next function,
E = Discontinue function; go
to Supervisor,
DUPLICATE A Duplicate file name. S = Skip file; go to next file,
FILENAME (See note 1.) F = Discontinue function; go
to next function,
E = Discontinue function; go
to Supervisor,
FILENAME CHECK L/U File-name check A = Accept the file, (Tape
FAILED failed on card or only.)
tape output, G = Reopen card or tape file,
F = Discontinue function; go
to next function.
E = Discontinue function; go
to Supervisor,
ERROR IN D Error detected in A = Accept condition; con-
VOLALLOC units of allocation tinue deallocation,
portion of volume E = Discontinue deallocation;
directory due to in- go to Supervisor.,
complete dealloca-
tion on a prior run,
(See note 3.)
WRONG PASSWORD D Wrong password G = Reopen volume,
L/Uu supplied. S = Skip file; go to next file,
(Deallocate)
F = Discontinue function; go
to next function.
E = Discontinue function; go
to Supervisor,
MISSING PASSWORD D No password was S = Skip file; go to next file,
L/u supplied; file has (Deallocate)
password. F = Discontinue function; go

to next function,
E = Discontinue function; go
to Supervisor.

SR Y

4-87 #5-618

SECTION 1V, FILE SUPPORT C

Table 4-13 (cont).

Typewriter Messages Specific to File Support C

Message Function Condition Operator Action
EXPIRATION DATE D Expiration date check |S = Skip file; go to next file,
ERROR failed. F = Discontinue function; go

to next function.
E = Discontinue function; go
to Supervisor,
CONFLICTING UNITS A Error in units of S = Skip file; go to next file,
OF ALL.OCATION allocation, There is |F = Discontinue function; go
a conflicting unit of to next function,
allocation already on E = Discontinue function; go
the mass storage to Supervisor,
volume. (See
notes 1 and 4,)
VOLUME SEQUENCE D Volume sequence G = Reopen volume,
NUMBER ERROR L/U check failed E = Discontinue function; go
(volume mounted out to Supervisor,
of sequence). F = Discontinue function; go
to next function.
ILLEGAL DEVICE A An illegal combina- G = Attempt to continue the
COMBINATION tion of device classes function on the correct
has been detected volume.,
while allocating a E = Exit to Supervisor,
multivolume file,
(See note 3.)
MAXIMUM CYLINDER A During allocation of G = Attempt to continue the
OR TRACK ILLEGAL a multivolume file, a function on the correct
request for a unit of volume,
allocation in which E = Exit to Supervisor.
the cylinder or track
exceeds the allowable
maximum for the de-
vice being addressed
has been encountered.
(See note 3.)
REEL SEQUENCE L/U Input tape reel mount- | A = Accept the current reel,
CHECK FAILED ed out of sequence. G = Mount the correct reel
and retry.
F = Go to next function.
E = Go to Supervisor,
MEMBER NOT L/U Member name not S = Skip member; go to next
FOUND found in member in- member,
dex of input mass F = Close file; go to next
storage file, function,
E = Close file; go to

Supervisor.

4-88

#5-618

+r

SECTION IV, FILE SUPPORT C

Table 4-13 (cont).

Typewriter Messages Specific to File Support C

Message Function Condition Operator Action
MEMBER CANNOT L/U Member unavailable S = Skip member; go to next
BE OUTPUT ONLY for output processing. member,

F = Close file; go to next
function.
E = Close file; go to
Supervisor,
MEMBER INDEX L/U No space in member S = Skip member; go to next
FULL index for new mem- member,
ber, F = Close file; go to next
function.,
E = Close file; go to
Supervisor,
MEMBER NAME L/U No member name in | G = Reopen file,
MISSING input file header F = Close file; go to next
(non-mass-storage). function.
E = Close file; go to
Supervisor,
NO SPACE FOR L/u No data space to S = Skip member; go to next
NEW MEMBER create new member, member,
F = Close file; go to next
function.,
E = Close file; go to
Supervisor,
UNEQUAL NUMBER L/U Member names of F = Close file; go to next
OF MEMBERS output mass storage function,
file exhausted before | E = Close file; go to
those of the input Supervisor,
mass storage file,
NO MEMBERS IN L/u No member names F = Close file; go to next
INPUT FILE in member index of function.
input mass storage E = Close file; go to
file, Supervisor,
ERROR IN VOLUME M An item with invalid Enter S, F, or E.
DIRECTORY ITEM contents has been
detected in the
volume directory.
NO MORE SPACE L/U No data space to add A = Close member and/or file;

IN OUTPUT FILE

next item to output
mass storage file,

go to next function,

S = Close member; go to next
member,

E = Close the file and/or
member; go to Supervisor,

#5-618

SECTION IV, FILE SUPPORT C

Table 4-13 (cont).

Typewriter Messages Specific to File Support C

Message Function Condition Operator Action
TOO FEW INPUT L/u No more input mem- | A = Close file; go to next
MEMBERS bers, but not all function,
specified output mem-| G = Reopen input file,
bers have been E = Close file; go to
processed, Supervisor,
ERRONEOUS END L/U End of file between A = Close member and/or file;
OF CARDS two cards of an in- go to next function,
put item. S = Skip member; go to next
member,
E = Close member and/or file;
go to Supervisor.
FILE HEADER L/U File header is miss~- | A = Accept the file (tape
MISSING ing from input card output only),
or tape file or out- G = Reopen file,
put tape file, F = Close file; go to next
function,
E = Close file; go to
Supervisor,
INVALID DEVICE L/U Invalid device type F = Discontinue function; go to
TYPE specified. next function.
E = Discontinue function; go to
Supervisor,
INVALID FILE L/U Invalid mass storage | F = Discontinue function; go to
ORGANIZATION file organization. next function.
E = Discontinue function; go to
Supervisor,
CONF LICTING L/u Invalid combination F = Discontinue function; go to
FILE ORGANIZA- of file organizations next function,
TIONS specified for mass E = Discontinue function; go to
storage to mass Supervisor,
storage operation,
NO OWN-CODE L/U No own-coding pro- F = Discontinue function; go to
PROGRAM gram name speci- next function.
fied when a direct E = Discontinue function; go to
access file is to be Supervisor,
loaded.
WILL LOAD INTO L/U An attempt is being A = Accept condition; continue
*BADTRACKS FILE made to load data function and load.
into ¥*BADTRACKS F = Discontinue function; go to
file. next function,
E = Discontinue function; go to
Supervisor,
INVALID ITEM L/U Specified or assumed | F = Discontinue function; go to
SIZE tape-item size is next function.
greater than tape- E = Discontinue function; go to
record size. Supervisor,

#5-618

o

SECTION IV. FILE SUPPORT C

Table 4-13 (cont).

Typewriter Messages Specific

to File Support C

s

Message Function Condition Operator Action
KEY OUT OF L/U Indexed sequential S = Skip out-of-sequence item;
SEQUENCE load-input data item process next item,
key not higher than F = Close file; go to next
prior key. function,
E = Close file; go to Supervisor,
NOT ENOUGH L/U Insufficient device- F = Discontinue function; go to
DEVICES address parameters next function,
have been specified E = Discontinue function; go to
for a multivolume Supervisor,
file (see Table 4-4).
TOO MANY IM- L/U The value of the im- Continue; file is loaded with
BEDDED ITEMS bedded parameter is one active item per string,
not less than the num- Discontinue function; go to
ber of items per next function.
string, Discontinue function; go to
Supervisor,
WILL DEALLOCATE D An attempt is being Accept condition; continue
*BADTRACKS FILE made to deallocate function and deallocate,
*BADTRACKS file. Skip file; go to next file,
(Deallocate)
Discontinue function; go to
next function,
Discontinue function; go to
Supervisor,
VOLUME DOES NOT A An attempt is being Discontinue function; go to
CONTAIN made to allocate next function.
*VOLSPARES FILE *BADTRACKS file, Discontinue function; go to
but no *VOLSPARES Supervisor,
file exists on the
volume,
FILE CANNOT A A bad track is detect~ Discontinue function; go to
CONTAIN BAD ed in data area of a Supervisor, :
TRACKS file being allocated;
file structure does
not permit it to con-
tain badtracks,
NO MORE SPACE A There are no more Discontinue function; go to
IN *BADTRACKS available tracks in Supervisor,
FILE the *\BADTRACKS
file, (See note 2.)
PRINTER FORM L/u (Unload to printer.) Print the next item from

ADJUSTMENT

Printer form may
require adjustment,

B 9 Q »

the mass storage file,
Print the same item again
and reexecute this halt,
Discontinue function; go to
next function,

Discontinue function; go to
Supervisor,

4-91

#5-618-

SECTION IV. FILE SUPPORT C

Table 4-13 {cont).

Typewriter Messages Specific to File Support C

Message Function Condition Operator Action
REPORT NUMBERS L/u (Unload to printer.) A = Ignore all report numbers;
PRESENT Print-image items print each member as a
in a partitioned se- separate report,
quential file that is F = Discontinue function; go to
being unloaded to the next function.
printer contain a re- | E = Discontinue function; go to
port number, Supervisor,
REPORT NUMBER L/U (Unload to printer.) A}: Accept; go on to next
NOT FOUND Report number not SJ) report number,
found in sequential F = Discontinue function; go to
print-image mass next function,
storage file, E = Discontinue function; go to
Supervisor,
INSUFFICIENT A Allocate: A = Allocate file without mem-
MEMORY FOR L/U Insufficient mem~ bers {Allocate). Unload
MEMBERS ory to declare those members in the exist-~
members, ing table (Load/Unload),
Load/Unload; S = Skip file; go to next file,
Insufficient mem- (Allocate)
ory to build table F = Discontinue function; go to
of all input mem-~ next function,
ber names, E = Discontinue function; go to
Supervisor,
INSUFFICIENT A Insufficient memory F = Discontinue function; go to
MEMORY FOR L/U for buffers, next function,
BUFFERS E = Discontinue function; go to
Supervisor,
NOTES: 1. These messages may occur during allocation, If the allocation is

not completed, the file must be deallocated. Refer to tke following
paragraphs,

If the deallocation
Refer to

2. This message may occur during deallocation,
is not completed, the file must be deallocated promptly,
the following paragraphs.

3. These messages may occur during a deallocation that is correcting
a prior allocation or deallocation that was incomplete. Refer to
the following paragraphs,

4. This message may occur if allocation of a file was not completed
and the required deallocation was not done or was not completed,
(It may also occur due to an error in specifying the units of allo-
cation.) Refer to the following paragraphs.

5. This message may occur during allocation or deallocation, If the
allocation or deallocation is not completed, refer to the following
paragraphs,

4-92 #5-618

SECTION IV, FILE SUPPORT C

FAILURE DURING ALLOCATION AND DEALLOCATION
This paragraph outlines the procedures to be used if there is a failure during allocation
or deallocation. These failures may be due to:

1. Errors, such as attempting to allocate to areas already assigned to
another file, or incorrect mounting of volumes, or

2. Equipment malfunctions, evidenced as device errors,

If allocation encounters a track which cannot be formatted successfully, a response to
the halt or console message will continue the allocation so that additional cylinder and track
messages (if any) will be produced on the printer, Permissible responses are as follows:

A = continue allocation

G = reattempt to format the track

E = exit to Supervisor,

The procedures described here should be followed so that additional problems will not
arise at a later time when they will be more difficult to analyze, Reference should be made to

Table 4-10 or 4-13 for the appropriate operator action.

Failure During Allocation
If an allocation fails, perform the following operations.

1. Do not use the volumes on which the file was to be allocated
until that file is deallocated.

2, Deallocate the file. Use the volume name check option. Mount the volumes
for the file in the proper order, starting with the first volume of the file.

3. The deallocation will proceed normally unless a halt 5403 or message FILE
NOT FOUND occurs. Note the volume name and file name for future reference.
Skip the file and go to the next operation,

4. The deallocation may have failed to remove from .the volume noted in step 3
all of the units of allocation assigned to the file. Failure to perform the
following steps may lead to a 5413 halt or message (conflicting units of
allocation) at a later allocation operation of this volume.

5. Map the volume. Both the descriptions of all files on the volume (MAP,
DESCR) and the listing of unassigned tracks (MAP, UNUSED) are needed.

6. Compare the two listings to determine the tracks that are not assigned to
any of the files listed. The listings of unassigned tracks will show as
"used" any tracks still belonging to the file, If there are no such tracks,
the volume is completely usable and step 7 is omitted.

7. This step consists of one of the following:
a. Accept the unavailability of the tracks noted in step 6.

b. If a recent backup of the volume exists, it may be suitable for
restoration by use of the Utility program Disk/Tape Copy. Update
activity performed after the date of the backup must be repeated
to make the restored volume current.

4-93 45-618 .

SECTION IV, FILE SUPPORT C

c. If neither of the above two possibilities seems desirable, unload
all the files on the volume, perform volume preparation, reallo-
cate all the files, and reload all the files,

Failure During Deallocation

If a deallocation fails, perform the following operations.

l.

2.

4.

Do not use the volumes from which the file was to be deallocated until
the deallocation of that file is completed. It is absolutely essential
that the deallocation be completed before any other file is allocated on
the volume which was being processed when the deallocation failed,
Otherwise, two or more files may attempt to use the same units of
allocation.

Repeat the deallocation run., Use the volume name check option.
Mount the volumes for the file in the proper order, starting with
the first volume of the file,

The deallocation may come to halt 5403 or message FILE NOT FOUND
for the first several volumes of the file. These are the volumes from
which the file was completely or partly deallocated in the prior run.
Enter A (accept the condition). The deallocation proceeds to the next
volume of the file.

The deallocation may come to halt 5407 or message ERROR IN
VOLALLOCH portion of the volume directory. The volume name
and file should be noted for future reference. Accept the condition
and continue deallocation.

If the 5407 halt was encountered or message ERROR IN #VOLLALOC#*
{see step 4), the deallocation may have failed to remove from the volume
noted in step 4 all of the units of allocation assigned to the file, Failure
to perform the following steps may lead to a 5413 halt or message
(CONFLICTING UNITS OF ALLOCATION) at a later allocation operation
on this volume,

Map the volume. Both the descriptions of all files on the volume (MAP,
DESCR) and the listing of unassigned tracks (MAP, UNUSED) are needed,

Compare the two listings to determine the tracks that are not assigned
to any of the files listed. The listing of unassigned tracks will show as
"used" any tracks still belonging to the file, If there are no such tracks,
the volume is completely usable and step 8 is omitted.

This step consists of one of the following:
a. Accept the unavailability of the tracks noted in step 7.

b. If a recent backup of the volume exists, it may be suitable for
restoration by use of the Utility program, Disk/Tape Copy.
Update activity performed after the date of the backup must be
repeated to make the restored volume current.

c. If neither of the above two possibilities seems desirable, un-
load all files on the volume, perform volume preparation,
reallocate all the files, and reload all the files.

4-94 #5-618

&

APPENDIX A
VOLUME LABEL AND VOLUME DIRECTORY

Both the volume label and volume directory are created by Volume Preparation C. Table

A-1 describes the volume label, and Table A-2 describes the volume directory.

The volume label is the unique identification of the volume. This record is 250 characters
long and is recorded as the first record (record 00) on the second track (cylinder 00, track 01)

of each volume.

The volume directory is a list of all files that are stored on the volume. The directory
begins on the third track (cylinder 00, track 02, record 00) of each volume except for the Type
155 Disk Pack Drive, where it begins on cylinder 00, track 01, record 1. Three sequential I
files make up the volume directory:

1. File name index (*VOLNAMES%),

2. File description index (*VOLDESCR*), and

3. File allocation index (*VOLALLOC**),

The first file (*VOLNAMES*) is an index of file names and refers to the other two files
for additional information. This index contains the names of all files allocated on this volume
and the addresses of the associated entries in the file description index and the file allocation
index. The item size of the file name index is 30 characters. This file begins on cylinder 00,
track 02, record 00 and never exceeds one track except for the Type 155 Disk Pack Drive,
where it occupies records 1 through 14 in cylinder 00, track 0l, It can accommodate up to
26 file names for a Type 155 Disk Pack Drive, up to 86 names for a Type 258, 259, or 273
Disk Pack Drive, and up to 158 file names for a Type 261 or Type 262 Disk File,

The second file (*VOLDESCR*) is a complete description of each file, including general
information, labeling information, and information pertinent to the particular organization and
structure of the file. The item size of the file description index is 100 characters. Except for |
the Type 155 Disk Pack Drive, this file begins on cylinder 00, track 03, and record 00; its
length may be one, two, or three tracks, depending on the maximum-number-of-files parameter
specified to the Volume Preparation C program. For the Type 155 Disk Pack Drive it begins I

on cylinder 01, track 00, record 00 and has a maximum length of one track.

1/05/70 A-1 #5-618

APPENDIX A. VOLUME LABEL AND VOLUME DIRECTORY

Table A-1. Volume Label

Field Position Name and Length Description
1 1-5 ID (five characters) 1VvOLA
2 6-11 Volume name The unique name assigned to the
(six characters) volume.
3 12 Device type (one character) : 11 (octal) = Type 258

12 (octal) = Type 259, 259A, 259B
13 (octal) = Type 273
21 (octal) = Type 155
31 (octal) = Type 261
32 (octal) = Type 262

33 (octal) = Type 261L
34 (octal) = Type 262L
4 13-18 Volume serial number Permanently assigned identification
(six characters) of the physical volume (volume
name is its logical identification).
5 19 Operating system flag 00(octal) = Mod 1 (MSR)
(one character) 02(octal) = Mcd 2

O4(octal) = Mod 4
10(octal) = Mod 8

6 20 Status of *VOLNAMES=
address field (one character) B, A bits indicate status as follows:
00 = not present; *VOLNAMES*
begins on CO0T2.
01 = reserved for future use.
10 = present; *VOLNAMES* begins
on CCTT specified in positions
24 through 27.
11 = see 00.
7 21-23 Reserved (three characters) Reserved for future use.
8 24-25 Cylinder where ¥*VOLNAMES?*| Specifies the cylinder on which
begins (two characters) *VOLNAMES?* file begins.
9 26-27 Track where *VOLNAMES#* Specifies the track on which
begins (two characters) *VOLNAMES#* file begins.
10 28-31 Reserved (four characters) Reserved for future use.
11 32-250 Reserved (219 characters) Reserved for future use.

The third file (*VOLALLOC*) is a list of the mass storage areas allocated to each file
stored on the volume, Each unit of allocation is one item. The item size of the file allocation
index is 20 characters. Except for the Type 155 Disk Pack Drive, this file begins on cylinder
00, track 04, 05, or 06, depending on the length of the file description index. For the Type 155
Disk Pack Drive it begins on cylinder 01, track 01, The file allocation index is the same number

of tracks in length as the file description index.

1/05/70 A-2 #5-618

APPENDIX A,

VOLUME LABEL AND VOLUME DIRECTORY

Table A-2. Volume Directory

FILE NAME INDEX (*VOLNAMES*) ITEM FORMAT

Field Position Name and Length Description

1 1-10 FILE NAME The unique name assigned to the file.
(ten characters) Pos. 1: 778 = unused,

2 11 VOLUME SEQUENCE The relative number of
NUMBER (one char- this volume in the file,
acter) in binary. This field

is zero for the first
volume in the file.

3 12 SYSTEM OF ALLOCA- An indication of which
TION (one character) operating system allo-

cated this file.
00 - Mod 1 04 = Mod 4
02 = Mod 2 10 = Mod 8

4 13-14 RESERVED (two Reserved for future use.
characters)

5 15-22 FILE DESCRIPTION AD- Address (in the binary format
DRESS CCTTRRII) of the entry in the file
(eight characters) description index describing

the file named in "1'" above.

6 23-30 ALLOCATION AD- Address (in the binary format
DRESS CCTTRRII) of the first entry in
(eight characters) the file allocation index for the

file named in ''1" above.
FILE DESCRIPTION INDEX (*VOLDESCR#%)
1 1 FILE ORGANIZATION 01 = Sequential
(one character) 02 = Direct access
03 = Indexed sequential
11 = Partitioned sequential
70 = Nonstandard; not processed
by Mod 1 (MSR)
77 = Unused item of *VOLDESCR*
2 2-3 ITEM SIZE Number of characters in item,
(two characters) in binary,
3 4-5 RECORD SIZE Number of characters in record,
(two characters) in binary.
4 6-7 BLOCKING FACTOR Number of items per block, in
(two characters) binarvy.
5 8-9 RECORDS PER BLOCK Number of records per
(two characters) block, in binary.
6 10-11 RECORDS PER TRACK Number of records per track, ex-
(two characters) cluding track linking record, in
binary.

7 12 CYLINDER OVERFLOW Number of tracks per cylinder as-
{one character) (direct signed for overflow, in binary.
access or indexed se-
quential files only)

L _

#5-618

APPENDIX A, VOLUME LABEL AND VOLUME DIRECTORY

Table A-2 (cont). Volume Directory

FILE DESCRIPTION INDEX (*VOILDESCR*) (cont)
Field Position Name and Length Description
8 13 GENERAL OVERFILOW General overflow indicator for
(one character) direct access files:
00 = No general overflow
77 = The last cylinder of each
unit of allocation is used
for general overflow,
9 14 OPEN/CLOSE INDI- Not used by Mod 1 (MSR).
CATOR (one character) Included for compatibility
with other operating systems.
10 15 BAD TRACK INDICATOR 1, Bit 1l (leftmost bit)
(one character) = 0; the file is not allowed
to have bad tracks,
~ 1; the file is allowed to
have bad tracks.
2. Bit2
= 0 the file does not contain
any bad tracks,
= 1; the file contains one or
more bad tracks for which
substitues have been
established,
11 16-21 RESERVED (six Reserved for future use.
characters)
12 22-26 CREATION DATE Date file was last created, in
(five characters) the form yyddd.
13 27-29 CREATION NO, Number of times this file has been
(three characters) reorganized, in decimal.
14 30-34 MODIFICATION DATE Date this file was last modified
(five characters) (i. e., opened for output-only or
input/output only processing), in
the form yyddd,
15 35-37 MODIFICATION NO, Number of times this creation
(three characters) of the file has been modified, in
decimal.
16 38-42 EXPIRATION DATE The date on which this file is ex-
(five characters) pected to expire, in the form yyddd.
17 43-50 PASSWORD User -supplied code to permit
(eight characters) access to the file. If omitted, no
- password protection exists for
the file.
18 51-54 ITEM COUNT Partitioned Sequential: Inactive,
(four characters) Sequential: Active only for last
active volume of the file.
Direct Access and Indexed Sequential:
Active for last volume of the file only.
See also the Note at end of this table.
19 55 DATA STATUS 02 - No data has been written on this
(one character) file volume.
NOTE: Always = 00 for 0l - l?ata has been written on this
) file volume, and it is not the
direct access and 1 fil 1 ith d
artitioned se- ast file volume w.1t ata.)
puential files 00 - Data has been written on this
4 . file volume, and it is the last

file volume with data.

A-4

#5-618

-

&]

Y]

APPENDIX A, VOLUME LABEL AND VOLUME DIRECTORY

Table A-2 (cont,) Volume Direcory

Field Position Name and Length Description

20 56 FILE DATA TYPE 40 = Print-image file without report
(one character) (sequen- numbers or form adjustment.
tial and partitioned sequen- 42 = Print-image file with report
tial files only) numbers and form adjustment,

4] - Card-image file. (Mod 8
Operating System use)
other -~ standard data file.

21 57 NUMBER OF CONTROL Number of control characters, in
CHARACTERS binary, for first n positions of each
(one character) item of a print-image file.

22 58 TERMINAL FILE CON- Not used by Mod 1 (MSR); included
TROL FIELD (one for compatibility with other operating
character) systems.

23 59-60 MISCELLANEOUS Not used by Mod 1 (MSR); included
INFORMATION (two for compatibility with other operating
characters) systems,

24 61-63 RESERVED (three Reserved for future use.
characters)

File Definition Information - Sequential Organization

25 64-65 INDEX LENGTH Number of blocks in the member
(two characters) index, in binary, for a partitioned
sequential file.
26 66-68 BLOCKS IN FILE VOLUME Total number of data blocks avail-
(three characters) able to this file, in binary,
27 69 MEMBER INDEX ITEM Length of member index items, in
LENGTH (one character) binary. Must equal 31 (octal) to
be processed by Mod 1 (MSR).
28 70-100 RESERVED (31 characters) Reserved for future use.

File Definition Information - Direct Access Organizat

ion

25 64-65 KEY LENGTH Number of characters in the key,
(two characters) in binary.
26 66-68 KEY DISPLACEMENT Number of positions from the left
(three characters) end of the item to the rightmost
character of the key, in binary.
Thus, if the key is the fourth to
twelfth characters, this field is
11 (octal 13).
27 69-70 BLOCKS/BUCKET Number of blocks in a bucket, in
(two characters) binary.
28 71-100 RESERVED Reserved for future use.

(30 characters)

File Definition Information - Indexed Sequential Organization

25 64-65 KEY LENGTH Number of characters in the key,
(two characters) in binary.
I 26 66-68 KEY DISPLACEMENT Number of positions from the left
(three characters) end of the item to the rightmost
character of the key, in binary.
27 69-70 BLOCKS PER STRING Number of blocks in a string, in
{two characters) binary,
28 71-72 BLOCKS IN STRING INDEX Number of blocks in each string

(two characters)

index, in binary,

A-5

#5-618

APPENDIX A, VOLUME LABEL AND VOLUME DIRECTORY

Table A-2 (cont). Volume Directory

FILE DESCRIPTION INDEX (*VOLDESCR*) (cont)

Field

Position Name and Length Description

File Definition Information - Indexed Sequential Organization (cont)

29 73-74 BLOCKS IN MASTER INDEX Number of blocks in the master
(two characters) index, in binary.
30 75-77 BLOCKS IN FILE VOLUME Total number of blocks in this file
(three characters) volume, in binary, The total in-
cludes index and general overflow,
31 78-100 RESERVED Reserved for future use,
(23 characters)
FILE ALLOCATION INDEX (*VOLALLOC#*)

1 1 STATUS Status indication for this item:

(one character) 778 = Unused or deleted item.

408 = Last data unit for this file.

60g = More data units follow on
this volume.,

20g = More data units of allocation
follow on the next volume,

628 = Master/cylinder index unit;
the general overflow unit
follows on this volume.

22, = Master/cylinder index unit;
the general overflow unit
follows on the next volume.

61_ = General overflow unit; the
first data unit follows on
this volume.

1 STATUS (cont) 21 _ = General overflow unit; the
first data unit follows on
the next volume,

2 2-4 RESERVED Reserved for future use,

(three characters) ‘
3 5-12 ALLOCATION UNIT Boundaries of this unit of allocation
{eight characters) (in the binary form CCTTCCTT).

A-6 #5-618

[E]

APPENDIX A, VOLUME LABEL AND VOLUME DIRECTORY

Table A-2 (cont).

Volume Directory

FILE ALLOCATION INDEX (*VOLALLOC*) (cont)

Field Position Name and Length

Description

FILE ALLOCATION INDEX (¥*VOLALLOC¥*) (cont)

(eight characters)

4 13-20 NEXT UNIT ADDRESS

If field 1 = 60, 61, or 62, field 4 =
00000000, where the next unit of
allocation is the next item in the
current block., Otherwise, field 4
is the address of the item in this file
containing the next unit of allocation
(in the form CCTTRRII). When field
1 =20, 21, or 22, field 4 contains
the volume name of the next volume
in the file as the rightmost six
characters. If field 1 = 40 or 77,
the contents of field 4 are not
specified,

true item count for this file.

NOTE: If the file is processed using LIMVOL and if processing was terminated
prior to the last file volume, the item count field (positions 51-54) in the
last file volume processed is updated with the net change in item count
during processing. Thus, when the LIMVOL option is used, it may be
necessary to add the values in this field in all file volumes to obtain the

w

#5-618

E 3

S

'Y

APPENDIX B
PARTITIONING A SEQUENTIAL FILE

When the partitioning option is used, there are several additional advantages to sequential
file organization. With this option, the sequential file is broken into any number of subfiles
{members), which can vary in length., The partitioning option may be used for print files,

storing various types of tables, or files which are segregated by state, wherein each state may

be processed separately.,

Each member of a partitioned sequential file must have identical properties (e.g., item

size, record size, etc.). A member index is maintained to enable direct access to the beginning

of any member. The number of blocks required to store the member index is specified at allo-
cation time by the user (see "NOTE, " page B-3)., The member index begins with the first block

in the file and continues through the number of blocks specified. The record size and block size

of the member index are identical to those of the data area of the file. The item of the member
index contains the name of the member, its address, the number of blocks in the memberr, and
the status of the member; its size is 25 characters. An index can be examined by using Mass

Storage Edit C to edit the first track(s) of the file (see Mod ! (MSR) Utility Routines manual).

The name of the member identifies the member. A member name is 14 characters in

length, The address of the member is the address of the first record in the member. The ad-

dress is of the form ACCTTRR, This identifies the cylinder, track, and record of the first
item of the member, The block count simply records the number of blocks in the member, The
status of a member may be one of the following:

1. Deleted,
2. Able to be processed as input-only, or input/output, and

3. Able to be processed as input/output, input-only, or output-only. Mem-
bers created by File Support C are assigned this status to allow unres~
tricted processing,

All member index items, except the first and the last, are composed of the four fields

listed in Table B-1.

B-1 #5-618,

APPENDIX B. PARTITIONING A SEQUENTIAL FILE

Table B-1. Fields of Member Index Items
Field Position Name and Length Description
I
1 1-14 Member name A field which identifies a mem-
(14 characters) ber. A member name must be
composed from letters, digits,
and spaces.
2 15-21 Address The address of the first record
(7 characters) of the member in the form
ACCTTRR, in binary.
3 22-24 Block count (3 charac- A binary count of the number of
ters) blocks in a member.
4 25 Status (1 character) 20 (octal) = This member can be

processed as input,
output, or input/output.

00 (octal) = This member can be
processed as input-
only or input/output.

40 (octal) = Deleted member.

e

The first item in a member index is composed of the following four fields, as listed in

Table B-2.
Table B-2. Fields of First Item in Member Index
Field Position Name and Length Description
1 1-14 *UNUSED* AAAAAA
(14 characters)

2 15-21 Address (7 characters) The address of the first record
in the unused area of this file in
the form ACCTTRR, in binary.

3 22-24 Block count (3 char- A binary count of the number of

acters) blocks remaining in the unused
area of this file.

4 25 Status (1 character) 10 (octal) = Item pointing to un-

used area.

The last item in a member index is composed of the following four fields, as listed in

Table B-3.

#5-618

<+

APPENDIX B. PARTITIONING A SEQUENTIAL FILE

Table B-3. Fields of Last Itern in Member Index

Field Position Name and Length Description

1 1-14 *ENDINDEX* AAAA
(14 Characters)

2 15-21 Address (7 characters) The address of the first data
record for this file in the form
ACCTTRR, in binary.

3 22-24 Block count (3 charac- Total number of data blocks for
ters) this file, in binary.
4 25 Status (1 character) 01 (octal) = End-of-index item.,

The first item in the index always contains the address of the first record in the file that
is available for the addition of a new member., When the partitioned sequential file is allocated
and before data is entered, the member index contains at least two items: one indicating the un-
used area, and the other indicating the end of index., In addition, at allocation time, block space
may have been reserved for one or more members, When a member is created after allocation
its block count is computed after the data is placed. When a member is deleted, its data area is
not reusable until the file has been reorganized., (The Program Development Subsystem, how-
ever, does re-use space in the library and residence files.) Figure B-1 shows a sequentially
organized file using the partitioning option,

NOTE: The number of blocks which should be assigned to the member index is
determined as follows.

1 - (item) (By) Ignore any remainder.
B —————
25
Mu + 2
N = 1
B
Iz = Number of index items per block,
N = Number of index blocks, expressed as next higher integer,
(e.g., 19.2 = 20),
Mu = User members, maximum active at one time,
Item = Itemn size of the file (per allocate), and
BI = Items per block of the file (per allocate).
B-3 #5-618

APPENDIX B. PARTITIONING A SEQUENTIAL FILE

L //////////////

Rzl \\\\\\\\\\\\m\\

Unused Area

Member G

Unused Area

Figure B-1. Sequential File Using Partitioning Option

#5-618

APPENDIX C
FILE DESIGN AND ALLOCA TION

In setting up data files for mass storage, sufficient time should be devoted to the planning
process. Too often mass storage files are treated as if they were magnetic tape files. Con-~
siderations for both media are frequently quite different., For example, updating of magnetic
tape files normally involves a copy of all data, changed or unchanged, from one tape to another.
With mass storage, applying the changes directly to the file and updating 6n1y affected items is
often more efficient, This is especially true when the percentage of the file being changed is
relatively low. Careful planning of mass storage record and block lengths is necessary for

maximum data storage capacity.

FILE DESIGN CRITERIA

The following paragraphs describe certain considerations that should be taken into account

by the user before deciding what file organization to use.

Application Considerations

The most elementary question that must be asked about any file is: "What types of opera-

tions are to be performed on the file?'" Other pertinent questions follow.

FILE ADDITIONS
Are the programs processing this file going to add items to the file? How many items

are to be added to the file? Are the items added in a random manner?

Provision for new items is made in both direct access files and indexed sequential files.
The sequential file organization can handle additions only if the organization is treated as mag-

netic tape, i.e., each time items are added, the file is copied.

The direct access file and the indexed sequential file provide certain overflow capabili-
ties for handling additions. These capabilities are discussed in the sections of the manual de-
scribing specific file organizations. Depending upon their frequency and distribution, a speci-

fic file organization - may be preferred for handling a particular application.

FILE INQUIRIES
Is this file primarily used as a reference to be interrogated? Some.file organizations are
designed to provide quick and easy access to any given item. The direct access organization

provides the fastest access to any given item. However, careful planning of string size, block

8/29/69 C-1 #5-618

APPENDIX C. FILE DESIGN AND ALLOCATION

length, and placement of the master/cylinder index can provide very rapid access to the indexed

sequential organization without requiring any randomizing of a key. ~_

RANDOM VERSUS SEQUENTIAL FILES
Is the activity in this file random or are transactions sorted? What would be the effect

of doing it differently?

The answers to these questions will help to determine the design of the system and the
files within the system. In many cases, the application being developed is part of an existing
system. In such a case, the constraints are usually quite rigid. When designing a new system,
all of the assumptions should be closely examined. For example, a decision to handle a set of
transactions randomly may at first indicate the use of a direct access or indexed sequential -
file. However, closer examination might reveal that the volume of transactions is so high that

a sequential operation might be faster.

RANDOM PLUS SEQUENTIAL FILES
Is it important to be able to process this file sequentially and directly? Would it be use-

ful to process portions of the file sequentially?

The only file organization offering the full capability of both sequential and direct access e’
processing is the indexed sequential file. In a. system in which a file is most frequently pro-
cessed directly and least frequently processed sequentially, it is important to consider the ad-
vantages and disadvantages of using either an indexed sequential file or a direct access file.
For instance, although sorting may not be required for an indexed sequential file, this file fre-
quently requires a longer processing time. However, a direct access file which may be faster

to process requires sérting prior to any sequential operation.

There are many applications in which it is desirable to process only portions of a file
sequentially. A file organized by some multileveled key would lend itself well to this type of
operation. For example, if the first three digits of the key of a master file were a branch or
area code, it would be possible (using an indexed sequential organization) to go directly to any

branch in the file and then process only that branch.

General File Design Considerations

BLOCK LENGTH I
In general, the most significant factor in achieving a high rate of throughput is block length.
The allocation of the largest possible block to the file, consistent with the requirements of all

of the programs processing the file, almost always results in optimum efficiency. The reason

8/29/69 Cc-2 #5-618 .

APPENDIX C. FILE DESIGN AND ALLOCATION

for this is the latency time of mass storage devices. For instance, on the Type 259 Disk Pack
Drive, waiting one revolution (25 milliseconds) following a read or write before the next block
on that track can be processed is normal. Thus, using small blocks can demand considerable
time, For example, the time required to process a track with fifteen 250-character records
would be 15 x 25 = 375 milliseconds, whereas the time to process a track of five 880~-character

records would be 5 x 25 = 125 milliseconds.

ASSIGNMENTS OF UNITS OF ALLOCATION

On a Type 258 or Type 259 Disk Pack Drive, the allocation of a full ten tracks per cyl-
inder is generally most efficient; on a Type 273 Disk Pack Drive, however, the allocation of 20
tracks per cylinder is most efficient. Occasional exceptions exist for very small files, but
usually ten or twenty tracks per cylinder is most efficient, since it reduces the number of cyl-
inders for the file and, hence, the number of seeks to process the file,

NOTE: Only two tracks are available on the Type 155 Disk Pack Drive. I

As few units of allocation as possible, preferably one, should be used, However, when
handling many files on a single disk pack, it may be economical to use any units available at
the time. If the file organization is sequential, the location of these units has little influence
on the processing time. If the file is to be processed directly (direct access or indexed sequen-
tial),. file processing time increases in proportion to the distance (in terms of cylinders) be-

tween the units assigned to one volume.

Additional considerations for the placement of units of allocation for an indexed sequential

file are discussed in Sections II and IV.

MULTIVOLUME FILE PROCESSING
If a multivolume sequential file is to be processed sequentially from its beginning, only

one file volume need be mounted at any given time. If a multivolume indexed sequential file is

to be processed sequentially from its beginning, at least one file volume which contains data
units of allocation and the volume(s) which contain(s) the master/cylinder index and the general
overflow area must be mounted at any given time, (When processing an indexed sequential file
in any mode, the master/cylinder index and the general overflow area must always be on line.)
Any other type of processing done with a direct access or indexed sequential file requires that
all volumes be mounted and available concurrently, When extra disk drives are available, how-

ever, delays in changing volumes can be minimized by having the necessary volumes mounted.

Normally, in order to make best use of space, a file should be contained within a minimum

number of volumes, However, if speed of direct access is critical, a file may be split over a

1/05/70 C-3 #5-618

APPENDIX C. FILE DESIGN AND ALLOCATION

larger number of volumes. For example, a file consisting of 160 cylinders of information re-
quires an average seek time of 76 milliseconds if allocated as 160 consecutive cylinders on one
disk pack. Splitting the file into four file-volumes, each with a 40-cylinder unit of allocation,

results in an average seek time of 47 milliseconds.

ASSIGNMENT OF FILES TO BE PROCESSED CONCURRENTLY
Many programs need to process more than one file, Occasionally, two or more of these
files will be on mass storage, possibly reducing processing efficiency. Planning should be done

with great care,

When two or more files share the same volume and at least one of the files is to be pro-
cessed sequentially (regardless of file organization), efficiency is sacrificed. The file(s) being
processed sequentially in this application should be placed either on a separate volume or on an

entirely different device.

Ordinarily, in processing a mass storage file sequentially, minimum seek time is as-
sumed; i.e., the only seeking required is from the end of one cylinder to the beginning of the
next sequential cylinder. If another file on the same volume is being processed, there may be
as much as one seek (on a Type 259 Disk Pack Drive this means 30 to 165 ms.) for each block.
In such a case, the decrease in efficiency is considerable. When communicating files can be

placed on different drives, processing time is improved by reducing head travel,

SEQUENTIAL FILE CONSIDERATIONS

Allocation

The unit of allocation is of the form C ITICZTZ' To determine how much space is re-
quired for a given sequential file, the following process is used.

1. The following values must be known; they are represented symbolically as:

BL = Block (or buffer) length,

I = Total number of items in the file,
T = Tracks per cylinder, * and
IB = Items per block.

2. Using Table C-1 or C-2, locate the correct values for number of records per
track (RT) and number of records per block (RB). This is accomplished by
scanning the leftmost column to locate the block length (BL) and then taking the
corresponding values for records per track (RT) and records per block (RB).

*

' Normally, tracks per cylinder (T) is 2 for the Type 155 Disk Pack Drive, 10 for the Type 258
or Type 259 Disk Pack Drive and 20 for the Type 273 Disk Pack Drive. The user may, how-
ever, use any smaller number of tracks. ’

1/05/70 C-4 #5-618

©

&

APPENDIX C. FILE DESIGN AND ALLOCATION

BC =

RT xT
RB

IC = BC x IB.

I
€ 1c

(ignore any remainder).

Compute items per cylinder (IC) as follows:

Example 1 - Determining Space for Sequential File

Compute blocks per cylinder (BC) as follows:

{round up to the next higher integer).

Compute the number of cylinders (C) required for this file as follows:

An example of computing the spacerequired on a Type 259 Disk Pack Drive using the

process previously described follows:

Assuming that: Block length (BL) = 1,218 (characters per block),
Total items (I) = 5, 600 (approximate value),
Tracks per cylinder (T) = 10, and

Items per block (IB) = 6 (item size = 203 characters),

There is to be one unit of allocation; starting on cylinder 20,

" (RB) = 2.

2, Blocks per cylinder (BC) = 10; !

3. Items per cylinder (IC) =35 x 6 = 210

4, Cylinders for the file (C) = 5:2?80
result is rounded up to 27,

5.

would be:
(210 items per cylinder x 27) = 1 = 5,669,

Table C-1.

20-0-46-9,

1

Its maximum capacity is 5, 669 items

and 259B Disk Pack Drives

From Table C-~1, records per track (RT) = 7, and records per block

= 35 (remainder dropped, if any).

= 26, plus a remainder of 140; the

Therefore, the unit of allocation for this file, in the form C TICZTZ’

Optimum Record Size - Types 155, 258, 259, 273, 2594,

Characters per Number of Records | Number of Records Number of Data

Block (BL) Record Size per Block (RB) per Track (RT) Characters per Track
80-81 Same as block 1 32 2560-2592
82-86 Same as block 1 31 2542-2666
87-91 Same as block 1 30 2610-2730
92-96 Same as block 1 29 2668-2784
97-102 Same as block 1 28 2716-2856
103-109 Same as block 1 27 2791-2943
110-115 Same as block 1 26 2860-2990
' 116-123 Same as block 1 25 2900-3075

1/05/70 C-5 #5-618

APPENDIX C, FILE DESIGN AND ALLOCATION

Table C-1 (cont). Optimum Record Size - Types 155, 258, 259, 273,
259A, and 259B Disk Pack Drives

Characters per [Number of Records | Number of Records Number of Data

Block (BL) Record Size per Block (RB) per Track (RT) Characters per Track
124-131 Same as block 1 24 2976-3144
132-139 Same as block 1 23 3036-3197
140-149 Same as block 1 22 3080-3278
150-159 Same as block 1 21 3150-3339
160-170 Same as block 1 20 3200-3400
171-183 Same as block 1 19 3249-3477
184-197 Same as block 1 18 3312-3546
198-213 Same as block 1 17 3366-3621
214-230 Same as block 1 16 3404-3680
231-250 Same as block 1 15 3465-3750
251-271 Same as block 1 14 3514-3794
272-297 Same as block 1 13 3536-3861
298-328 Same as block 1 12 3576-3936
329-364 Same as block 1 11 3619-4004
365-407 Same as block 1 10 3650-4070
408-460 Same as block 1 9 3672-4140
461-524 Same as block 1 8 3688-4192
525-609 Same as block 1 7 3675-4263
610-723 Same as block 1 6 3660-4338
724-728 Block/2 2 11 3982-4004
729-880 Same as block 1 5 3645-4400
881-920 Block/2 2 9 3960-4140
921-1117 Same as block 1 4 3684-4468
1118-1218 Block/2 2 7 3913-4263
1219-1221 Block/3 3 10 4060-4070
1222-1512 Same as block 1 3 3666-4536
1513-1572 Block/3 3 8 4032-4192
1573-1760 Block/2 2 5 3930-4400
1761-1827 Block/3 3 7 4109-4263
1828-1840 Block/4 4 9 3888-4140
1841-2301% |Same as block 1 2 3682-4602
2302-2436 Block/4 4 7 4025-4263
2437-2640 Block/3 3 5 4060-4400
2641-3024 Block/2 2 3 3960-4536

—

1/05/70 C-6 #5-618

APPENDIX C.

FILE DESIGN AND ALLOCATION

Table C-1 (cont).

Optimum Record Size - Types 155, 258, 259, 273,
259A, and 259B Disk Pack Drives

Characters per

Number of Records

Number of Records

Number of Data

Block (BL) Record Size per Block (RB) per Track (RT) Characters per Track
3025-3045 Block/5 5 7 4235-4263
3046-3351 Block/3 3 4 4060-4468
3352-3520 Block/4 4 5 4190-4400
3521-3615 Block/5 5 6 4224-4338
3616-3654 Block/6 6 7 4214-4263
3655-3668 Block/7 7 8 4176-4192
3669-3680 |Block/8 8 9 4122-4140
3681-4602 Block /2 2 2 3680-4602

NOTE: Where the division of block length leaves a fraction, the record size should be ex-
pressed as the next higher integer.

*Capacity is maximum when record size is 2, 301 characters.

Table C-2,

Optimum Record Size - Type 261 or Type 262 Disk Files

Characters per

Number of Records

Number of Records

Number of Data

Block (BL) Record Size Block (RB) per Track (RT) Characters per Track
125-128 Same as block 1 50 6250-6400
129-132 Same as block 1 49 6321-6468
133136 Same as block 1 48 6384-6528
137-141 Same as block 1 47 6439-6627
142-145 Same as block 1 46 6532-6670
146-150 Same as block 1 45 6570-6750
151-155 Same as block 1 44 6654-6820
156-160 Same as block 1 43 6708-6880
161-165 Same as block 1 42 6762-6930
166-171 Same as block 1 4] 6806-7011
172-177 Same as block 1 40 6880-7080
178-183 Same as block 1 39 6942-7137
184-189 Same as block 1 38 6992-7182
190-196 Same as block 1 37 7030-7252
197-203 Same as block 1 36 7092-7308
204-211 Same as block 1 35 7140-7385
212-219 Same as block 1 34 7208-7446
220-228 Same as block 1 33 7260-~7524

1/05/70 C-7 #5-6}8

APPENDIX C, FILE DESIGN AND ALLOCATION

Table C-2 (cont). Optimum Record Size - Type 261 or Type 262 Disk Files

Characters per Number of Records | Number of Records Number of Data
Block (BL) Record Size per Block (RB) per Track (RT) Characters per Track
229-237 Same as block 1 32 7328-7584
238-247 Same as block 1 31 7378-7657
248-256 Same as block 1 30 7440-7680
257-266 Same as block 1 29 7453-7714
267-278 Same as block 1 28 7476-7784
279-291 Same as block 1 27 75337857
292-304 Same as block 1 26 7592-7904
305=319 Same as block 1 25 7625-7975
320-335 Same as block 1 24 7680-8040
336-353 Same as block 1 23 7728-8119
354-372 Same as block 1 22 7788-8184
373-393 Same as block 1 21 7833-8253
394-416 Same as block 1 20 7880-8320
417-441 Same as block 1 19 7923-8379
442-469 Same as block 1 18 7956-~-8442
470-501 Same as block 1 17 7990-8517
502-534 Same as block 1 16 8032-8544
535-575 Same as block 1 15 8025-8625
576-620 Same as block 1 14 8064-8680
621-673 Same as block 1 13 8073-8749
674-735 Same as block 1 12 8088-8820
736-806 Same as block 1 11 8096-8866
807-894 Same as block 1 10 8070-8940
895-1001 Same as block 1 9 8055-9009
1002-1002 Block/2 2 17 8517-8517
1003-1133 Same as block 1 8 8024-9064
1134-1150 Block/2 2 15 8505-8625
1151-1303 Same as block 1 7 8057-9121
1304-~1346 Block/2 2 13 8476-8749
1347-1533 Same as block 1 6 8082-9198
1534-1612 Block/2 2 11 8437-8866
1613-1851 Same as block 1 5 8065-9255
1852-1860 Block/3 3 14 8638-8680
1861-2002 Block/2 2 9 8370-9009
2003-2019 |Block/3 3 13 8671-8749
2020-2329 Same as block 1 4 8080-9316
1/05/70 Cc-8 #5-618

L 7]

APPENDIX C, FILE DESIGN AND ALLOCATION

Table C-2 (cont).

Optimum Record Size - Type 261 or Type 262 Disk Files

8/29/69

C-9

Characters per Number of Records | Number of Records Number of Data
Block (BL) Record Size Block (RB) per Track (RT) Characters per Track
2330-2418 Block/3 3 11 8536-8866
2419-2606 Block/2 2 7 8463-9121
2607-2682 |Block/3 3 10 8690-8940
2683-2692 Block/4 4 13 8710-8749
2693-3127* |Same as block 1 3 8079-9381
3128-3224 Block/4 4 11 8602-8866
3225-3399 Block/3 3 8 8600-9064
3400-3702 Block/2 2 5 8500-9255
3703-3909 Block/3 3 7 8638-9121
3910-4030 Block/5 5 11 8602-8866
4031-4038 Block/6 6 13 8723-8749
4039-4095 Same as block 1 2 8078-8190
4096-4509 Block/9 9 17 7735-8517
4510-4600 Block/8 8 15 8445-8625
4601-4711 Block/7 7 13 8541-8749
4712-4836 Block/6 6 11 8635-8866
4837-5005 Block/5 5 9 8703-9009
5006-5212 Block/4 4 7 8757-9129
5213-5553 Block/3 3 5 8685-9255
5554-5665 Block/5 5 8 8880-9064
5666-6254 Block/2 2 3 8499-9381
6255-6258 Block/7 7 10 8930-8940
6259-6515 Block/5 5 7 8757-9121
6516-6987 Block/3 3 4 8688-9316
6988-7007 Block/7 7 92 8982-9009
7008-7404 Block/4 4 5 8760-9255
7405-7665 Block/5 5 6 8886-9198
7666-7818 Block/6 6 7 8939-.9121
7819-7931 Block/7 7 8 8936-9064
7932-8008 Block/8 8 9 8919-9009
8009-8046 Block/9 9 10 8890-8940
8047-8060 Block/10 10 11 8844-8866
8061-8085 Block/11 11 12 8784-8820
8086-9381 Block/3 3 3 8085-9381
#*Capacity is maximum when record size is 3,127 characters.,
e ————

#5-618

APPENDIX C, FILE DESIGN AND ALLOCATION

DIRECT ACCESS FILE CONSIDERA TIONS

To properly use a direct access file requires careful planning, There are two essen-
tials that the user himself must calculate: (1) proper allocation of gtorage space and (2)
addresses for every item, assigned in such a way that items are dispersed as evenly as possible
throughout the space allocated to the file. The following paragraphs provide some general guide-

lines for allocating storage space and assigning addresses in direct access files.

Bucket Size and Overflow

Any method of calculation used to translate item keys into addresses generally produces a
number of synonyms (duplicate addresses). (Refer to Appendix E for a description of randomizing
techniques.) These synonyms are handled in two ways: (1) buckets may be made large enough
to hold all synonyms for a given address, and (2) overflow areas may be specified that hold items
which overflow a bucket due to uneven distribution., If there were no variation in the number of
synonyms generated for each address, there would be no overflow. But, since some buckets

normally contain more synonyms and some less, some items will overflow.

A more even distribution of items can be obtained from a randomizing routine by making
the bucket size larger (i.e., generating more synonyms having fewer addresses). The validity
of this statement is seen if the extreme cases are used as examples, First, if it is assumed
that relative bucket addressing is used and that the whole file contains one bucket, then all
items of the file would have 0 as their address., Of course, all items would be synonyms. Since
every bucket has an equal chance of having its address generated (because there is only one
bucket), there is even distribution of the items over the allocated space. Second, viewing the
other extreme, if every item were a bucket, then it would be much more difficult to get an even
distribution, since it is difficult to ensure that every item space has an equal chance of being
used. Thus, it can be seen from these two examples that it is not the average number of syn-
onyms for a bucket that determines the efficiency of a randomizing routine; rather, it is the
amount of deviation from this average or, in other words, the evenness of the distribution of the

items over the allocated space that determines the efficiency.

The amount of overflow that occurs is directly related to two factors: (1) bucket size and
(2) storage density. The larger the bucket (i.e., the more synonyms for any address), the
lower the probability for any item that the bucket will overflow. Storage density also affects
bucket overflow. A file with space for 1, 000 items will have more bucket overflow when it con-
tains 800 items (storage density = 0.8) than when it contains 500 items (storage density = 0. 5).
Thus, overflow may be thought of as an extension of the bucket that accommodates the uneven

distribution of items in buckets, As the bucket size becomes larger, the distribution becomes

c-l10 #5-618

(K

4]

APPENDIX C. FILE DESIGN AND ALLOCATION

more even and there is less need for overflow areas, However, when designing a direct access
file, increasing the size of the bucket increases the average time required for access of an item.,
Thus, when determining the bucket size, the probability of overflow should be weighed against

the desired speed of retrieving an item,

Table C-3 summarizes the overflow probabilities (i.e., the probability that an item will

overflow), assuming an even distribution,

Table C-3. Overflow Probabilities

Number of Items/Allocated Space
B;‘icziet Storage Density
(Items /Bucket) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 4.84 9.37 13,61 17.58 21.31 24.80 28.08 31,17 34,06 36.79

2 0.60 2.19 4.49 7.27 10. 36 13,65 17.03 20.43 23.79 27.07

3 0.09 0.63 1.80 3.61 5.99 8.82 11.99 15.37 18.87 22.40

4 0.02 0.20 0.79 1.96 3.76 6.15 9.05 12.32 15.86 19.54

5 0.00 0. 07 0.37 1,12 2.48 4.49 7.11 10. 26 13.78 17.55

6 0.00 0.02 0.18 0.67 1.69 3.38 5.75 8.75 12,24 16.06

K 0.00 0.01 0.09 0.41 1.18 2.60 4,74 7.60 11.04 14.00

8 0.00 0.00 0.05 0.25 0. 84 2.03 3.97 6.68 10.07 13.96

9 0,00 0.00 0.02 0.16 0.61 1.61 3.36 5.94 9.27 13.18
10 0.00 0.00 0.01 0.10 0.44 1.29 2.88 5.32 8.59 12.51
11 0.00 0.00 0.01 0.07 0.33 1.04 2.48 4,80 8.04 11.94
12 0.00 0.00 0.00 0.04 0.24 0. 85 2.15 4. 36 7.51 11.44
14 0.00 0.00 0.00 0.02 0.14 0.57 1,65 3.64 6.67 10.60
16 0.00 0.00 0.00 0.01 0.08 0.39 1,28 3,09 6.00 9.92
18 0.00 0.00 0.00 0.00 0.05 0.28 1.01 2.65 5.45 9.36
20 0.00 0.00 0.00 0.00 0.03 0.20 0.81 2.30 4.99 8.88
25 0.00 0.00 0. 00 0.00 0.01 0.09 0.48 1,65 4,10 7.95
30 0.00 0.00 0.00 0.00 0.00 0.04 0.29 1,23 3.47 7.26
35 0.00 0.00 0.00 0.00 0.00 0.02 0.18 0.94 2.98 6.73
40 0.00 0.00 0.00 0.00 0.00 0.01 0.12 0.73 2.60 6.29
50 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.45 2.01 5.63
60 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.30 1.65 5.14
70 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0. 20 1.37 4.76
80 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.13 1.14 4.46
90 0.00 0. 00 0.00 0.00 0.00 0.00 0.00 0. 09 0. 97 4,20
100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. 06 0.83 3.99

NOTES: 1. These probabilities are given as percentages.

2. This table assumes an even distribution. In actual practice, perfectly even
distribution is seldom, if ever, obtained. The actual probability of over-
flow, therefore, will usually be higher.

AR

8/29/69 C-11 #5-618

APPENDIX C. FILE DESIGN AND ALLOCATION

Allocation

The unit of allocation is of the form CITICZTZ' To determine how much space is required

for a given direct access file, the following process is used.

1.

9.

8/29/69

The following figures must be known and are represented symbolically as:

BL = Block (or input/output buffer) length,

1 = Total number of items in the file,
T = Tracks per cylinder,

IB = Items per block,

SD = Storage density, and

BB = Blocks per bucket.

Using Table C-1, locate the correct values for number of records per track
(RT) and number of records per block (RB).

' Compute items per bucket (IK) as follows:

IK = IB x BB.

Using Table C-3, determine the probability (P) of overflow by using items
per bucket on the vertical axis and storage density on the horizontal axis,

Using Table C-4, find the number of overflow tracks whose percentage of
data area brackets P, If the lower percentage is only slightly less than P,
the corresponding tracks of overflow can be used along with general over-
flow, or the tracks of overflow corresponding to the higher percentage can
be used without general overflow, If the higher percentage is only slightly
greater than P, the corresponding tracks of overflow should be used in
addition to general overflow, Otherwise, choose one of these bracketing
percentages to obtain the number of cylinder overflow tracks required (OT).

Compute the item space (IS) required as follows:

1S {(round up to next higher integer),

-1
" SD
Compute the buckets (B) required as follows:
IS i, .
B = K (round up to next higher integer),

Compute the buckets per cylinder (BC) as follows:

_RT x (T-OT)

BC " RB x BB

(ignore any remainder),
Compute the cylinders (C) required for this file as follows:

B .
C = Y {(round up to next higher integer).

C-12 #5-618

Y

©

APPENDIX C. FILE DESIGN AND ALLOCATION

Table C~4, Cylinder Overflow as Percentage of Data Area

Percentage of Data Area Number of Cylinder | Number of Data Tracks Remaining
Overflow Tracks
Type 259 | Types 261/262 Required Type 259 | Types 261/262

0.0 0.00 0 10 128
11.1 0.79 1 9 127
25,0 1.59 2 8 126
42,9 2. 40 3 7 125
66.7 3.23 4 6 124
100.0 4,06 5 5 123
150.0 4.92 6 4 1%.2

To illustrate the procedure for allocation of a direct access file, two examples are shown:

one for optimizing speed and the other for optimizing storage density. For these examples, the

following values are assumed.

Total number of items in file (I) 10, 000 items

Items per block (IB) 4 (item size = 200 characters)
Block length (BL) 800

Storage density (SD) 0.8

Tracks per cylinder (T) 10

Example 1 - Optimizing Speed

For this example, the bucket is equal to one block (BB = 1), Thus, each bucket has a
capacity of four items. Using the probabilities chart (Table C-3), it can be seen that the likeli-
hood of any one item overflowing is 12.3 percent. If one track for cylinder overflow is allowed,
1/9th or 11.1 percent of the data area is set aside for overflow. If two tracks per cylinder are

allowed, 2/8ths or 25 percent of the data area is set aside for overflow.

Since the 12.3 percent from Table C-3 is bracketed by the 11.1 percent (one overflow
track) and the 25 percent (two overflow tracks), it means that with even distribution the overflow
could almost be accommodated with one cylinder overflow track (the rest would go in general
overflow). Excess overflow space would be available if two tracks for cylinder overflow were

specified.

If the important consideration for this file is average access time, one track per cylinder
for overflow would probably be sufficient (along with general overflow). However, if it is im-
portant that no access exceed a certain time limit, two tracks could be used to gain the 25 per-

cent overflow provision so that general overflow would rarely, if ever, be accessed.

8/29/69 C-13 #5-618

APPENDIX C. FILE DESIGN AND ALLOCATION

Using one track for overflow (OT = 1), the cylinders required for allocation would be com-
puted as follows:

10, 000 (I)
.80 (SD)

12,500 items (IS)
4 items /bucket (IK)

Item space (IS) required = = 12,500 and

Buckets (B) required = = 3, 125 buckets.

From Table C-1, it can be seen that we should have five records per track, one record
per block,
Buckets per _ 5 records/track (RT) x [10 tracks (T)/cylinder - 1 track (OT)/cylinder]_
cylinder (BC) ~ 1 record/block (RB) x 1 block/bucket (BB) -
45 buckets/cylinder, and

3, 125 buckets (B)
45 buckets /cylinder (BC)

Cylinders (C) per file = = 69.4 or 70.0,

Plus one cylinder per unit of allocation for general overflow.
Assuming that there is one unit of allocation, 71 cylinders
would be required for this file.

If two tracks were to be used for overflow, the above calculations change to:

Buckets per _ 5 records/track (RT) x [10 tracks (T)/cylinder - 2 tracks (OT)/cylindeﬂ -
cylinder (BC) ~ 1 record/block (RB) x 1 block/bucket (BB)

40 buckets/cylinder, and

. .. _ 3,125 buckets (B) _
Cylinders (C) per file = %0 buckets/cylinder (BC) - 78.1 or 79.

Again, if general overflow is desired, it is added accordingly.

Example 2 -~ Optimizing Density

In the second example, an attempt is made to make more efficient use of storage (thus
sacrificing some speed). It is planned to have 25 blocks per bucket (BB = 25). Looking at the
probability chart, it can be seen that the likelihood of overflow in this case is about 0.1 percent.
This percentage is so small that it would be sufficient to have no cylinder overflow and use only
general overflow. In this case, all ten tracks are used for the data area (OT = 0). To compute

the number of cylinders required for this file, the following computations are performed:

Item space required (IS) = é—%%%]%) = 12, 500, and
. 12,500 (IS) _
Buckets per file (B) = 100 (IK) = 125 buckets.

Buckets per 5 records/track {RT) x 10 tracks (T)/cylinder
cylinder {BC) = 1 record/block (RB) x 25 blocks/bucket (BB)

125 (B)
2 (BC)

=2, and

Cylinders per file (C) = = 62.5or 63 cylinders.

C-14 #5-618

(b

APPENDIX C, FILE DESIGN AND ALLOCATION

One cylinder per unit of allocation must be added for general overflow. Assuming that
there is one unit of allocation, 64 cylinders would be required for this file, In the first case,
if relative addressing were being used, addresses distributed between 0 and 3, 124 would be re-

quired, In the second case, addresses between 0 and 124 would be required,
Example 3 ~ Optimizing Capacity of a Direct Access File on a Type 261 Disk File
Assume that 120, 000 items are to be placed with a storage density of 0,88, Item size will

be 208 characters. Maximum buffer size is 6,448 characters. One block per bucket is required,

An examination of Table C-2 establishes the following choices.

Records Order of Data Characters
Block Length Record Size Per Track Preference Per Track I
6448 Block/5 = 1290 7 C, 9030
6240 Block/2 = 3120 3 A, 9360
6032 Block/2 = 3016 3 C, 9048
5824 Block/2 = 2912 3 E, 8736
5616 Block/5 =1124 8 D, 8992
5408 Block/3 = 1803 5 Cs3 9015
5200 Block/4 = 1300 7 B 9100
4992 Block/5 = 999 9 D, 8991
4784 Block/6 = 798 11 E; 8778
4576 Block/8 = 572 15 F 8580
4368 Block/9 = 486 17 G 8262
3952 Block/5 = 791 11 Ej 8701
3120 Same as Block = 3120 3 A, 9360
e —————— ———

In the above example, "Order of Preference' indicates relative maximization of storage
capacity, from A (which provides the maximum value of characters per track) descending through

G (which provides the lowest value in the example).

Since a buffer size up to 6,448 characters is permissible, a block length of 6,240 characters I
(case Az) offers maximum track capacity (9, 360) and a large buffer. The next choice of block
length which yields equivalent track capacity is a block of only 3,120 characters (case Al). A I
choice of a 4,368-character block (case G) would result in an 11 percent loss of capacity com-

pared with case A1 or Az.

8/29/69 C-15 #5-6}8

APPENDIX C. FILE DESIGN AND ALLOCATION

If we now assume that the direct access file will have a track width of 60 tracks, we estab-

lish the following. .
6,240, |
I = Items in file = 120, 000.

1. BL = Block length

1]

T = Tracks per cylinder = 60,

IB = Items per block = 6249 = 30.

SD

Storage density = 0. 88,
BB = Blocks per bucket = 1.
2. Referring to Table C-2:
' RT = Records per track = 3 and
2.

RB = Records per block
3. IK = Items per bucket, computed by:
IK=IBxBB =30x1=30
4, P =Probability of overflow, extrapolated from Table C-3:

1.23 +%x(3.47 _1.23) = 1.23 4+ 1.79 = 3. 02%

5. Since 2 tracks of overflow will provide:

60 - 58

5g x 100 = 3.45% overflow (cylinder level),

and 3 tracks will provide: —r

60 - 57

57 X 100 = 5.27% overflow (cylinder level).

The user can therefore elect no general overflow and three tracks of cy-
linder overflow with a reasonable assurance of safety.

6. Compute item space (IS) as follows:
“
1 120,000 _
IS = SD - o0.88 - 136,363
7. Compute the required number of buckets as follows:
B = S . 136,363 = 4, 546 buckets (next higher integer).
IK 30
8. Compute the buckets per cylinder as follows:
_RTx(T -0OT) _ 3x(60-3) _ .
BC = RB = BB = > % 1 = 85 buckets (remainder dropped).
9. Compute the cylinders required as follows:
B 4546 X . R
C BC 85 - 54 cylinders (next higher integer).

Thus, a decision might be made to put 18 cylinders on each of three separate Type 261 Disk
Files; the average head motion would then be five cylinders (allowing for the paired cylinder

concept of the Type 261 Disk File).

8/29/69 ' c-16 #5-618

APPENDIX C, FILE DESIGN AND ALLOCATION

If prime number randomizing of relative bucket address is planned, the suitable prime

would be 4, 547 (from Table E-1),

The actual number of buckets available, however, (85 x 54 = 4, 590) is 44 more than the
number required (4, 546). Use of a larger prime, such as 4, 583, would be permissible, if it

was desired to lower the storage density of the file slightly,

INDEXED SEQUENTIAL FILE CONSIDERATIONS

Indexed sequential file organization provides flexibility and can be used with many types
of applications, This flexibility introduces a wide range of considerations that must be examined

before an indexed sequential file is defined and introduced into an application,

Design Considerations

The following paragraphs describe design considerations which should be taken into account

by the user when organizing an indexed sequential file.

ITEM SEQUENCE
Items in an indexed sequential file are ordered in ascending binary collating sequence

according to some item key field. Active items in the file cannot have duplicate keys,

DISTRIBUTION AND VOLATILITY

The structure of an indexed sequential file is fixed when the file is loaded. Thus, all in-
dexes are generated at this time, and physical boundaries cannot be changed until the file is re-
organized. If reorganizations, such as unload and reload, are to be infrequent, and if numerous
changes to the file are anticipated, the user should consider the type and distribution of these
changes. If the changes are expected to add a large number of items to the file or to alter the
distribution because of a larger number of insertions in a relatively few strings of the file, care-
ful attention must be given to overflow provisions. If changes are to be primarily updating of

items, overflow need not be a major consideration,

TYPES OF OVERFLOW
Three types of overflow are provided, and each offers advantages in particular situations.

Only general overflow is required.

Imbedded overflow is judiciously used when a relative uniform distribution of additions

occurs, However, an uneven distribution of additions may cause inefficient use of disk area,.

c-17 #5-618

APPENDIX C, FILE DESIGN AND ALLOCATION

Cylinder overflow is used to provide a fixed number of tracks for items overflowing any
of the strings on that cylinder. Use of the overflow area by all of the strings on a cylinder P
lessens the effect of a large number of additions occurring at some point on the cylinder. How-
ever, processing time may be increased. For example, if the cylinder overflow is three times
as long as a string, the time required to directly retrieve an item in the cylinder overflow area
will be three times as long (on the average) as the time required to retrieve an item in a string

when cylinder overflow is full,

General overflow is used primarily as a safety valve. Processing time is commonly
lengthened, but if few additions to the file are anticipated, and if the time required to retrieve
items is not critical, general overflow may suffice. Whenever general overflow is entered,
Logical 1/O C sets indicators in the file's communication area for possible interrogation by the -

user.

Optimization

An indexed sequential file can be designed to optimize access time, to optimize use of the

disk area, or to achieve a compromise between these two considerations,

OPTIMIZING ACCESS TIME

An indexed sequential file can be accessed both sequentially and directly. The user may

~
choose to optimize operations using one of these types of access and to ignore the other. Nor-
mally, however, both sequential access time and direct access time can be optimized simulta-
neously.
Increasing block length is the primary means of reducing access time. Files should be | G
allocated with the largest possible block length consistent with the memory requirements of all
programs using the file, Both sequential and direct access times are reduced because
master, cylinder, and string indexes require fewer blocks. -
Careful determination of the relative sizes of the string index and the string is vital. The
sum of the number of blocks in the string index and the number of blocks per string should be as
small as possible.
Both direct access and sequential access times can be optitnized by the following procedure.
Values which must be known are identified by the following symbols.
K = characters per key
BL = block length
T = tracks per cylinder
OT = overflow tracks per cylinder —

8/29/69 C-18 #5-618

APPENDIX C, FILE DESIGN AND ALLOCATION

Refer to Table C-1 or Table C-2 to determine optimum values for
number of records per track (RT) and number of records per block
(RB). Recall that block length cannot exceed one track, i.e, RBSRT,

Compute the number of blocks per cylinder (BC) as follows.

BC = RTx (T - OT) Ignore any remainder.
RB

Compute the number of items per block in the string index (ISI)

as follows.

ISI = BL Ignore any remainder.
2K + 8

Compute a tentative value for the optimum number of blocks per

string (BS) as follows,

BS = /BC Retain any remainder.
ISt Minimum value of BS is 1.

Choose the two integers bracketing this value of BS and perform

the following computations for each integer value of BS.

a. Compute the number of strings per cylinder (SC) as follows.

SC = BC Ignore any remainder.
BS + 1/ISI

b. Compute the direct access time criterion (DATC) as follows,

DATC = SC + BS + 8 Retain any remainder.

ISI

Choose the integer value for BS which has resulted in the smaller
value for DATC. This is the optimum value of blocks per string (BS).
For later computations, retain the value of SC corresponding to this

value of BS.
Example — Type 258 or 259 Disk Pack Drives:

Assume the following values:

IL =121 characters per item
BL = 605 characters per block
K = 16 characters per key
T = 10 per cylinder
OT = 0 tracks per cylinder overflow

To compute the string size, locate the values RT = 7 and RB =1 from

Table C-1. Then,

BC = 7x(10-0) = 70
1
ISI = 605 = 15 (remainder dropped)
(2 x 16) + 8
BS = 70 = 2. 14 (tentative value)
15

The two possible integer values for BS are, therefore, 2 and 3.

#5-618

APPENDIX C, FILE DESIGN AND ALLOCATION

Compute the trial values of SC and DATC.
If BS = 2, then

sCc = 70 = 33 (remainder dropped)
2 + 1/15
DATC = 33 + 2 + 8 = 12.20
15
If BS = 3, then
sc = 70 ~ .
3% 1/15 = 22 (remainder dropped)

it

DATC 22 + 3 + 8 = 12.5

15

Two blocks per string (BS = 2) yields the smaller value for DATC,
although the difference is small (2. 17%).

OPTIMIZING STORAGE CAPACITY

If the user desires to maximize use of the disk area, he may find it necessaryto accept a
block length (BL) that is smaller than the maximum block length that can be accommodated by
the application and a string size (BS) that is larger than the optimum value for direct access
time. Preferable values increase the number of blocks per cylinder and reduce the amount of
unused space at the end of the string index and the amount of unused space at the end of a
cylinder. These preferable values are a complex function of the record length that is best for

a given block length and the relationship between key length and block length.

Assume that the item size is fixed and that there is a known maximum block length that
can be handled. The following procedure can be used to determine the optimum block length (BL)

and string size (BS) for maximum use of disk area. Values which must be known are identified

by the tollowing symbols,

]

1L item length
K = characters per key
MBL = maximum block length
T = tracks per cylinder
OT = overflow tracks per cylinder
IBD = number of item positions per string to be imbedded
while loading the file

1. Find the values of ISI and BC that correspond to the possible values

for the blocking factor (IB) by performing the computations described
in steps a, b, and ¢, below.

To find the possible values for IB, first calculate the maximum
possible items per block (MIB) as follows:

MIB = MBL Ignore any remainder.
1L

C-20 #5-618

APPENDIX C, FILE DESIGN AND ALLOCATION

Then IB can assume the values MIB, MIB-1, MIB-2, etc. It may
be necessary to find values of ISI and BC that correspond to small
blocking factors.

a. Refer to Table C-1 or C-2 to determine optimum values for
number of records per track (RT) and number of records
per block (RB).

b. Compute the number of blocks per cylinder (BC) as follows:

BC = RT x (T - OT]) .
Ignore any remainder.
RB
c. Compute the number of items per block in the string index
(ISI) as follows:
BL = IB x IL
IsST = BL Ignore any remainder.
2K + 8

For each of the preceding values of IB, BC, and ISI, choose integral
values for BS starting with one. Perform the following calculations for
each value of BS. It may be necessary to perform this calculation with
quite large values of BS, as illustrated in the examples below.

a. Compute the number of strings per cylinder (SC) as follows:
SC = BC Ignore any remainder.
BS + 1/1SI
b. Compute the number of items per loaded string (IS) as follows:

ISs = (IB x BS) - IBD
c. Compute the number of items per loaded cylinder (IC) as follows:
IC = IS x SC

Choose the pair of values for IB and BS that results in the largest value
of IC.

Example 1 — Type 258 or 259 Disk Pack Drives:
Assume the following values:

IL. = 121 characters per item
K. = 21 characters per key

MBL = 605 characters per block (maximum)
T = 10 tracks per cylinder
OT = 0 tracks for cylinder overflow

IBD = O item positions imbedded

The optimum point for storage capacity is as follows,

IB = 5
BS = 23
IC = 345

Note that in this example, the optimum storage capacity occurs at the
maximum blocking factor, thus optimizing sequential access time.
However, direct access time is more than twice as long when these
values are accepted as when the following values are accepted:

IB=5 BS = 4 IC = 340

Note that the corresponding loss in storage capacity is only 1.5 percent,

C-21

#5-618

APPENDIX C, FILE DESIGN AND ALLOCATION

Example 2 — Type 258 or 259 Disk Pack Drives:
Assume the following values:

II, = 50 characters per item
K = 21 characters per key ‘
MBL = 550 characters per block (maximum)
T = 10 tracks per cylinder
OT = 0 tracks for cylinder overflow
IBD = O item positions imbedded

The optimum point for storage capacity as determined from Table C-5 is as follows.

IB =9
Bs = 89
IC = 801

However, direct access time is extremely long.

COMPROMISING BETWEEN ACCESS TIME AND STORAGE CAPACITY

An indexed sequential file can be designed to achieve a compromise between optimum
access time and optimum use of storage capacity. The relative importance of these two factors
must be determined for the particular application. The following procedures are applicable.

1. For many pairs of values of IB and BS, where IB varies from 1
through MIB and BS varies from 1 to BC - 1, compute the following
quantities:

BL

block length, which is a measure of sequential access time;

DATC = direct access time criterion; and
IC = items per cylinder, a measure of space utilization.
2. Choose the pair of values of IB and BS that is the preferable

compromise among the three quantities BL, DATC, and IC.

Example ~ Type 258 or 259 Disk Pack Drive:
Assume the following values:

IL = 50 characters per item
K = 21 characters per key

MBL = 550 characters per block (maximum)
T = 10 tracks per cylinder
OT = 0 overflow tracks per cylinder
IBD = 0 imbedded items per cylinder

Table C-5 lists values of BL, DATC, and IC for selected pairs of values
of IB and BS. The number of different points that may have to be
considered in determining the preferable compromise is indicated.

The optimum point for direct access is Case A; this is also an optimum point for se-

quential access. The optimum point for storage capacity is Case K; however, this point gives

a direct access time that is seven times as long as Case A,

C-22 #5-618

3

Nz’

APPENDIX C, FILE DESIGN AND ALLOCATION

Table C-5, Example - Optimization for an Indexed Sequential File

Case iB BS BL DATC 1C
A 11 2 550 13.04 726
B 11 3 550 13.06 726
C 11 4 550 13.55 748
D 10 2 500 13.80 760
E 10 3 500 13.50 750
F 10 6 500 15. 30 780
G 10 79 500 87.10 790
H 9 3 450 14,11 756
I 9 5 450 14.89 765
J 9 8 450 17.22 792
K 9 89 450 97.11 801
L 8 3 400 15.00 768
M 8 4 400 15.00 768
N 8 7 400 16.75 784
P 8 33 400 4], 38 792
R 7 3 350 16.00 735
S 7 4 350 15.71 728
T 7 5 350 16.00 735
U 7 9 350 18.71 756
\" 7 109 350 117.14 763

Certain points in Table C-5 are less desirable in all three values than some other point.
For example, Case B as compared to Case A; Case R as compared to Case C; etc. Also, Cases

K and G are characterized by access times that are much too long.

When these points are eliminated, the list is reduced to the cases shown in Table C-6.
The optimum points show a direct tradeoff between direct access time and storage capacity:

the shorter the direct access time, the smaller the storage capacity.

Table C-6. Example - Summary of Optimum Points

Case | IB | BS | BL DATC IC
J 9| 8 450 17.22 - 792
N 8| 7 | 400 16.75 784
F 10 | 6 500 15.30 780
L 8| 3 | 400 15. 00 768
M 81 4 | 400 15.00 768
1 9 {5 450 14. 89 765
D 10 | 2 500 13.80 760
E 10 | 3 500 13.50 750
A 11 | 2 550 13,04 726

C-23 #5-618

APPENDIX C, FILE DESIGN AND ALLOCATION

Allocation

At least three units of allocation are required for an indexed sequential file. Proper
placement of these units optimizes the performance achieved in processing the file. Placement
of the master/cylinder index, the general overflow, and the data on separate volumes is pre-
ferable but frequently infeasible, (See method 1 on page 2-10 under '""Allocation.') If only one
volume more than those required for data is available, the master/cylinder index and general
overflow should be placed together on that volume, assigned to relative volume 0. (See method
4 on page 2-10.) If all units must be placed on one volume they should be kept close together to
minimize head travel. A unit of allocation cannot begin on the cylinder on which the preceding
unit ends. Procedureé for calculating the number of cylinders required for data and the number

of tracks required for the master/cylinder index are described in the following paragraphs.

DATA CYLINDERS REQUIRED 7
To compute the number of data cylinders required for an indexed sequential file, values
for blocking factor (IB) and string size (BS) must be determined. Values which must be known

are identified by the symbols that follow.

ILL = characters per item
K = characters per key
MBL = maximum block length
T = tracks per cylinder
OT = tracks per cylinder overflow
IBD = number of imbedded item positions per loaded string.
I = total number of items to be loaded onto the

file (i.e., active items to be presented to
the load function).

1. Choose a pair of values for IB and BS according to the type of
optimization desired.

2. Compute block length (BL) as follows:
BL = IB x IL

3. Refer to Table C-1 or Table C-2 to determine optimum values for
number of records per track (RT) and number of records per block (RB).

4. Compute the number of blocks per cylinder (BC) as follows:
BC = RT x(T - OT) Ignore any remainder.
RB
5. Compute the number of items per block in the string index (ISI)
as follows:
ISI = BL Ignore any remainder.
2K + 8
6. Compute the number of strings per cylinder (SC) as follows:
SC = BC Ignore any remainder.
BS + 1/IS1

C-24 #5-618

APPENDIX C, FILE DESIGN AND ALLOCATION

7. Compute the number of items per loaded string (IS) as follows:
IS = (IB x BS) - IBD
8. Compute the number of items per loaded cylinder (IC) as follows:
IC = IS x SC
9. Compute the number of cylinders required for the prime data
area (C) as follows:
c = _1 Round the quotient up to the next higher integer.
IC

TRACKS REQUIRED FOR MASTER/CYLINDER INDEX
The values computed as described in the preceding paragraph can be used to compute the
number of tracks required for the master/cylinder index. The following procedures are

applicable.

1. Compute the number of items per block in the cylinder index (IBC)
as follows:

IBC = __BL Ignore any remainder.
K + 8
2. Compute the number of blocks required for the cylinder index (BCI)
as follows: :
BCI = C Round up to the next higher integer.
IBC ~
3. Compute the number of blocks required for the master index (BMI)
as follows:
BMI = BCI Round up to the next higher integer.
IBC
4. Compute the number of tracks required for the master/cylinder
index (TMC) as follows:
TMC = (BMI + BCI) RB Round up to the next higher integer.
RT

Example - Computing Units of Allocation
Computation of the units of allocation for the master/cylinder index, general overflow, and

one data unit for an indexed sequential file on a Type 258 or 259 Disk Pack Drive follows.

Assume the following values.

IL = 121 characters per item
I = 10,000 items
K = 16 characters per key
MBL = 605 characters per block (maximum)
T = 10 tracks per cylinder
OT = 0 tracks for cylinder overflow

C-25 #5-618

APPENDIX C, FILE DESIGN AND ALLOCATION

Data Cylinders Required (C)

1. Assume that the following values are chosen to optimize direct access
time:
IB = 5 items per block
BS = 2 blocks per string
2. BL = (5) (121) = 605
3, The following values can be obtained from Table C-1:
RT =7
RB =1
4. BC = 7 x (10 - 0) = 70
1
5. IS = 605 = 15 (remainder dropped)
2(16) + 8
6. SC = 70 = 33
2 + 1/15
7. Assume that approximately 10 percent of the data area is to be reserved

via imbedded overflow. Then IBD = 1, since the number of item positions
per string is (BS) (IB) =2 x5 =10. Thus, IS=(5x2) -1 =29,

8. IC = 9 x 33 = 297
9. C

1

10,000 = 34 cylinders. (33.67 expressed as next higher integer)
297
Tracks Required for Master/Cylinder Index

1. IBC = 605 = 25 (remainder dropped)
24

2. BCI = 34
25

3. BMI = 2
25

(1 + 2)1 = 1track. (0.43 expressed as next higher integer)
7

2 (1.36 expressed as next higher integer)

1

1 (0.08 expressed as next higher integer)

4. T™™C

H

Thus, to allocate this file, a unit of allocation consisting of one track is required for the

master/cylinder index; a second unit is required for general overflow; and a third unit of 34

cylinders is required for data.

statement of the allocate function as follows (see pages 4-17 through 4-19),

A W o~ -

The units of allocation for this file can be specified in the units

caro VW OPERATION
NUMBER [p[3| LOCATION coe OPERANDS
y 2]3 als[el7]e R 1alis, 2021 ; e - ’ w

! . l MCINDEX=.(FROM= (& 9).T0(8.9))..

‘ , OVERFLOW=(,FROM=,(1.,8),, TO= (4,9)).,

1 B] sloa ol

aolia 4w

T '
+ |) woled e eiaca t wd eemes o La e s
[! i FK°M=1L2;¢)IITQ=(I55- 9)|; ' 1 14 Lo dovem e odin o ans o a4
L 1 L 2 L Y RN TP PRSI (USSR SO S S G SN

C-26

#5-618

N

A

APPENDIX D
PHYSICAL I/OC

The Physical I/O C program serves as the interface between the user program and the
mass storage device, eliminating the need for the programmer to refer to the device directly.
In most cases, the programmer uses Logical I/O C- (described in Section III), which in turn,

refers to Physical I/O C whenever access to the mass storage device is required.

Physical 1I/0O C consists of a set of macro routines which provides a simple means of pro-
cessing data stored on mass storage devices. These routines fall into four categories:

1. Input/output control,

2. Communication area,
3. Communication area service, and
4, Action.

To retrieve an area of the storage device, the programmer issues an action macro call
which refers to the relevant communication area and links to the input/output control routine.
The input/output control routine, in turn, initiates the required action according to the current
contents of the communication area.

NOTE: The use of Physical I/O C in place of Logical I/O C removes the user
from the Data Management Subsystem rules and conventions. All such
users should be careful to follow the data management conventions if
it is desired to use the same volume with Logical I/O C, File Support
C, Mass Storage Sort C, etc.

USE OF PHYSICAL I/OC

Physical I/0 C provides the programmer with the capability of initiating several basic
processing functions for a mass storage device, These functions are: read, write, wait, re-

store, verify, and seek.

Each time Physical I/O C is entered for one of these functions, it performs all the opera-
tions required to initiate the requested function. In addition, each time a read or write function
is specified, the previous data transfer is checked for successful completion. If any type of
error is recognized, Physical I/O C attempts to correct the error whenever correction is
feasible. If any error is uncorrectable, an exit to the programmer's coding occurs with an in-

dication of the type of error,

D-1 #5-618

APPENDIX D, PHYSICAL I/OC

Read Action
Any type of read insi:ruci:ion1 may be requested by the programmer, but it is his responsi-
bility to set the limits of the data transfer. He can do this either by specifying a nonextended

read or by setting a record mark in main memory.

Write Action
Any type of write instructionl, except those specifying format writing, may be requested
by the programmer. However, it is the programmer's responsibility to limit the data transfer

as in the read action above, when necessary.

Wait Action

The wait action is requested when the programmer requires the assurance that the last
data transfer initiated for a particular file has been completed successfully. Normal return to
the programmer's coding occurs only upon successful completion, but that does not guarantee
that the last data transfer for any other file has been checked. An error exit occurs only if an

uncorrectable error condition was encountered in the file in question.

Restore Action

The restore action is requested when the programmer desires to restore the device to its
initial state. The initial state for a device is defined in the hardware bulletin Disk Pack Drives

and Control (Order Number 514),

Verify Action

The verify action is requested when the programmer desires to verify that the area last

written is error free.

Seek Action

The seek action is requested when the programmer wishes to position the read/write heads
of a disk device to a specified cylinder. When the seek action is initiated, the read/write heads
are positioned to the cylinder currently specified in the CYL field of the communication area,.
When the seek action is requested, the programmer should specify parameters which load the

desired information into CYL or other relevant fields of the communication area.

The seek action does not cause the disk control to become busy; therefore, a seek can be

performed on a non-busy disk device while the disk control unit for that device is busy with

1The Extended Multiprogramming and 8-bit Transfer (Feature 1120, 1121, or 1118) is not

supported by Physical I/O C. Therefore, the 8-bit transfer capability cannot be used.
D-2 #5-618

L)

APPENDIX D. PHYSICAL I/OC

activities of another disk device connected to it. The seek action, however, does not provide

any error checking of a previously initiated read or write action.

DETAILED DESCRIPTION OF PHYSICAL I/O C MACRO ROUTINES

Four types of macro routines are available to simplify the task of utilizing the mass storage

device. Each type is described in the following paragraphs.

Control Macro Routine (MPIOC)

The control macro routine, MPIOC (mass storage physical input/output control), is acti-
vated each time there is a request for one of the actions previously described. One MPIOC can
control actions on both class A and class C devices used concurrently, The device types are

shown below:

Class Device Type
A 258, 259, 273, 259A, 259B
B 155
C 261, 262

If at any time during processing an error is detected, an error analysis and correction
routine is entered. This routine determines the type of error and, if possible, attempts to
correct the error. If the error is corrected, processing continues. Otherwise, control is re-
turned to the programmer's coding at a location specified by him, and an indication of the type

of error is made available.

Communication Area Macro Routine (MPCA)

The communication area macro routine, MPCA (mass storage physical communication
area), provides an area which contains a series of fields in which all information pertinent to a
particular file is stored. This area allows MPIOC to specialize itself to accomplish peripheral
actions on various devices and files. These fields are available to the programmer and to the
control macro routine (MPIOC). The programmer can change or interrogate the values of these
fields as required. The control routine uses the current values of these fields in initiating its
mass storage instructions, It also maintains values in the communication area of interest to

the programmer.

A separate communication area must be used for each set of data being processed con-
currently, For example, Logical I/O C requests the generation of a communication area for

each separate file specified.

Communication Area Service Macro Calls (MLCA and MUCA)

The macro routines to service the communication area, MLCA and MUCA, are used to

1/05/70 D-3 #5-618

APPENDIX D. PHYSICAL I/OC

load information into certain fields of the communication area and to interrogate certain fields.
Using these macro routines, the programmer can alter the contents of certain fields of the

communication area without knowing the structure of the area.

Action Macro Routines

There is a separate action macro routine for each of the actions previously described.
Each of these effects an entrance to the proper routine of the control macro routine. The com-
munication area referred to by the action macro routine provides the information necessary to
perform the requested function. The read, write, and seek action macro routines also provide

certain communication area service functions, as described previously.

LANGUAGE ELEMENTS OF PHYSICAL I/OC

For a program to use Physical I/O C, the programmer need only insert a library call in
the program where required for the appropriate macro routine. Control macro calls and com-
munication area macro calls are placed in a subroutine portion of the program. Action macro
calls and communication area service macro calls go into the program's main line coding. Each
such call causes the related coding to be inserted at that point. The language for calling the

various routines is defined in the following paragraphs.

| Control Macro Call (MPIOC)

‘ The example below illustrates the method of coding the MPIOC macro call.

carD [T{M OPERATION

NUMBER |F[g| LOCATION “ODE OPERANDS

1 234Tsie]7]8 L 1305, 202 1 L T L il s ol $2163 . . L L 80
e tag, MP10O¢C, |parameter 81 paramefer #2 parameter, 83 i i L
d . . parameter B4 R L

Parameters of MPIOC Macro Call

Table D-1 lists the parameters of the MPIOC macro call. The function of some MPIOC
parameters is to include or eliminate certain subroutines or instructions. Thus, a given

specialization of MPIOC occupies as little memory as possible,

Table D-1. Parameters of MPIOC Macro Call

Number Name Value Function Comments
00 Base Anytag Tag is equated with the lowest
memory location occupied by
MPIOC,

D-4 #5-618

V)

o

APPENDIX D, PHYSICAL I/OC

Table D~1 (cont).

Parameters of MPIOC Macro Call

Number Name Value Function Comments
01 ‘Unique See '""Com-~ | A single character appended Required for each MPIOC.
character | ments" to each tag used by this spe- Valid characters are
column for | cialization of MPIOC. Used shown below.
valid to achieve tag uniqueness Key Punch Print Symbol
characters | when more than one special- (+,8,5) %
ization of MPIOC is being (+,8,6) []
used in a single program and (-, 8,3) $
to ensure that a user's tag (-,8,5) "
does not duplicate any tag in (0,1) /
MPIOC. (0,8,5) Cr
02 Periph- A Honeywell-recommended ad- This parameter has no
eral con- dress assignment for the meaning if parameter 04
trol ad- mass storage control (04g). is assigned the value M,
dress
xx (octal) Peripheral address assign- When the peripheral ad-
ment to which the mass dress assignment is spec-
storage control applicable ified, the I/O bit, (high-
to this MPIOC is attached. order bit) must be zero.
03 Write A Automatic verification cod- The verify action macro
veri- ing is not included. call is valid only when V
fication v The verify routine is to be t;i:h:aiii;:?:f value of
included in this MPIOC. :
04 Control A The peripheral address as-
of more signment and RWC configura-
than one tion are specialized at assem-=
periph- bly time as specified by pa-
eral con- rameter 2 and 5 and cannot be
trol changed without reassembly,
M The peripheral address as-
signment and RWC configura-
tion are specialized at ex-
ecution time whenever the
control unit number in the
current MPCA differs from
that used in the last operation
; performed by this MPIOC,
05 RWC A Automatic specialization is This parameter has no
definition performed at assembly time, significance if param-

according to the value of
parameter 02, When param-
eter 02 is blank or is equal
to or less than 07, 56 is
generated. When parameter
02 is greater than 07, 76 is
generated.

eter 04 is assigned the
value M,

D-5

#5-618

APPENDIX D. PHYSICAL I/O C

Table D-1 (cont).

Parameters of MPIOC Macro Call

Number Name Value Function Comments
05 xx (octal) Read/write channel to be When this entry is used,
(cont) used for all data transfers. it must be a variant
Cannot be changed without which includes read/write
reassembly, channel 3 of the I/O sec-
tor corresponding to the
PUC assignment speci-
fied by parameter 02.
06 Seek A The seek action macro rou-
indicator tine is not to be included in
this specialization of MPIOC
and cannot be called by the
program.
SEEK The seek action macro call is
to be a valid call for the pro-
gram.
07 LOKDEV [A The LOKDEYV action is not
called.
See '"De-
vice Pro- | LOKDEV The LOKDEYV action is
tection' called.
later in
this appen-
dix,

Communication Area Macro Call (MPCA)

This macro call sets up a communication area in a specific format which MPIOC refers to

as required.

corresponding field.

If an optional parameter is omitted from the call, an area is still reserved for the

These fields may be specialized at execution time when an MLCA macro

call is used. See Section III of this manual for a description of the MLLCA macro call.

The following example illustrates the method of coding the MPCA macro call,

NoMBER [plg| LOCATION | TN OPERANDS

1 2[3 «Tsfe]7]e N 1afis, 2021 R | MR A N | , e s 4 90}
' : 0 tag, MPC A romete Lo povameter . s s s :
2

i l 1 1 1 1 L I | r—e A 1 i 1 1
3 i 1 i i i i 1 i 1 1 A 1 1 i
Parameters of the MPCA Macro Call
Table D-2 lists the parameters of the MPCA macro call.

8/29/69 D-6 #5-618

a1

APPENDIX D. PHYSICALI/OC

Table D-2. Parameters of MPCA Macro Call
Number Name Value Function Comments
00 Prefix 1, 2, or 3 Tag prefix for all MPCA Must be specified.
characters | entries. All action macro
calls refer to this prefix in
their calling sequences.
01 Suffix x Same as character specified Must be specified.
as parameter 01 of MPIOC.
_ _

8/29/69

D-6.1

#5-618

APPENDIX D, PHYSICALI/OC

Table D-2 (cont).

Parameters of MPCA Macro Call

Number Name Value Function Comments
02 Buffer Tag Location of the leftmost Must be specified.
address character of an area to or
from which data is trans-
ferred. Buffer must be as
long as longest block of data
transferred. There must
be three available charac-
ter positions to right of this
buffer when input data trans-
fers are executed.
03 Error Tag Address of a user-provided Must be specified.
exit routine to which MPIOC
branches in case of an un-
corrected error condition.
04 C3 A The value of C3 is 04 (octal). This parameter is nor-
Variant mally left blank, since
the programmer normally
alters its field in the com-
munication area with the
MLCA macro routine.
xx (octal) Octal value defining the type Permissible values in

of data transfer to be exe-
cuted by MPIOC.

octal are:

04 = Load/unload ad-
dress register,

02 = Search and read/
write,

22 = Extended search
and read/write,

03 = Search and read/
write next,

23 = Extended search
and read/write next,

00 = Read initial,

20 = Extended read
initial,

01 = Read, and

21 = Extended read.

NOTE: When verifica-
tion is desired,
set the third bit
form the left (in
the 6-bit variant)
tol, e.g.,

oTi[olo[o1] -

Extended
read
o[1{1]o]ol1]= Extended
read and
verify

#5-618

APPENDIX D. PHYSICALI/OC

Table D-2 (cont).

Parameters of MPCA Macro Call

Number Name Value Function Comments
05 Protection| A The initial value is 00(octal). | Permissible values in octal
bits An octal value indicating the | are:
xx(octal) protection bits to be loaded _] ...

into the control unit address 00 = Perm%t no ‘w.ntmg,

register. 02 = Permit writing to
records that do not
have A~ or B-protec-
tion bits set in the
record headers,

06 = Permit A-file writing,

12 = Permit B-file writing,

and

16 = Permit A- and B-file

writing.,

NOTE: When any type of
writing is permitted,
the writing speci-
fied by 02 is also
permitted.

06 RWC A Automatic specialization is This parameter is significant
configura- performed at assembly time, | only if parameter 04 of the
tion according to the value of MPIOC macro call is assigned

parameter 07. If parameter | the value M (more than one

07 is blank or is less than PCU is specified for MPIOC).

or equal to 07, 56 is gen-

erated. Otherwise, 76 is

generated.

xx(octal) | Read/write channel to be This single-character field

used for data transfers. must be a variant which
includes read/write channel
3 (for I/0O sector 0) or channel
6 (for 1/O sector 1). This
assignment can also be made
through use of ML.CA.

07 Peripherall A Honeywell-recommended This parameter has signifi-

control
address

address assignment for
mass storage control
(048).

cance only if parameter 04
of the MPIOC macro call is
assigned the value M.

xx({octal)

Peripheral address assign-
ment to which the mass
storage control to be used
for data transfers is
attached.

This single-character field

can be modified at execution
time whenever another PCU
is to be addressed.

When the peripheral address
assignment is specified, the
1/0 bit (high-order bit) must
be zero.

D-8

#5-618

APPENDIX D. PHYSICAL I/O C

Communication Area Service Macro Calls (MLCA and MUCA)

The method of coding the MLCA and MUCA macro calls is the same as that illustrated in
Section III. The mnemonic designators to be used with MLCA and MUCA for Physical I/O C are
not the same as those for Logical I/O C. The mnemonic designators for MLCA and MUCA macro

calls when using Physical I/O C are listed in Table D-3.

Table D-3. Mnemonic Designators for MLCA and MUCA

Mnemonic

Description

CYL

This designator refers to a 4-character field containing the de-
vice, pack, and cylinder number (in binary) for any future action
related to the file table referred to by parameter 0l1. The leftmost
character of this field must contain a word mark.

CAD

This designator refers to an 8-character field containing CYL

as its high-order characters. The remaining four characters are
the 2-character track and the 2-character record number (in
binary). Note that CAD and CYL can overlay each other. The
final value of this field is loaded into the control unit address reg-
ister by MPIOC whenever required. The leftmost character of this
field must contain a word mark.

PRT

This designator refers to the right end of a 10-character

field whose high-order eight characters are defined by CAD. The
character to the right of CAD must be 0. The tenth character
corresponds to parameter 05 of MPCA. MPIOC will load the ad-
dress register of the control unit with the current value of these
ten characters, Note that the ten characters include CAD, which
in turn, includes CYL.

TRW

This designator refers to a single character corresponding to pa-
rameter 04 of MPCA (C3 variant),

AAD

This designator corresponds to the buffer address, as defined for
parameter 02 of the MPCA macro call.

EAD

This designator refers to the entrance address to a user's error
routine. Refer to parameter 03 of the MPCA macro call.

RWC

This designator refers to the read/write channel(s) being used
for data transfer and is significant only if parameter 04 of the
MPIOC macro call is M. It must be a variant which includes
read/write channel 3 if I/O sector 0 is being used or channel 6
if I/O sector 1 is being used.

CPU

This designator refers to the peripheral address assignment and is
significant only if parameter 04 of the MPIOC macro call is M.
The I/0 bit (high-order bit) must be zero.

LAD*

This designator refers to an 8-character field designating the
address of the last record involved in the previous data transfer
initiated via the related communication area. Its format is
"DPCCTTRR" (device, pack, cylinder, track, and record numbers).

ECT*

This designator refers to a l-character field containing a binary
count of the number of rereads or rewrites executed by MPIOC in
attempting to correct read and write errors detected in executions
for the desijgnated MPCA table.

D-9 #5-618

APPENDIX D, PHYSICALI/OC

Table D-3 (cont). Mnemonic Designators for MLCA and MUCA

Mnemonic Description

ERIx* This designator refers to a l-character field containing an indication
of the type of uncorrectable error condition which was last encountered
in executions for the designated MPCA table,

EDF* This designator refers to a 14-character field containing the contents
of the control unit address register at the time the last error condi-
tion was detected in executions for the designated MPCA file table,
The rightmost four characters are unspecified.

LRT* This is a field containing the address of the last return to the user
from the initiation of an action referring to the designated MPCA table,

*These designators can be used only with MUCA,

Action Macro Calls

Action macro calls provide the programmer with the capability of initiating the following
actions: read, write, wait, restore, verify, and seek. Each time one of these action macro
calls is entered, the corresponding function is initiated or executed by MPIOC., MPIOC refers

to the indicated communication area as required for these actions.

READ ACTION MACRO CALL

The call for this macro routine is inserted in the programmer's coding whenever a data ~
transfer from the mass storage device to main memory is required. MLCA functions can also
be accomplished by this action. The example below illustrates the method of coding the read

action macro call.

CARD OPERATION
NUMBER (P[] LOCATION COOE OPERANDS

1 213 sTslel7]e L 1afis, zof2 0 L il 4 L . L s2es N N

I : A lanyTag READ [FLA , CHORWE RWE \ . \ : A . s .
2 1{ ! L 1 ‘ L 'hYPRTI'PRT"_L""L'J'.’) 4. I i " ad P | i

M

In this example, the value of parameter 01 is F1.1, This corresponds to the value assigned to »
parameter 00 of the MPCA macro call. The remaining parameters shown in this example, 02,
03, 04, and 05, correspond to the similarly numbered parameters of the MLCA macro call de-

scribed in Section II. This macro call can have up to 63 parameters.

WRITE ACTION MACRO CALL

The call for this macro routine is inserted in the programmer's coding whenever a data
transfer from main memory to mass storage is required. MLCA functions can also be accom-
plished by this function. The method of coding the write action macro call is the same as that
shown for coding the read action macro call, except that the word "WRITE'" is placed in the

operation code field. -

D-10 #5-618

APPENDIX D. PHYSICAL I/OC

WAIT ACTION MACRO CALL

The call for this macro routine is inserted in the programmer's coding whenever the pro-
grammer desires to wait for the completion of, and check for errors on, the last function for
the MPCA specified. If the normal return to the programmer's coding occurs after this macro
routine is entered, the programmer is guaranteed that the data transfer is completed success-

fully. The following example illustrates the coding for the wait action macro call.

N R 3| Locario o OPERANDS
1 2]3 alsfefr]e L 14hs, 2021 | i I | [Jr 1 {2163 ')
T
[C anytag MWAIT. . FL2,
—t }
1 l 1 1 A A L A i A 1 1 1 . | L4

In this example, the value of parameter 01, i.e,, FL2, is the value assigned parameter 00 of

the MPCA macro call,

RESTORE ACTION MACRO CALL

The call for this macro routine is inserted in the programmer's coding whenever he de-
sires to restore the device associated with a specific MPCA to its initial state. The method of
coding the restore action macro call is the same as that shown above for the wait action macro

call, except that "RESTOR" is written in the operation code field.

VERIFY ACTION MACRO CALL

The call for this macro routine is inserted in the programmer's coding whenever he de-
sires to initiate a2 read (in the write verify mode) from the last area written onto the mass stor-
age device. The write macro and the verify macro calls may be separated by main line coding
if a mass storage device on the same control unit is not referred to in this interval, The method
of coding the verify action macro call is the same as that shown above for coding the wait action

macro call except that "VERIFY'" is written in the operation code field.

SEEK ACTION MACRO CALL
The call for this action macro routine is inserted in the programmer's coding whenever he

wishes to position the read/write heads of a disk device to a specified cylinder.,

Parameter 01 of the seek action macro call identifies which communication area Physical
I1/0 C is to refer to for execution of this macro routine, The remaining parameters correspond
to similarly numbered parameter pairs of an MLCA macro call (02 and 03, 04 and 05, etc.) and
are used to load the communication area fields with appropriate values for the seek routine.

An example of seek coding follows:

CARD v OPERATION
NUMBER '5 LOCATION CODE OPERANDS

| 213 als]e[7]s N 1415, 20[21) | L L R | | 6263 ., i | N R 80|
13

! ! 1 L any‘*ag S.Egg ||°-’T < -1 s c.YL} i N I 1 - L L - !

T

D-11 #5-618

APPENDIX D, PHYSICAL I/OC

In the above example, file-tag corresponds to parameter 00 of the MPCA macro call,
and cyl-tag is a user-supplied tag for a 4-character field in memory containing data to be loaded
into the CYL field of the MPCA communication area, CYL is one of the MLCA mnemonics listed
in Table D-3,

If the programmer prefers to write a separate MLCA call prior to the seek call, or to
seek to the cylinder currently specified in MPCA, only parameter 0l of the seek call need be

specified. The following two examples, then, perform identical functions:

Numeer [Ba| LocaTion | “Eoe OPERANDS
y 213 alsfe[7]e | 1415, 2021 | N L, . N N N , s2]e3 s | s 80]
! ! 1! a‘ﬂme’ S|EEK f\‘ l¢‘|“-ae N .m_‘d.'*'ﬂe. N C‘AD L : 1 1 i A PRV
2 T J' i ' ' i —— AL A 1 1 s 1 1 i 1 Kl
3 l 1 L I°r i 1 i L i | 1 1 1 L i
‘LM lanytag MLCA | kilg-tag,. cad-tag,. CAD,. ., R \ s s .
o Wl 7 N sEek ieile~taq. . l . . l . . . fe
s ! I 1 1 ' 1 v 1 1 'l 1 L - 1. i 1 1 1
T ' I i 1 1 '} A 1 1 1 1 1 L 1 1
. ! 1 L 1 1 1 i 1 i 1 1 A e L O
. ! 1 1 1 1 - 1 i L 1 al 1 1 L
o ! 1 1 1 el i 1 1 1 1 1 1 1 1 1

In the two examples above, the full mass storage address for an item to be read or written
is loaded into the communication area. CAD is the mnemonic for a communication area field
comprising CYL plus four characters which specify track and record. Parameter 02, cad-tag,
would therefore be the address of an 8-character field in memory containing the information to

be loaded into CAD.

PROGRAMMER'S PREPARATION INFORMATION FOR PHYSICAL I/OC

The following paragraphs describe pertinent programming considerations for Physical

I/0C.

Address Mode

The coding generated as a result of a Physical I/0O C macro call is in either 3- or 4-

character address mode, corresponding to the mode of the user's program.

Read/Write Channel Utilization

Two data transfer rates are applicable to mass storage devices. When a Type 258, 259,
or 273 Disk Pack Drive, or a Type 261 or Type 262 Disk File is used, data transfer rates
accomplished by interlocking at least 1-1/2 channels (such as 1A and 3 or 4A and 6) are
required, When a Type 155, 259A, or 259B Disk Pack Drive is used, a single interlocked

channel suffices.

1/05/70 D-12 #5-618

APPENDIX D. PHYSICAL 1/O C

In the absence of any other directive, Logical I/O C utilizes channels 2 and 3 or channels
5 and 6 (depending upon the I/O sector) when operating with Type 258, 259, or 273 Disk Pack
Drives; alternatively, it utilizes channel 3 or 6 when operating with Type 155, 259A, or 259B l
Disk Pack Drives.

The user can change this assumption by setting parameter 04 of the MPIOC macro call to
M and by specifying RWC as the communication area field designator of an MLCA macro call

(see Table D-3). This assignment can also be made by means of the MPCA macro call.

Special Considerations for Specifying Parameters

USE OF INDEX REGISTERS

Physical I/O C uses index registers X5 and X6 but restores them to their original values
before returning to the user's program, regardless of whether the return is in the normal mode
or is an uncorrectable error exit. Index registers X5 and-X6, therefore, may be employed by
the user-written program and can be used in conjunction with the MLCA and MUCA macro

functions.

PERIPHERAL ADDRESS ASSIGNMENT AND RWC CONFIGURATION
CONSIDERATIONS

Physical I/O C can control one or more peripheral control units as described below.

Fixed Peripheral Address Assignment

When parameter 04 of the MPIOC is blank, the peripheral control unit number and read/
write channel configuration are specialized at assembly time and cannot be changed without re-
assembly, The peripheral control unit number and read/write channel configuration are speci-

fied by parameters 2 and 5 of the MPIOC macro call.

Variable Peripheral Address Assignment
When more than one peripheral control unit is to be controlled, or when the particular unit
to be controlled is determined at execution time, parameter 04 of the MPIOC macro call must

contain M.

MPIOC is specialized at execution time according to the peripheral control unit number
and read/write channel configuration values specified in the MPCA macro call. This speciali-
zation occurs only in the peripheral control unit number specified in the current MPCA macro
call differs from that specified for the preceding operation. Within one program, all MPCA's
containing the same peripheral control unit number must be able to operate with the read/write
channel configuration specified for any other MPCA containing that number., Specialization also

occurs when MPIOC is initially entered during execution.,

1/05/70 D-13 #5-618

APPENDIX D. PHYSICAL I/OC

The peripheral control unit number and read/write channel configuration can be set at
assembly time through use of parameters 6 and 7 of MPCA. The values can be set or changed
during execution through use of MLCA, However, the read/write channel configuration can be
changed only when the peripheral control unit number specified by the MPCA 1is also changed.
The RWC value must include channel 3 for I/O sector 0 or channel 6 for 1/0O sector 1. Permis-

sible values are listed below.

I/0O Sector 0 I/O Sector 1
53 73
54 74
55 75
56 76

When the peripheral address assignment is variable, the sector bits of the RWC value are
updated in the specialized MPIOC instructions to correspond to the I/O sector specified by the
peripheral control unit number. Therefore, the read/write channel configuration need not be

set or modified to correspond to the sector specified by the peripheral control unit number,

Considerations for MPIOC Parameter Specification

SUFFIX CHARACTER

The suffix character specified in parameter 0l is used as the last character of all tags in
MPIOC. For this reason, any tag written in the program by the user should not end with this
character, When a program contains more than one MPIOC, each call must be assigned an

individual suffix character.

PERIPHERAL ADDRESS ASSIGNMENT

When the peripheral address assignment is specified by the user, it must be expressed as
an output assignment (00 through 07 or 20 through 27), When the user intends to change the
peripheral address assignment during the execution of the program, parameter 04 of MPIOC
must be assigned the value M. For considerations related to variable peripheral address assign-

ments, refer to '"Variable Peripheral Address Assignment" in this appendix,

DEVICE PROTECTION
If feature 079 is available to the disk peripheral control unit and parameter 07 is specified
as LOKDEYV, it is possible to power down a device through MPIOC., This feature permits pro-

tection of a volume after the user has finished processing it.

Considerations for MPCA Parameter Specification

An area in memory which is specialized in a fixed format is provided by MPCA for

communication. The area is specialized according to the values assigned to the MPCA

1/05/70 D-14 #5.618

A

[}

APPENDIX D. PHYSICAL I/OC

parameters, A separate MPCA macro call must be in the program for each set of data {(e.g.,

a file) for which separate communication values are to be established. Each Physical I/0 C
action macro call is linked by the file prefix parameter of MCA to a specific MPCA and by the
MPIOC suffix character to the MPIOC., The MPIOC performs the action required by the Physical

I/0 C action macro call, obtaining the required values from the related MPCA,

8/29/69 D-14.1 #5-618

~

©

3

n

«

APPENDIX D. PHYSICAL I/OC

FILE PREFIX

The file prefix is established by assigning one, two, or three characters to parameter 00
of MPCA and is used to identify the tags used by the MPCA from all other tags in the program.,
When the program contains more than one MPCA, each file prefix value must be different.
Also, each character used as a file prefix must be valid in a tag, according to the rules of Mass

Storage Easycoder Assembler C.

SUFFIX OF RELATED MPIOC

Because it is possible for a program to contain more than one MPIOC, the value assigned
the suffix parameter (MPCA parameter 01) must be the same character assigned as the value
of MPIOC parameter 01 to which the MPCA is linked. This ensures that the Physical 1/O C

action macro calls link to the appropriately specialized MPIOC.

BUFFER ADDRESS (AAD)

An address constant (DSA) is generated by the buffer address parameter (MPCA parameter
02). Except for indexing with index registers X5 and X6, any form of addressing can be used.
Also, the value of the address constant may be changed prior to execution of any Physical I/0 C

action macro routine except the verify macro routine.

USER'S UNCORRECTABLE ERROR ROUTINE ENTRANCE (EAD)
Parameter 03 of MPCA contains the symbolic address (tag) of the user-supplied uncor-
rectable error routine. Any form of addressing can be used, except for indexed addressing using

index registers X5 and X6, This symbolic address can be changed at any time.

TYPE OF READ OR WRITE (TRW)

When a read or a write action is initiated, MPIOC interrogates the value assigned to pa-
rameter 04 of MPCA to determine the type of read or write desired. This value is changed
frequently during the execution of the program through the read, write, or MLCA macro routine.
Frequently, therefore, no value is assigned to parameter 04. The value that can be assigned to
parameter 04 is a 2-digit octal character. These characters are listed below, along with the

type of read or write action that will be performed.

D-15 #5-618

APPENDIX D, PHYSICAL I/OC

Value of

Parameter 04 Type of Read or Write Performed
A
or Load/unload address register.
04
02 Search and read/write,
22 Extended search and read/write.
03 Search and read/write next.
23 Extended search and read/write next.
00 Read initial.
20 Extended read initial.
01 Read.
21 Extended read.

NOTE: The values 02,” 22, and 03 may be specified as 12, 33, 13
if a verify operation is desired. The use of these values
also requires that a write action is being performed. This
is not to be confused with the Physical I/O C verify action
macro routine which automatically initiates write verify
operations.

CONTROL UNIT CURRENT ADDRESS AND STATUS

In each MPCA, a 10-character field (word-marked at its left end) contains the current pe-

ripheral address assignment and the status of the control unit for the actions being issued

through that MPCA, The field is not an exact image of the control unit address register, par-

ticularly when more than one MPCA is included in the program.

dicate the status of one set of operations being issued through that MPCA.

The field is shown in Figure D-1 and the three mnemonics (CYL, CAD, or PRT) can be in-

The field does, however, in-

cluded in a read, write, or MLCA macro call to change the contents of the applicable portion of

the field, The contents of each character in the field are in binary form.

D
P
CC =
TT =
RR =
SS =

DPCCITTRRI|SS

fa— C YL —

L PRT

The significance of the characters in the field is as follows:

Device number,

Pack number (must be zero),
Cylinder number,

Track number,

Record number, and

Status.

Figure D-1. MPCA Control Unit Current Address and Status Field

D-16

#5-618

<

[0

S

APPENDIX D, PHYSICAL I/OC

The rightmost two characters (SS) of the 10~-character field in Figure D-1 represent the
following: the leftmost eight bits represent the type of error condition, and the rightmost four
bits represent the type of file protection. Whenever the mnemonic BRT is used in an MLCA
macro call to load this 10-character field, the leftmost character position of the status portion

of the field must be zero. The file protection character can be set to any of the following octal

characters:
00 = Permit no writing,
02 = Permit writing when there is no A-
or B-file protection,
06 = Permit A~file writing,
12 = Permit B-file writing, and
16 = Permit A- and B-file writing.

Notice that if a file does not have A- or B-file protection, the 06 or 12 values, respectively, also
permit writing, A write operation cannot be performed if the corresponding switch is not set at

the control unit. Also, the data write permit bit must be 1 to allow any type of write operation.

Considerations for Action Macro Routines

Normally, return from an active macro routine is to the location following the generated
coding, When an uncorrectable error is'caused by the action, however, return is made at the
address specified by the EAD (parameter 03) field of the associated MPCA. In the action macro
call, parameter 00 (written in the location field on the coding form) may be used as a tag re-
ferring to the first (high-order) character of the generated coding. Parameter 01 of the action
macro call, starting in column 21 on the coding form, must be assigned the same value as the

unique prefix specified as parameter 00 of the related MPCA.

READ ACTION MACRO ROUTINE

After ensuring the error-free completion of the previous read or write function, the read
macro routine initiates a data transfer from mass storage to main memory and may perform
MICA macro functions. The type of read operation performed depends on the TRW field (see
page D-15) of the associated MPCA, "

WRITE ACTION MACRO ROUTINE

After ensuring error-free completion of the previous read or write function, the write
macro routine operates like the read routine, except that the data transfer is in the opposite
direction, i.e., from main memory to mass storage. Note, however, that if the verify bit is

set in the TRW, no data transfer occurs; only the readability of the data is checked.

D-17 #5-618

APPENDIX D. PHYSICALI/O C

VERIFY ACTION MACRO ROUTINE

The verify macro routine is used to read the data recorded by the last write action. There
is no data transfer associated with the verify operation, but this is not the same as specifying
a read action with the TRW bit set to verify in the MPCA. When desired, the verify macro call

must be issued after a write is to be checked and before any other action call is issued.

WAIT ACTION MACRO ROUTINE

Whenever the programmer intends to check the last action initiated by MPIOC (via the
appropriate MPCA) for error-free completion, he issues a wait action macro call. If the MPCA
indicated in the call was not the last MPCA to be active, there is no guarantee that any other
action initiated by MPIOC is completed successfully. If the action is completed successfully, a
normal return to the user is made. If the action is not completed successfully, the error de-
tection and correction action is performed automatically. If the error is corrected, a normal

return to the user is made at this time; if not, the user's uncorrectable error routine is entered.

RESTORE ACTION MACRO ROUTINE

Whenever the programmer intends to restore a device to its initial state, he issues a
restore action macro call. When the MPIOC is entered from a restore action macro call, the
last action for this MPCA is checked for error-free completion, a restore operation is initiated,

and a normal return to the user's coding is made.

LOKDEV ACTION MACRO ROUTINE

To power down a device, a LOKDEYV action macro call is issued. The following events
occur when the MPIOC is entered from a LOKDEYV action macro call: (1) the last action for this
MPCA is checked for error-free completion, (2) a LOKDEYV action is initiated, and (3) a normal

return to the user's coding is made.

HANDLING TRACK LINKING RECORDS
A read or read initial operation (extended or not extended) or a search and read/write

operation which encounters a track linking record (TLR) handles the TLR as anormal datarecord,

A search and read/write operation (extended and/or next) which encounters a TLR continues
the operation on the record specified by the TLR. The search for the record specified by the
TLR is done on the current cylinder, and the instruction is not completed if the TLR links to
another cylinder. A subsequent READ, WRITE, or VERIFY operation to any file or a WAIT
operation to a specific file detects the instruction-incomplete condition. MPIOC then seeks the

cylinder specified by the TLR and performs the original read/write operation (starting at the

8/29/69 D-18 #5-618

‘o

APPENDIX D. PHYSICALI/OC

address specified by the TLR) prior to continuing with the subsequent action macro routine.

The above description indicates why a block may not.span cylinders.

User's Uncorrectable Error Routine

When MPIOC returns control to the user at the address specified in EAD (see page D-15)
of a specific MPCA table, the user's program must direct the actions to be taken for the con-
dition which has occurred. The MPCA involved in the condition contains information which
enables the user's error routine to determine which path to follow at this point. The user may
return to MPIOC to : (1) try again to execute the instruction sequence which precipitated the
error, (2) bypass the offending instruction and continue with the requested action, or (3) issue a

new action macro call.

The following paragraphs describe the types of conditions which may occur and the various

corrective actions (both programmed and manual) which may be attempted.

ERROR TYPE INDICATOR (ERI)
The designator "ERI'" refers to a single-character field which indicates the type of error

last encountered while processing with this MPCA, The possible values and their meanings are

listed below.

Octal Value Meaning

00 No errors.

01 Device inoperative.

02 Protection violation.

03 Device error (after five attempts at positioning).

04 Formatting error (format violation or track overflow).

05 Addressed record not located (after five attempts).

06 Uncorrectable read error; data transfer was completed
(after ten rereads).

07 Same as 06 above, except that data transfer is not completed
(header may contain a read error).

10 Automatic verification failed (after ten reverify attempts).

11 Track-linking record was read into core or rewritten from core
(this is not necessarily an error).

12 Read error in track-linking record while attempting to link,
Contents of current CCTTRR are invalid (after ten attempts
to reread).

8/29/69 D-19 #5-618

APPENDIX D. PHYSICALI/OC

ADDRESS REGISTER CONTENTS AT TIME OF ERROR EXIT (EDF)
The designator EDF refers to a 14-character field that reflects the contents of the control
unit address register at the time the last error condition was recognized by MPIOC for this

MPCA. The format of this field is shown below.

D Plc ¢ T T R R|S S}IX X X X

Device——l last status

record field unspecified
Pack accessed

The format of the status field (SS) is shown below.

e

0 0 0 0 0 0 NO 0 0 X X X X

Protection
1 1 1 1 1 1 YES1 1 Bits
Device inoperative Track overflow
Device error Format violation
Protection violation

Read error

Instruction incomplete

Track linking

RE-EXECUTION OF CORRECTION PROCEDURE

At the time of return to the user's error routine, the B-address register contains the ad-
dress at which MPIOC may be reentered for further re-execution of the instruction sequence in
error. This return is especially valuable if ERI contains one of the values 01 through 04, since
these types of errors may possibly be corrected by manual action. Suggested manual operations

to be performed in these cases are listed in Table D-4.

8/29/69 D-20 #5-618

APPENDIX D, PHYSICALI/OC

Table D-4. Corrective Action for User's Error Routine

Vaét;el of Condition Suggested Cause/Manual Action
01 Device inoperable 1. Device may not be turned on.
2. Device may be cycled down,
Stop the device, if necessary,
and cycle it up.
02 Protection 1. Manual protection switches
violation may be set incorrectly.
Set protection switches as directed
by operating instructions of program.
03 Device error Clear the error condition at the
device.
04 Format violation Same as ""Protection Violation' above.
or track overflow
NOTE: All other conditions, except that €epresented by an ERI value
of octal 11, may possibly be corrected by re-execution. Note
that MPIOC has already made a number of attempts at correction.

BYPASS ERROR CONDITION
If the user desires to accept the last execution as correct, he may re-enter MPIOC to by-
pass the error condition. This may have some value in certain cases (e.g., a read error) but

is dangerous in others (e.g., a seek error).

The user must add one (plus the current address mode) to the value in the B-address
register at the time of the uncorrectable exit to compute the MPIOC bypass re-entry address.
For example, if Physical I/O C is being executed in 3-character addressing mode, four is

added to the B-address register value in order to bypass the error condition.

ISSUE NEW ACTION MACRO CALL
If the user decides to discontinue the previous path of processing, he may issue any desired
action macro call., Physical I/O C permits the user to issue any action call; however, the type

of error encountered may make certain actions inadvisable.

OPERATING PROCEDURES FOR PHYSICAL 1/0 C

Physical I/O C does not communicate directly with the operator in the case of unusual
conditions. Rather, it exits to the user with a code indicating a specific condition. It is the
responsibility of the user of Physical I/O C to provide operator notification of conditions which

cannot be corrected under program control.

8/29/69 D-21 #5-618

APPENDIX E
RANDOMIZING TECHNIQUES

RANDOMIZING ADDRESSING

Randomizing is the process of transforming the key of an item into a valid address. This
usually consists of obtaining a relative bucket address (e.g., the 204th bucket of the file), which
is then converted by Logical I/O C into a valid mass storage bucket address consisting of cylin-
der, track, and record designation). This enables the user to retain his present item numbering

system, and yet have full online processing capability.

There are many randomizing methods, each one being somewhat better suited to a parti-
cular application than another. All have the same objective — to produce a valid address for
each item from its item key (control field) in such a way that the items are evenly distributed.
Depending on the randomizing technique employed, storage utilization can reach between 80 and
90 percent efficiency. Generally speaking, a technique that achieves high mass storage utili=-
zation generates more synonyms (duplicate bucket address) and thus increases access time.
Therefore, the randomizing technique chosen depends on the relative importance of mass storage
utilization versus access time. In addition, the input/output buffer size of the file is important
and affects the access time, For instance, if several items are blocked together, then synonyms

would have a less serious effect on access time.

Once a randomizing technique has been selected for possible use, the technique should be
evaluated with a sample selection of actual item keys. This evaluation should provide infor-
mation on the efficiency of mass storage utilization, the frequency and distribution of synonyms,
the processing time required for the calculation, and how evenly the generated addresses are
distributed. The results enable the user to select the technique most suited to his particular

requirements and data pattern.

The following paragraphs outline a few of the most commonly used key transformation
methods, They have the advantage of being economical in processing time and core memory
requirements., There are many possible variations of these methods, in addition to far more

complicated methods not covered in this manual.

Prime Number Division

Division of the item key field by a prime number (a2 number divisible only by itself or one)

is a widely accepted method of transforming a key into a mass storage address. The prime

E-1 #5-618

APPENDIX E. RANDOMIZING TECHNIQUES

number divisor should be slightly less than the number of buckets allocated to the data area of
the file, but it should be as large as possible. The larger the prime number divisor, the

smaller the chance of generating synonyms.

The prime number division method consists of dividing the item key by the selected prime

number divisor, discarding the quotient, and using the remainder as the basis for the address.

Example - Prime Number Division

A file of 5, 000 items on a Type 259 Disk Pack Drive stores five items per bucket, one
bucket per track, with item keys ranging from 000, 000, 000 to 999, 999, 999. Space is allocated
to this file for 1, 000 buckets. The file is to start on cylinder 50, track 0. The prime number

divisor chosen is 997, which leaves three buckets unused in the 1, 000 allocated.

Suppose that 777, 775, 925 is the key of the item to be processed. Then:

777, 715, 925
997

Thus, this item is to be placed in the 268th bucket from the beginning of the file.

= 780,116, with a remainder of 268.

Using this relative bucket address, Logical I/O C then computes that the actual address is
26 cylinders and 8 tracks after the starting location of the file {cylinder 50, track 0), which in

this case would be cylinder 76, track 8.

It has been assumed in this example that a unit of allocation is made up of a whole cylin-
der (ten tracks) and that there are no cylinder overflow tracks. However, if overflow exists,

Logical I/O C makes the necessary adjustments,

In cases where purely alphabetic or mixed alphabetic/numeric item keys are concerned,
the item key can be treated as a binary field to be binarily divided by the binary form of the
prime number. The final calculations are also performed binarily so that the relative address

is produced in a usable form.

Table E-1 is a list of prime numbers. It is divided into two parts: part A contains every

third prime between 2 and 2, 939, and part B contains every fifth prime between 2, 953 and 8, 039,

Square Enfold and Extract

In this randomizing technique, the item key field is squared, the result is split in half, and
the two halves are added together. Then the required number of digits needed for an address is
extracted from the middle of the result. Normally, the two low-order characters are ignored

and the extraction is made from the third low-order character and above.

E-2 #5-618

y

G

APPENDIX E. RANDOMIZING TECHNIQUES

Table E-1. Prime Numbers
A. Primes (Every Third Prime 2-2, 939)

5 137 307 487 677 883 1093 1303 1543 1753 1999 2239 2447 2707
13 151 317 503 701 911 1109 1321 1559 1783 2017 2267 2473 2719
23 167 347 523 727 937 1129 1367 1579 1801 2039 2281 2531 2741
37 181 359 557 733 953 1163 1399 1601 1831 2069 2297 2549 2767
47 197 379 571 761 977 1187 1427 1613 1867 2087 2333 2579 2791
61 223 397 593 787 997 1213 1439 1627 1877 2111 2347 2609 2803
73 233 419 607 811 1019 1229 1453 1663 1901 2131 2371 2633 2837
89 251 433 619 827 1033 1249 1481 1693 1931 2143 2383 2659 2857

103 269 449 643 853 1051 1279 1489 1709 1951 2179 2399 2677 2887
113 281 463 659 863 1069 1291 1511 1733 1987 2213 2423 2689 2909

B. Additional Primes (Every 5th Prime -~ 2, 953-8, 039)

2957 3343 3697 4073 4457 4861 5233 5641 6029 6373 6803 7211 7603
3001 3373 3733 4111 4507 4909 5281 5659 6067 6427 6841 7243 7649
i 3041 3433 3779 4153 4547 4943 5333 5701 6101 6481 6883 7307 7691
3083 = 3467 3823 4211 4591 4973 5393 5743 6143 6551 6947 7349 7727
3137 3517 3863 4241 4639 5009 5419 5801 6199 6577 6971 7417 7789
3187 3541 3911 4271 4663 5051 5449 5839 6229 6637 7001 7477 7841
3221 3581 3931 4327 4721 5099 5501 5861 6271 6679 7043 7507 7879
3259 3617 4001 4363 4759 5147 5527 5897 6311 6709 7109 7541 7927
3313 3659 4021 4421 4799 5189 5573 5953 6343 6763 7159 7573 7963

Example 1 - Square Enfold and Extract

The following values are assumed in this example: a file of 10, 000 items; item keys of

nine digits; ten items per bucket; one bucket per track. Therefore, there are 1, 000 buckets.

A total of 100 cylinders is required (exclusive of overflow).

Control number:

Squared:
Enfolded:

Extracted result:

493, 725, 816
243, 765, 181, 384, 865, 856

243,765, 181
384, 865, 856

628,631,037

Logical I/O C computes:

310 relative bucket address.

310
10 Cylinder 31, track 0 (added to the starting

10

address of the file)

#5-618-

APPENDIX E. RANDOMIZING TECHNIQUES

Since the field extracted ranges over some power of 10 (depending on the number of digits
extracted), and unless the number of buckets available is some whole multiple of 10, the result
of this calculation is not suitable. The extracted number can be compressed by multiplying the
result by a percentage. If a 3-digit field is extracted, this gives a range of 1, 000 numbers

which may be multiplied by 70 percent if there are only 700 buckets available.

Example 2 - Square Enfold and Extract

If the file consisted of 600 buckets instead of 1, 000 buckets with the same control number

range:
Control number: 569, 183, 582
Squared: 323, 969, 950, 018, 350, 724
Enfolded: 323, 969, 950
018, 350, 724
342,320, 674
Extracted result: 206

X206 = 123.60 (.60 discarded)

This gives a relative bucket address of 123.

Radix Conversion

When this method is applied to purely numeric item keys, each decimal digit is inter-
preted as if it were a radix-11 digit instead of the actual radix-10 and is then converted back to
radix-10. When applied to alphabetic or alphanumeric item keys, each character is treated as
two octal digits. Each digit is then interpreted as if it were a radix-9 digit instead of the actual
radix-8 and is then converted back to radix-8. In this case, the numbers can range only from 0

to 7, whereas in the numeric case, the numbers could range from 0 to 9.

The normal procedure after the radix conversion, is to truncate the result by discarding
high~order digits until a field of the desired length is obtained. Note that compression of the
resultant number can be done by multiplying it by a percentage, as in the square enfold and ex-

tract method.

Example 1 - Radix Conversion (from Radix-11 to Radix-10)
The item key in this example is 301, 283 and is treated as radix-11 as follows:
Radix-11 = (3x115)+(0x114)+(1x113)+(2x112)+(8x111)+(3x110)

483, 1534+0+1, 331+242+88+3

484, 817, leaving 817 as the truncated address
{cylinder 81, track 7 on Type 259),

NOTE: The arithmetic is done in the radix being converted to, i.e., radix-10.

E-4 #5-618

~

Ny

)

V)

APPENDIX E. RANDOMIZING TECHNIQUES

Radix conversion is a better method than truncation alone, since it tends to disperse
troublesome runs of keys differing in the numeric case by some power of 10 {(e.g., 02309 and
12309) or in the alphanumeric case by some power of 8 (e.g., 02475 and 1247g). The main
advantage of this method is the simplicity of calculation. The conversion from radix-11 to
radix~-10, or from radix-9 to radix-8 may be accomplished without multiplication. It can be
done simply by a series of decimal additions and shifts, or binary additions and shifts. Radix

conversion does tend, however, to produce more synonyms than prime number division.

Example 2 - Radix Conversion (from Radix-11 to Radix-10, Using Addition and Shifting)
Using the formula in example 1 above, the item key 301, 283 can be reduced to:
((((3x11+0)x11+1)x11+2)x11+8)x11+3)

3
+ 30

+ 0
33

+ 330

+ 1
364

+ 3640
+__ 2
4006

+ 40060
+ 8

44074
+ 440740
+ 3

48481710

Example 3 - Radix Conversion (from Radix-9 to Radix-8)
The itemn key 247g in this example is treated as radix-9:

(2x9+4)9+7

[\
[\
o OO

l\l

w
—
n

NOTE: The arithmetic in this example is done in radix-8.

Nonnumeric Item Keys

Where item key fields comprise purely alphabetic or special characters or a mixture of

alphanumeric characters, one method of randomizing is to treat the field as a binary number

E-5 #5-618. |

APPENDIX E. RANDOMIZING TECHNIQUES

and perform binary arithmetic on it. This has the advantage of retaining zone bits and, there-

fore, avoiding unnecessary synonyms. -’

Another method of randomizing is to consider each 6-bit character as two octal digits
which are extracted by means of binary addition and extraction to form two decimal digits in the
range 0 to 7. The resultant key is then manipulated by decimal arithmetic according to the
particular method employed. This method is useful where binary arithmetic is impracticable,

but it does result in doubling the length of the item keys.

Example - Nonnumeric Item Keys

Key Decimalized Octal
810 100100 >
8246Y2-951-7 100204067002401105014007
8415RST 10040105516263
84X113-177-16 10046701010340010707400106
{13 characters) (26 digits) <

NOTE: One common misconception in converting alphabetic keys is that the zone
bits should be dropped before converting. This, however, immediately
produces three groups of synonyms:

G, H I P, Q, R X, Y, Z

Zone suppression (with the consequent advantages of decimal arithmetic)

may be an acceptable method, however, for cases where the item keys N
are largely numeric with only a few nonnumeric characters scattered

through them.

Multifield Keys

Up to this point, only item keys with a single field have been considered where the range
of key numbers is broadly sequential, no matter whether continuous or not. It is, however,
fairly common for item keys to be divided into definite fields where each field has a range which
is quite independent of the other fields, To treat such keys as a single field may be wasteful un-
less each field has a maximum value such that the entire key forms a continuous series, as follows:

00 o 000 00

to to to to

77 9 999 99

Apart from cases like the above example, it is generally desirable to manipulate each field
independently. Otherwise, an unduly large number of synonyms would be generated. Unless a
weighting factor is applied to the most significant keys, most of the methods previously dis-
cussed would generate too many synonymous addresses, One such technique has been developed
by Honeywell. It has the advantage of being readily adaptable to other multifield key applications,
and it generates no synonyms.

E-6 #5-618

APPENDIX E. RANDOMIZING TECHNIQUES

Suppose, for example, that the file contains 30, 000 items and that each item contains 100

characters which are to be blocked six items to a block, one block per bucket, on a Type 259

Disk Pack Drive. Each item has a 6 digit item key comprising three fields:

Division No. Page No. Line No.
(1 char.) {3 chars.) (2 chars.)
l1tob 1to 120 1 to 50

The calculations are as follows:

1.
2.

5.
6.
7.

Subtract 1 from division number;

Multiply the resulting division number by the sum of the maximum number of
pages multiplied by the maximum number of lines, i.e., 120 x 50 = 6, 000,
and place the result in final result X;

Subtract 1 from page number;

Multiply the resulting page number by the maximum number of lines, i.e.,
50, and add the result to final result X;

Subtract 1 from line number;
Add the resulting line number (1) into final result X; and

Divide final result X by the number of items per bucket. The quotient is
the relative bucket number.

This method converts each 6-digit key field into a unique number in the range from 1 to

30, 000.

If the field numbers ranged from zero instead of one, the subtractions in stages 1, 3,

and 5 would be omitted, since their only function is to convert each field to a range beginning

with zero.

Example - Multifield Keys

In this example, the following values are assumed: division number = 5, page number =

120, line number = 50. The calculations are performed as follows:

1.

2
3
4.
5
6
7

5-1 = 4,

4x120x50 = 24, 000,

120-1 =119,

119x50 = 5, 950+24, 000 = 29, 950,

50-1 = 49,

49+29, 950 = 29,999, and

29,999 = 4,999, with a remainder of 5. The remainder is discarded, giving

a rglative bucket address of 4, 999.

Frequency Analysis

This method consists of analyzing the keys of all the items in the file to determine the

E-7

#5-618

APPENDIX E. RANDOMIZING TECHNIQUES

frequency that any digit appears in any one position of the item key.

For each digit position of

the item key, examine all the items to determine the number of times any one digit (0 through 9)

appears. For example, if there were 16, 045 items in the file, a 0 might occur in the fifth key

position‘for 5, 168 different items, a 1 might occur in the fifth key position for 5, 138 different

items, a 2 might occur in that position for 4, 958 items, a 3 might occur for 281 items, and the

numbers 4 through 9 might not occur in this position for any item. This count gives the actual

distribution of digits occurring in each key position.

If the distribution were perfectly even,

each of the ten digits would occur the same number of times as any other digit; thus, each digit

would occur 1/10th of the time. With 16, 045 items, each digit should occur approximately

1,605 times in any one key position,

To determine the deviation from this ideal distribution, take the difference between the

actual number of times a digit occurs in the key position and the ideal number of times it should

occur (in this case, 1, 605).

items, the deviation would be 5, 168 minus 1,605 = 3, 563,

Thus, if 0 actually occurs in the fifth key position of 5, 168 different

This is done for each digit that ap-

pears in that key position and then all the results are summed to find the total deviation for that

key position. The total deviation could then be expressed as a percentage of the total number of

items. The lower the sum is, the more even the distribution is.

The pattern of distribution

indicates which positions are best to use when truncating or extracting addresses from the

item keys.

Example 1 - Frequency Analysis

16, 045 items

Variance factor = 1,605, i.e., 10 percent of number of items.

Digit Key Position Number
1 2 3 4 5 6 7
0 16045 0 0 1852 5168 1807 1738
1 0 0 4408 3147 5638 2120 1748
2 0 2198 3792 1174 4958 1745 1743
3 0 576 2231 2724 281 1684 1610
4 0 1195 2459 1194 0 1378 1617
5 0 12076 3155 1267 0 1647 1688
6 0 0 0 1243 0 1560 1606
7 0 0 0 1228 0 1329 1450
8 0 0 0 1227 0 1415 1411
9 0 0 0 989 0 1360 1434
1
’I‘c?ta 28885 22133 | 16045 5821 21903 1961 1035
Variance
% file 180 138 100 36 137 12 6
Least even Most even
distribution distribution
E-8

#5-618

"\

1,

IR

APPENDIX E. RANDOMIZING TECHNIQUES

A method of utilizing a frequency analysis to obtain an address is to express each digit
count in an item key field position as a percentage of the number of file items., A cumulative
total is formed for each digit to which is added half of the actual percentage for that digit to give
an adjusted constant for each digit in every item key position. The constants for every digit in
an item key are accumulated and the total (excluding the whole number carry) is multiplied by
the number of storage locations allocated. The whole-number product is then converted to a

cylinder and track address in the normal manner,

Example 2 - Method of Using Frequency Analysis
File of 20, 000 items, Storage allocated, 25, 000 locations.

Key position 1 is illustrated.

Digit Count Percentage Cumulative Adjusted
Total Constant
0 6,400 « 32000 . 00000 . 16000
1 300 .01500 . 32000 . 32750
2 1,300 . 06500 . 33500 . 36750
3 800 . 04000 .40000 .42000
4 1,200 . 06000 . 44000 _ . 47000
5 0 . 00000 - -
6 0 . 00000 - -
7 4, 800 . 24000 . 50000 .62000
8 1, 200 . 06000 . 74000 . 77000
9 4, 000 . 20000 . 80000 . 90000

The above process is repeated for every key position, and a table of adjusted canstants

is built up as follows, illustrating just the constants required for item 13, 689:

Digit Item Key Position
1 2 3 4 5

Value from
. 32750 ~— previous table

—

2 T

3 .39875]

4 D . 32750
5 .39875
6 .59327 >. 59327
7 83125
8 .83125- . 96250
9 .96250’/. 11327

25,000 x.11327 = 2,831.75000
02831 = Relative bucket address.

E-9 #5-618

APPENDIX E. RANDOMIZING TECHNIQUES

The table of adjusted constants has to be set up initially, but the actual key transformation
can be done quickly. Such a table would have to be recalculated when sufficient changes have
occurred to affect materially the frequency distribution. The table itself requires 50 locations

for every item key field position, i.e., 250 locations for a 5-digit item.

E-10 #5-618

1)

s

—’

APPENDIX F
MASS STORAGE FILE PROTECTION

FILE PROTECTION

The introduction of mass storage devices into data processing brings additional considera-
tions into the area of data file protection. In magnetic tape processing, several methods of
protection against inadvertent destruction have been in use for some time. With the Type 204B
Magnetic Tape Units, a user may put any drive in protect by using a manual switch on that drive.
He may also remove the plastic ring on the back of the tape itself. Finally, in common practice,
each file is contained on a separate reel of tape. These three methods of protection are gen-
erally adequate. In addition, if a particular tape file is confidential, its owner (for example,

a payroll department) can keep that reel in its own restricted area of storage. This guaraatees

that no unauthorized persons have access to this file.

On mass storage, however, it is common for more than one file to exist on a single volume.
When this is true, the tape-oriented methods of protection are not adequate. To provide the user
with maximum data protection, the Mod 1 (MSR) Operating System offers two types of protection:
(1) a hardware/software protection against inadvertent data destruction and (2) a software pro-

tection against unauthorized access to a confidential file,

These two features are explained in detail below.

WRITE PROTECTION

There are four classes of write protection offered through a combination of hardware and

software features. These classes are:

1. Format write protection,

2. Data write protection,

3. A -file write protection, and
4. B-file write protection.

Corresponding to these four classes of write protection are four hardware switches.
For example, to do any formatting, the FORMAT WRITE PERMIT switch must be ON,

In terms of this operating system, formatting would occur during any run of Volume Prepara-

tion C or File Support C which is performing allocation,

F-1) #5-618

APPENDIX F. MASS STORAGE FILE PROTECTION

Any program which is directing any form of writing (e. g., an update, an assembly, or
a sort) requires that the control unit to which the write is being directed must have the DATA
WRITE PERMIT switch ON. In addition, if it is a user's program, parameter 31 in MCA of
Logical I/O C must be 02 (i. e., permit data write).

The use of these two switches is not optional. When formatting is in progress, the
FORMAT WRITE switch must be in PERMIT. When writing is in progress, the DATA WRITE
switch must be in PERMIT,

The use of A-file and B-file protection, however, is optional. For example, if there
is a master file which may be written on only by a limited, well-defined number of programs,
it may be desirable to give this file further protection. To illustrate, let us suppose that
FILE-X is a payroll master file which may be updated by only one program. In addition to the
payroll file, however, there may be, from time to time, one or two other files on the same
volume. To protect FILE-X from inadvertent destruction, it is decided to give this file B-

file protection,

When allocating FILE-X, the parameter PROT = B is used, If the file is being loaded by
the File Support C load function, the PROT = B parameter must be used again. In addition, the
B-FILE WRITE PERMIT switch and DATA WRITE PERMIT switch must both be ON during

this load process.

The program written to update this file must include the value 12 in parameter 31 of |

Logical I/0 C's MCA macro call, (B-FILE WRITE PERMIT switch and the DATA WRITE
PERMIT switch must both be ON.)

The possible combinations of file write protection are:

Combination of Protection Switches in Permit When Writing
NONE. Data Write.

A -file. Data Write and A -file.

B-file. Data Write and B-file.

A -file and B-file. Data Write, A-file, and B-file.

PASSWORD PROTECTION

In addition to guaranteeing that a file will not be improperly destroyed, it is often important
to guarantee that a file is not read by unauthorized personnel. Thus, in the preceding example,
it is important to be able to know that the other users of the volume containing FILE-X, the
payroll master file, cannot open, read, or write to FILE-X. To effect this type of protection,

this operating system provides the use of a password.

8/29/69 F-2 #5-618

Ay

APPENDIX F. MASS STORAGE FILE PROTECTION

Thus, in the above example, a password of PAY66164 might be used. During allocation,
the parameter PW = PAY66164 is entered. If using the load function, PW = PAY66164 is used
again. Any program processing FILE-X must have as parameter 21 of Logical I/O C's MCA
macro call a tag pointing to a field in memory which contains PAY66164,

For example:

C MCA o000 00
C 2 ;l PWORD
PWORD DCW @PAY66164@,

F.3 #5-618

{5

APPENDIX G
TERMINAL FILES

Card-image and print-image files (terminal files) can be placed temporariiy on mass
storage files to be punched or printed at a later time. These files can be created by means of
a user routine executed with Logical I/O C. File Support C can be used to process either card-
image or print-image files as a part of the unload function. (See '"Unloading Print-Image Files

to Printer'" in Section 1IV.)

CREATION OF TERMINAL FILES

To create a terminal file, the user must perform the following actions,

1. Allocate the file as a sequential file or a partitioned sequential
file.

2. Specify output processing by means of parameter 02 of the MIOC
macro call.

3. Specify parameter 40 of the MCA macro call (volume directory
exit). .

4. When the volume directory exit is taken (exit code 01), modify

character position 56 and possibly character position 57 of the
VOLDESCR entry for the file to one of the following values:

Col. 56 Value

408 = Print-image file with n control characters per item.
Position 57 contains the number of control characters
per item.

428 = Print-image file with n control characters per item

and report numbers with form adjustment. Position
57 contains the number of control characters per item.

4lg = For Mod 8 use only. Card-image file with no control
characters and any number of characters per item,
Column 57 is ignored.

other = Standard data file,
Characters 56 and 57 of the *VOLDESCR* item cannot be set by using File Support C.

See Logical I/O C, Table 3-11, for information on own-coding exit 01,

Field APD of the communication area contains the address of the *VOLDESCR* item.
See Table 3-8.

5. Place print or punch items in the file by means of PUT action
macro calls,

G-1 #5-618

APPENDIX G. TERMINAL FILES

CARD-IMAGE FILES

Any mass storage file, regardless of file organization, can be treated as a card-image

file simply by specifying a card punch as the output device type.

Each item of the file is punched in a minimum number of 80-column cards; control charac-
ters are not recognized as such and are treated as part of the data item. For compatibility with
the Mod 8 Operating System, a sequential or partitioned sequential file can be identified as a

card-image file by placing a value of 41g in character position 56 of *VOLDESCR*.

PRINT -IMAGE FILES

A print-image file is identified by a value of 408 or 428 in field 18 (character position 56)

of *VOLDESCR#*, depending upon the number and use of control characters in each item. The

I

file may be a sequential or partitioned sequential file.

If character position 56 contains 40g, the number of control character positions in each
item (as specified in character position 57 of ¥*VOLDESCR¥*) can be 0lg, 04g, or 10g8. The first
character of the item must be the C3 variant of a PDT instruction to the Type 222 Printer to be
used in printing the item. All items of the file are printed. Report number is not applicable,
nor is form adjustment. The total number of characters in the item is given in character posi-

tions 2 and 3 of ¥*VOLDESCR*. The formats of print-image items are illustrated below.

Character 57 = 0lg Character 57 = 04g Character 57 = 10g

Position Use Position Use Position Use

1 Type 222 control 1 Type 222 control 1 Type 222 control

p

2-133 print image 2-4 unused 2-8 unused

5-137 print image 9-141 print image

NOTES: 1. These values apply when a 132-character printer is being used.

2. Any additional characters beyond the indicated maximum values
are ignored.

Character position 57 of * VOLDESCR* contains the number of control characters per

item. The total number of characters per item is given in character positions 2 and 3 of

* VOLDESCR*,

G-2 #5-618

APPENDIX G. TERMINAL FILES

If character position 56 contains 42g, two additional control characters are used for each

— item to specify a report number. Print form adjustment is also permissible.

item is illustrated below.

Position Use
1 Type 222 control character.
2-3 Report number (see "Report Number
Parameter' in Section IV.)
4 If the bit configuration of this field is
xxxlxx, a halt occurs after printing of
this item. Use of this option, in con-
junction with File Support C, enables
'the operator to align forms.
If the bit configuration of this field
is xxx0xx, no halt occurs.
5-8 Reserved (see note).
9-140 Print image.
141-144 Reserved (see note).
NOTE: This field is reserved to provide compatibility
with the Mod 8 Operating System. If compatibility
N with Mod 8 is not desired, this field can be deleted.
N

The format of an

#5-618

AD
BUFFER ADDRESS (AAD)s D=15

ACCES

S
CLOSING INDEXED SEQUENTIAL AND
DIRECT ACCESS FILESe 3-10
COMPRISING BETWEEN ACCESS TIME AND
STORAGE CAPACITYs (=22
CUMULATIVE LOADING OF A DIRECT
ACCESS FILE, 2-25
DIRECT ACCESSe 3-71
DIRECT ACCESS ADDRESSING. 3-70
DIRECT ACCESS FILE
CONSIDERATIONSs C~10
DIRECT ACCESS FILE
ORGANIZATIONs 2=20
DIRECT ACCESS FILESy 5-57
DIRECT ACCESS FILES AND KEYSe 2=24
INSERTING ITEMS IN DIRECT ACCESS
FILESs 3=-21
LOADING A DIRECT ACCESS FILE,s 5-57
OPENING DIRECT ACCESS FILESe 3=9
OPTIMIZING ACCESS TIMEs C-18
REPLACING ITEMS ‘IN DIRECT ACCESS
FILESe 3~16
RETRIEVING ITEMS IN DIRECT ACCESS
FILESs 3-13
SUMMARY OF MSGET MACRO FUNCTIONS
FOR DIRECT ACCESS FILESs 315
UNLOADING A DIRECT ACCESS
FILEs 5-57

ACTION

ACTION MACRO CALLSs 3=54+ D=10
ACTION MACRO CALLS FOR EACH FILt
TYPE IN EACH PROCESSING MODEs 3=6
ACTION MACRO CALLS (FOR PARTITIUNED
SEQUENTIAL FILES ONLY) s 3-17
ACTION MACRO PROCESSING

FUNCTIONS. 3-4

ACTION MACRO ROUTINESe 3«2+ D=4

CONSIDERATIONS FOR ACTION MACRO
ROUTINESs D=17

CORRECTIVE ACTION FOR USER®*S ERROR
ROUTINEs D=21

ISSUE NEw ACTION MACRO CALLs D=¢l
LOKDEV ACTION MACRO ROUTINEs D=i8

READ ACTIONs D=2

READ ACTION MACRO CALL. D-10

READ ACTION MACRO RQUTINEs D-17
RESTORE ACTIONs D=2

RESTORE ACTION MACRO CALLe D-11
RESTORE ACTION MACRO ROUTINE, D-l8
SEEK ACTIONs D=2

SEEX ACTION MACRO CALLe D=-11
SUMMARY OF ACTION MACRO CALL
CODINGs 3-63

VERIFY ACTIONe D=2

VERIFY ACTION MACRO CALLe D=1}
VERIFY ACTION MACRO ROUTINEs D-i8
WAIT ACTIONs D=2

WAIT ACTION MACRO CALLs D=1l

WAIT ACTION MACRO ROUTINEs D-18
WRITE ACTIONe D=2

WRITE ACTION MACRO CALL, D-10
WRITE ACTION MACRO ROUTINE, D-17

ADDITIONAL

ADDITIONAL USABLE EQUIPMENT, 1=/

ADDITIONS

FILE ADDITIONSs C-1

ADDRESS

ADDRESS MODEe 3=69s D=12

ADDRESS REGISTER CONTENTS AT TIME
OF ERROR EXIT (EDF)» D~20

BUFFER ADDRESS (AAD)s D=15%

CONTROL UNIT CURRENT ADDRESS ANv
STATUSs D-16

FIXED PERIPHERAL ADDRESS
ASSIGNMENTe D~-13

INDEX

MPCA CONTROL UNIT CURRENT ADDRESS
AND STATUS FIELDs D=16
PERIPHERAL ADDRESS

ASSIGNMENTs D-14

PERIPHERAL ADDRESS ASSIGNMENT AND
RWC CONFIGURATION
CONSIDERATIONSs D-13

VARIABLE PERIPHERAL ADDRESS
ASSIGNMENTs D-13

ADDRESSES

INVALID BUCKET ADDRESSESs 4-62

ADDRESSING

AL

AL

AL

AL

AN

AN

ARE

DIRECT ACCESS ADDRESSINGs 3-70
RANDOMIZING ADDRESSINGe E=1

LOCATE

ALLOCATE s 4<2

ALLOCATE FUNCTION, 4=9

JOB CONTROL LANGUAGE EXAMPLE FOR

ALLOCATE FUNCTION, 421

JoB CONTROL LANGUAGE FOR ALLOCATE

FUNCTIONe 4=10

PROTECTION DURING ALLOCATEs 4=70
SUMMARY OF JOB CONTROL STATEMENTS

FOR ALLOCATE FUNCTIONs 4=24

LOCATING
ALLOCATING AN INDEXED SEQUENTIAL
FILEs 4-59

LOCATION

ALLOCATIONs 2=9¢ 2+10¢ 2=23¢ C=4s
Ce12¢ C=24

ALLOCATION CONVENTIONSs 2=6
ASSIGNMENT OF UNITS OF
ALLOCATIONe C=3

DATA UNIT OF ALLOCATION, 4=19
FAILURE DURING ALLOCATIONs 4=93
FAILURE DURING ALLOCATION AND
DEALLOCATION, 4=93

FILE DESIGN AND ALLOCATIONs C~1
ILLUSTRATION OF UNITS OF ALLOCATION
= TYPE 261 OR TYPE 262 DISK
FILEy 2=7

JoB CONTROL STATEMENTS FOR
ALLOCATION OF FILESs 4-10
SUMMARY OF JOB CONTROL STATEMENTS
FOR ALLOCATION FUNCTIONs 4=25
UNITS OF ALLOCATION, 2-6

TER

ALTER MEMBER (MALTER)s 3-60

ALTER STATUS OF MEMBER
(MALTER)s 3-19

ALYSIS
FREQUENCY ANALYSIS, E=7

C
COMMUNICATION AREA SERVICE MACRO
ROUTINES (MLCA ANC MUCA)+ 3-50

A

COMMUNICATION AREA SERVICE MACRO
‘ROYTINES (MLCA ANC MUCA) e+ 3=50

COMMUNICATION AREA SERVICE MACRO
ROUTINES (MLCA AND MUCA) .+ 3-2

COMMUNICATION AREA FIELD
DESIGNATORSs 3=52

COMMUNICATION AREA MACRO CALL
(MPCA) » D=6

COMMUNICATION AREA MACRO ROUTINE
(MPCA) ¢+ D=3

COMMUNICATION AREA SERVICE MACRU
CALLS (MLCA AND MUCA)s D=3+ D=9

CYLINDER OVERFLOW AS PERCENTAGE OF
DATA AREAs C~13

DATA AREA, 2~-23

MASS STORAGE LOAD COMMUNICATION
AREA MACRO CALL (MLCA)+ 3-51

2

)

MASS STORAGE UNLOAD COMMUNICATION
AREA MACRO CALL (MUCA), 3-51

MNEMONIC DESIGNATORS FOR
COMMUNICATION AREA FIELDS, 352

PRIME DATA AREAs 2-11l

RELATIONSHIP BETWEEN STRING INDEX
ITEMS AND THE DATA AREA OF A
CYLINDERs 2-15

AREAS
INDEX AREASs 2-11
MAP UNUSED AREASe 4-6
OVERFLOW AREAS,y 2<12¢ 2=23

ASSIGNMENT

ASSIGNMENT OF FILES TO BE PROCESSED
CONCURRENTLYs C=4

ASSIGNMENT OF UNITS OF
ALLOCATIONe C=3

FIXeD PERIPHERAL ADDRESS
ASSIGNMENT, D=13

PERIPHERAL ADDRESS
ASSIGNMENTs D=14

PERIPHERAL ADDRESS ASSIGNMENT AND
RWC CONFIGURATION
CONSIDERATIONSs D=13

VARIABLE PERIPHERAL ADDRESS
ASSIGNMENTe D=~13

BACKUP
BACKUP PROCEDURESs 2-27
LOGICAL BACKUPe 2-27
PHYSICAL BACKUP, 2«27

BANNER=CHARACTER
BANNER=-CHARACTER PARAMETER, 4=40

BLOCK
BLOCK AND RECORD SIZES WITHIN 12K
MEMORY s 4-6
BLOCK SIZEs C=2

BLOCK=-SIZE
BLOCK~SIZE PARAMETERs 4~16

BLOCKS
RELATIONSHIP BETWEEN ITEMS RECORDS
AND BLOCKSe 2=5
RELATIONSHIP BETWEEN ITEMS RECORDS
BLOCKS AND BUCKETSs 2=24

BOOTSTRAP
BOOTSTRAP RECORDSs 2-3

BUCKET
BUCKET SIZE AND OVERFLOWe C=10
INVALID BUCKET ADDRESSESs 4=62

BUCKET=ADDRESSING
BUCKET=ADDRESSING PARAMETERs 4=-42

BUCKET=SIZE
BUCKET~SIZE PARAMETERs 4~-16

BUCKETS
RELATIONSHIP BETWEEN ITEMS RECORDS
BLOCKS AND BUCKETSs 2-24

BUFFER
BUFFER ADDRESS (AAD)s D=15

BYPASS
BYPASS ERROR CONDITIONs D=2}

CALL

COMMUNICATION AREA MACRO CALL
(MPCA)+ D=6

CONTROL MACRO CALL (MPIOC)s D=4
ISSUE NEW ACTION MACRO CALL, D=2}

MASS STORAGE LOAD COMMUNICATION
AREA MACRO CALL (MLCA), 3a5]

MASS STORAGE UNLOAD COMMUN]CAT]ION

INDEX

AREA MACRO CALL (MUCA)+ 3a51
MCA MACRO CALLes 3-38
MIOC MACRO CALLs 3=26
OMISSION OF CONSFCUTIVE PARAMETERS
FROM MACRO CALLs 3=25
OMISSION OF SINGLE PARAMETER FROM
MACRO CALL4s 3«25
PARAMETERS OF MCA MACRO CALLs 3=39
PARAMETERS OF MIOC MACRO CALL,
3=27+ 3=3p
PARAMETERS OF MPCA MACRO
CALLy D=6,1
PARAMETERS OF MPIQC MACRQ
CALLe D=4
PARAMETERS OF THE MPCA MACRO
CALLs D=6
READ ACTION MACRO CALLs D=10
RESTORE ACTION MACRO CALLs D=1}l
SEEK ACTION MACRO CALLs D=}l
SUMMARY OF ACTION MACRO CALL
CODINGs 3-63
VERIFY ACTION MACRO CALL+ D=1}
WAIT ACTION MACRO CALLe D=-11
WRITE ACTION MACRO CALL, D=-10

CALLS

ACTION MACRO CALLSs 3=544 D=10

ACTION MACRO CALLS FOUR EACH FILE
TYPE IN EACH pROCESSING MODEe 3=6

ACTION MACRO CALLS (FOR PARTITIONED
SEQUENTIAL FILES ONLY)e 3=17

COMMUNICATION AREA SERVICE MACRO
CALLS (MLCA AND MUCA)s D=3+ D=9

CAPACITY
COMPRISING BETWEEN ACCESS TIME AND
STORAGE CAPACITY, C=22
OPTIMIZING STORAGE CAPACITY,s C=20

CARD
CARD FILE FORMATS, 4«66
TAPE AND CARD FILE
CONSIDERATIONSs 4-63

CARD=IMAGE
CARD=IMAGE FILESs G=2

CHANNEL
READ/WRITE CHANNEL UTILIZATICN,
3-70s D=12

CHARACTER
DATA ITEM STATUS CHARACTER,
2-20y 2-25
SUFF1X CHARACTERs D-l4

CHECK
EXPIRATION=DATE CHECK
PARAMETERs 4=29

CLOSE
CLOSE (MSCLOS) s 3=56

CLOSING
CLOSING FILESs 3-10
CLOSING INDEXED SEQUENTIAL AND
DIRECT ACCESS FILESe 3-10
CLOSING SEQUENTIAL AND PARTITIONED
SEQUENTIAL FILES, 3-10

CODES

CONSOLE TYPEWRITER PAUSE CODES AND
MESSAGES FOR LOGICAL 1/0 C» 3-83

ExIT AND RETURN CODES FOR DATA
EXITSs 3«75

EXIT AND RETURN CODES FOR DEVICE
EXITSe 3-76

EXIT AND RETURN CODES FOR MEMBER
INDEX EXITSe 3-75

EXIT AND RETURN CODES FOR vOLUME
DIRECTORY EXITSs 3-73

HALT CODES FOR LOGICAL 1,0 C,y 3-78

JOB CONTROL HALT CODESs 4=73

CODING
SUMMARY OF ACTION MACRO CALL
CODINGs 3-63

COMMUNICATION
COMMUNICATION AREA SERVICE MACRO
ROUTINES (MLCA ANC MUCA), 3-50
COMMUNICATION AREA SERVICE MACRO
ROUTINES (MLCA AND MUCA} .+ 3-2

COMMUNICAT ION

COMMUNICATION AREA FIELD
DESIGNATORSy 3=52

COMMUNICATION ARFA MACRQ CALL
{MPCA) s D=6

COMMUNICATION AREA MACRO ROUTING
(MPCA) s D=3

COMMUNICATION AREA SERVICE MACRO
CALLS (MLCA AND MUCA)s D=3+ D=9

MASS STORAGE LOAD COMMUNICATION
AREA MACRO CALL (MLCA)e 3e51

MASS STORAGE UNLOAD COMMUNICATION
AREA MACRO CALL (MUCA)s 3-51

MNEMONIC DESIGNATORS FOR
COMMUNICATION AREA FIELDS, 3-52

OWN=CODING COMMUNICATION WITH
LOAD«UNLOAD FUNCTIONs 4«62

CONCEPT
DISK PACK CYLINDER CONCEPT = TYPE
259 DISK PACK DRIVESs 2=-2

CONCURRENTLY
ASSIGNMENT OF FILES TO BE PROCESSED
CONCURRENTLY s C=4

CONDITION
BYPASS ERROR CONDITIONe D=-21

CONDITIONS

CONDITIONS RELATED TO NON=-MASS
STORAGE FILEs 4=71

CONDITIONS SPECIFIC TO FILE SUPPORT
Co 4=T7

FILE RELATED CONDITIONSs 4=72

FILE-RELATED CONDITIONSy 4-84

JOB CONTROL FILE CONDITIONS.

L=T2¢ 4=84

PERIPHERAL CONDITIONSy 4=Tls 4=83
TYPEWRITER MESSAGES FOR CONDITIUNS
RELATED TO NON~MASS STORAGE
FILESe 4-83

CONF IGURATION
AVAILABLE MEMORY PER 1/0 MgDIA FOR
12K CONFIGURATION, 4=7
PERIPHERAL ADDRESS ASSIGNMENT AND
RWC CONF IGURATION
CONSIDERATIONS D-13

CONSECUTIVE
OMISSION OF CONSECUTIVE PARAMETLRS
FROM MACRO CALLs 325

CONSOLE

CONSOLE TYPEWRITER OPERATING
PROCEDURES, 3-82

CONSOLE TYPEWRITER PAUSE CODES AND
MESSAGES FOR LOGICAL 1/0 Cv 3-83

JNB CONTROL FILE CONSOLE TYPEWRITER
MESSAGESs -85

OPERATOR CONTROL WITH CONSOLE
TYPEWRITER, 4-83

CONTROL
CONTROL MACRO CALL (MP10C)s D=4
CONTROL MACRO ROUTINE (MPIOC)+s v=3
CONTROL PANEL OPERATING
PROCEDURES+ 3-77
CONTROL UNIT CURRENT ADDRESS ANV

STATUSs D=16

INPUT/QUTPUT CONTROL MACRO ROUTINE
(MIOC) e 3-26

JOB CONTROL FILE CONDITIONS.
472+ 4=84

JOR CONTROL FILE CONSOLE TYPEWRIITER
MESSAGESs 4=-85

JoB CONTROL FOR A SEQUENCE OF
OPERATIONSs 4-9

JoB CONTROL FOR A SINGLE
OPERATIONs 4~8

JOB CONTROL HALT CODESs 4=73

JOB CONTROL tANGUAGE EXAMPLE FOR
ALLOCATE FUNCTION, 4«21

JOB8 CONTROL LANGUAGE EXAMPLE FOR
DEALLOCATE FUNCTIONs 4=31

JOB CONTROL LANGUAGE EXAMPLES FOUR
LOAD AND UNLOAD FUNCTIONS, 445

JOB CONTROL LANGUAGE EXAMPLES FUR
MAP FUNCTIONs 4=54

JOB CONTROL LANGUAGE FOR ALLOCATE
FUNCTIONs 4<«10

JOB CONTROL LANGUAGE FOR DATA
MANAGEMENT SURSYSTEMs 1=6

JOB CONTROL LANGUAGE FOR DEALLOCATE
FUNCTION,y 428

JOB CONTROL LANGUAGE FOR FILE
SUPPORT Ce 4=8

JOB CONTROL LANGUAGE FOR LQAD AND
UNLOAD FUNCTIONSe 4=35

JOB CONTROL LANGUAGE FOR MAP
FUNCTIONs 4=51

JOB CONTROL STATEMENTS FOR
ALLOCATION OF FILFSs 4=10

JOB CONTROL STATEMENTS FOR
DEALLOCATE FUNCTIONe 4=28

JOB CONTROL STATEMENTS FOR LOADING
AND UNLOADING FILESs 4=35

MASS STORAGE INPUT/OUTPUT CONTRUL
MACRO ROUTINE (MIOC)e 3=2

MPCA CONTROL UNIT CURRENT ADDRESS
AND STATUS FIELDs D=l6

OPERATOR CONTROL AND MESSAGES FUR
FILE SUPPORT Cs 4=70

OPERATOR CONTROL WITH CONSOLE
TYPEWRITER, 4-83

OPERATOR CONTROL WITH CONTROL
PANEL s 4=T70

SUMMARY OF JOB CONTROL STATEMENIS
FOR ALLOCATE FUNCTIONs 4=24

SUMMARY OF JOB CONTROL STATEMENIS
FOR ALLOCATION FUNCTIONe 4«25

SUMMARY OF J0OB CONTROL STATEMENIS
FOR DEALLOCATE FUNCTION.

4=33y 4=34

SUMMARY OF JOB CONTROL STATEMENTS
FOR LOAD AND UNLOAD

FUNCTIONSs 4=48

SUMMARY OF JOB CONTROL STATEMENIS
FOR LOAD/UNLOAD FUNCTJONSe 4=~49

SUMMARY OF JOB CONTROL STATEMENIS
FOR MAP FUNCTIONs 4=55¢ 4=5¢

CONVENTIONS
ALLOCATION CONVENTIONSs 2-6
DATA CONVENTIONSe 24
DATA MANAGEMENT CONVENTIONS,
1=1s 2-1
FILE ORGANIZATION CONVENTIONS, ¢-8
PROCESSING CONVENTIONSs 2+26
VOLJUME CONVENTIONS, 2«1

CONVERSION
RADIX CONVERSIONs E=4

CORRECTION
RF«EXECUTION OF CORRECTION
PROCEDUREs D=~20

CORRECTIVE
CORRECTIVE ACTION FOR USER®S gRKOR
ROJTINEs D=2]

2

CREATION
CREATION OF TERMINAL FILES. Gel

CRITERIA
FILE DESIGN CRITERIAs Ce}

CUMULATIVE
CUMULATIVE LOADING OF A DJRECT
ACCESS FILEs 2-25

CURRENT
CONTROL UNJT CURRENT ADDRESS AND
STATUSy D=16
END PROCESSING OF CURRENT MEMEBER
(ENDM) 4 3-18
MPCA CONTROL UNIT CURRENT ADDRESS
AND STATUS FIELDy D-16

CYLINDER

CYLINDER OVERFLOW AS PERCENTAGE OF
DATA AREAs C=13

CYLINDER OVERFLOW=SIZE

PARAMETERe 4=16

DISK PACK CYLINDER CONCEPT « TYPE
259 DISK PACK DRIVESe 2-2

RELATIONSHIP BETWEEN ITEMS OF THE
MASTER AND CYLINDER INDEXe 2=14

RELATIONSHIP BETWEEN STRING INDEX
ITEMS AND THE DATA AREA OF A
CYLINDERs 2-15

SEEKING A DESIRED CYLINDER., 3-22

CYLINDERS
DATA CYLINDERS REQUIRED, C=24

DATA

CYLINDER OVERFLOW AS PERCENTAGE OF
DATA AREA, C-13

DATA AREAs 2-23

DATA CONVENTIONSes 2-4

DATA CYLINDERS REQUIREDs C=24

DATA ITEM STATUS CHARACTER,
2=20y 2-25

DATA ITEMSe 4=67

DATA MANAGEMENT CONVENTIONS,
I=1y 2«1

DATA RECORDSs 4=65

DATA STRUCTURE. 2=9

DATA UNIT OF ALLOCATIONs 4-19
EQUIPMENT REQUIREMENTS FOR DATA
MANAGEMENT SUBSYSTEM, 17

EXIT AND RETURN CODES FOR DATA
EXITS5y 3=7%

FILE-EXPIRATION DATA
PARAMETERs 4=14

JOB CONTROL LANGUAGE FOR DATA
MANAGEMENT SUBSYSTEMy 1=6

PRIME DATA AREAs 2-11

RELATIONSHIP BETWEEN STRING INDEX
ITEMS AND THE DATA AREA OF A
CYLINDERy 2=15

DAy
DAY STATEMENT s 4«21¢ 4=31y 4=53

DEALLOCATE
DEALLOCATEs 4=2
DEALLOCATE FUNCTION, 4=28
JOB CONTROL LANGUAGE EXAMPLE FOR
DEALLOCATE FUNCTIONe 4=3]
JOB CONTROL LANGUAGE FOR DEALLOCATE
FUNCTIONs 4-28
JOB CONTROL STATEMENTS FOR
DEALLOCATE FUNCTION+ 4=28
PROTECTION DURING DEALLOCATE, 4=170
SUMMARY OF JOB CONTROL STATEMENTS
FOR DEALLOCATE FUNCTION,
4e33y 4=34

DEALLOCAT]ON
FAILURE DURING ALLOCATION AND
DEALLOCATIONs 4-93

FAILURE DURING DEALLOCATIONs 4~94

INDEX

DELETE
DELETE (MSDEL)+ 3-59

DELETED
USING THE ITEM POSITION OF A
DELETED ITEM» 2-22

DELETING . _
DELETING ITEMS FROM FILES, 3-21

DELETION
DELETION OF AN ITEM FROM A
STRINGs 2~-21

DESIGN
DESIGN CONSIDERATIONSs Cel?
FILE DESIGN. AND ALLQCATIONs C=1
FILE DESIGN CRITERIAs Cel
GENERAL FILE DESIGN
CONSIDERATIONS+ C-2

DESIGNATORS
COMMUNICATION AREA FIELD
DESIGNATORSs 3~52
MNEMONIC DESIGNATORS FOR
COMMUNICATION AREA FIELDSs 3-52
MNEMONIC DESIGNATORS FOR MLCA AND
MUCAs D=9

DEVICE
DEVICE PROTECTION, D-14
EXIT AND RETURN CODES FOR DEVICE
EXITSy 3-76
MINIMUM DEVICE REQUIREMENTS FOR
MASS STORAGE FILE
ORGANIZATIONSs 4=39

DEVICE=-ADDRESS
DEVICE=~-ADDRESS PARAMETERs 4=lé4s
42300 4238y 4=524 4=54
DEVICE-ADDRESS PARAMETERSs 4~20

DEVICE~TYPE
DEVICE=~TYPE PARAMETERs 4=37, 4=54

DIAGNOSTICS
FILE SUPPORT DJAGNOSTICS FOR 5040
HALT e 4=74

DIsSK

DISK PACK CYLINDER CONCEPT = TYPE
259 DISK PACK DRIVESs 2=2
ILLUSTRATION OF UNITS OF ALLOCATION
= TYPE 261 OR TYPE 262 DISK

FILEe 2=-7

OPTIMUM RECORD SIZE - TYPE 261 OR
TYPE 262 DISK FILESs C=7

OPTIMUM RECORD SIZE = TYPES 258 259
OR 259A DISK PACK DRIVESs C=5

DISTRIBUTION
DISTRIBUTION AND VOLATILITY, C=17

DIVISION
PRIME NUMBER DIVISIONy E=l

DRIVES
DISK PACK CYLINDER CONCEPY - TYPE
259 DISK PACK DRIVESs 2-2
OPTIMUM RECORD SIZE « TYPES 258 259
OR 259A DISK PACK DRIVESs CeS

EAD
USER*S UNCORRECTABLE ERROR ROUTINE
ENTRANCE (EAD)+ D-15

EDF
ADDRESS REGISTER CONTENTS AT TIME
OF ERROR EXIT (EDF)s D=20

ELEMENTS
LANGUAGE ELEMENTS FOR LOGICAL I/0

Ce 3=23
LANGUAGE ELEMENTS OF PHYSICAL 1/0
Co Dwa

END
END MEMBER (ENDM) 4 3-60
END PROCESSING OF CURRENT MEMEBER
(ENDM) + 3~18

ENDM
END MEMBER (ENDM)+s 3=6Q
END PROCESSING OF CURRENT MEMEBER
(ENOM} + 318

ENFOLD
SQUARE ENFOLD AND EXTRACT, E=-2

EQUIPMENT
ADDITIONAL USABLE EGUIPMENT, 1-7
EQUIPMENT REQUIREMENTS FOR DATA
MANAGEMENT SUBSYSTEMs 1=7
REQUIRED EQUIPMENT. 1-7

ERI
ERROR TYPE INDICATOR (ERI}s D=~19

ERROR .

ADDRESS REGISTER CONTENTS AT TIME
OF ERROR EXIT (EDF)s D-20

BYPASS ERROR CONDITIONs D=21
CORRECTIVE ACTION FOR USER'S ERROR
ROUTINEs D=21

ERROR YYPE INDICATOR (ERI)y D-l19
USER'S UNCORRECTABLE ERROR
ROUTINEs D=-19

USER®S UNCORRECTABLE ERROR ROUTINE
ENTRANCE (EAD)s D~15

EXAMPLE
JOB CONTROL LANGUAGE EXAMPLE FOR
ALLOCATE FUNCTION+s 4=21
JOB CONTROL LANGUAGE EXAMPLE FOR
DEALLOCATE FUNCTIONs 4=31l

EXAMPLE=OPTIMIZATION
EXAMPLE-OPTIMIZATION FOR AN INDEXED
SEQUENTIAL FILEe C=23

EXAMPLE=SUMMARY
EXAMPLE«SUMMARY OF OPTIMUM
POINTSy C-23

EXAMPLES
JOB CONTROL LANGUAGE EXAMPLES FOR
LOAD AND UNLOAD FUNCTIONS+ 4=45
JOB CONTROL LANGUAGE EXAMPLES FOR
MAP FUNCTIONe 4=54

EXECUTE
EXECUTE STATEMENTs 4=8¢ 4=11s
4=28y 4=36¢ 4=51
FORMAT OF FILE SUPPORT C EXECUTE
STATEMENT e 48

EXECUTION
PROTECTION OF MASS STORAGE DURING
EXECUTION OF FILE SUPPORT C4 4=70

EXIT

ADDRESS REGISTER CONTENTS AT TIME
OF ERROR EXIT (EDF)+ De20

EXIT AND RETURN CODES FOR DATA
EXITSs 3=75

EXIT AND RETURN CODgS FOR DEVICE
EXITSes 3-76

EXIT AND RETURN CODgS FOR MEMBER
INDEX EXITSs 3=75

EXIT AND RETURN CODES FOR VOLUME
DIRECTORY EXITSy 373

EXITS
EXIT AND RETURN CODES FOR DATA
EXITSe 3=75
EXIT AND RETURN CODES FOR DEVICE
EXITSes 3=76
EXIT AND RETURN CODES FOR MEMBER
INDEX FX1TSs 3=75

INDEX

EXIT AND RETURN CODES FOR yOLUME
DIRECTORY EXITSe 3-73

EXITS AND HALTSe 3=72

EXITS STATEMENT s 4=ié

EXPIRATION=DATE
EXPIRATION=-DATE CHECK
PARAMETER s 4«29

EXPIRED
MAP EXPIRED FILESe 4=6

EXTRACT
SQUARE ENFOLD AND EXTRACTs E=2

FAILURE
FAILURE DURING ALLOCATIONs 4=93
FAILURE DURING ALLOCATION AND
DEALLOCATIONy 4=93
FAILURE DURING DEALLOCATIONs 4=94

F1ELD
COMMUNICATION AREA FIELD
DESIGNATORS 3-52
MPCA CONTROL UN]T CURRENT ADDRESS
AND STATUS FIELDe D=16

FIELDS
FIELDS OF FIRST ITEM IN MEMBER
INDEXs B=2
FIELDS OF LAST ITEM IN MEMBER
INDEXs B=3

FIELDS OF MEMBER INDEX ITEMS. B8=2
MNEMONIC DESIGNATORS FOR
COMMUNICATION AREA FIELDSe 3=52

FILE

ACTION MACRO CALLS FOR EACH FILE
TYPE IN EACH PROCESSING MODEs 3=6

ALLOCATING AN INDEXED SEQUENTIAL
FILEs 4-59

CARD FILE FORMATSs 4=~66

CONDITIONS RELATED TO NON=MASS
STORAGE FILEs 4=71

CONDITIONS SPECIFIC TO FILE SUPPORT
Ce 4=77

CUMULATIVE LOADING OF A DIRECT
ACCESS FILEe 2=-25

DIRECT ACCESS FILE

CONSIDERATIONSy C-10

DIRECT ACCESS FILE
ORGANIZATION, 2=20

DIRECTLY PROCESSING AN INDEXED
SEQUENTIAL FILEe 2-13

EXAMPLE=OPTIMIZATION FOR AN INDEXED
SEQUENTIAL FILEes C=23

FILE ADDITIONSy C~1

FILE CONSIDERATIONSs 5-57

FILE DESCRIPTION MACRO ROUTINE
(MCA)y 3=24y 338

FILE DESIGN AND ALLOCATION, C=1l

FILE DESIGN CRITERIAy Ca]

FILE INQUIRIESs C~-1

FILE ORGANIZATION, 2=-23

FILE ORGANIZATION CONVENTIQNS+e 2=8

FILE PREFIXs D=l15

FILE PROCESSING FUNCTIONSs 227

FILE PROCESSING MODES, 3-4

FILE PROTECTION, F-)

FILE RELATED CONDITIONS, 472

FILE STATEMENT, 4=12+ 429, 4«53

FILE STATEMENT FOR THE LIST FILEs
4=20¢ 4=53

FILE STATEMENTSs 4-36

FILE STRUCTUREs 2~11

FILE SUPPORT Ce 4~)

FILE SUPPORT C HALTSs 4-78

FILE SUPPORT DIAGNOSTICS FOR 5040
HALTs 4=74

FILE SUPPROT C PROGRAMs 1-5

FOREGROUND /BACKGROUND PROCESSING OF
FILE SUPPORT Co 4=}

()

e

»

FORMAT OF FILE SUPPORYT C EXECUTE
STATEMENTy 4=8

FUNCTIONS OF FILE SUPPORT Co 4=2
GENERAL DESCRIPTION OF FILE SUPPORT
Co be]

GENERAL FILE DESIGN
CONSIDERATIONSs C=2

ILLUSTRATION OF UNITS OF ALLOCATION
= TYPE 261 OR TYPE 262 DISK
FILEs 2=7

INDEXED SEQUENTIAL FILE
CONSIDERATIONSy C=17

INDEXED SEQUENTIAL fFILE
ORGANIZATIONe 2=9

JOB CONTROL FILE CONDITIONS
4=T24 4~84

JoB CONTROL FILE CONSOLE TYPEWRITER
MESSAGESe 4~85

JOB CONTROL LANGUAGE FOR FILE
SUPPORT Co 4=8

LOADING A DIRECT ACCESS FILEs S5=57
LOADING A PARTITIONED SEQUENTIAL
FILEys 4=58

LOADING AN INDEXED SEQUENTIAL
FILEs 4=59

LOADING BY FILEs 4=58

LOADING FILE SUPPORY C» 4=68

MAP DESCRIPTION OF A FILEs 4=2
MASS STORAGE FILE PROTECTIONs F=}

MINIMUM DEVICE REQUIREMENTS FOR
MASS STORAGE FILE
ORGANIZATIONSs 4=39

MIXED FILE ORGANIZATIONSs 4=60
MULTIVOLUME FILE PROCESSINGe C=3

OMITTING ITEMS FROM THE OUTPUT
FILEe 4=62

OPENING AN INDEXED SEQUENTIAL
FILEes 3-8

OPERATING PROCEDURES FOR FILE
SUPPORT Co 4«68

OPERATOR CONTROL AND MESSAGES FUR
FILE SUPPORT Cs 4=70

PARTITIONING A SEQUENTIAL

FILEes B=]

PROCESSING A PARTITIONED SEQUENTIAL
FILE BY MEMBER NAMES, 4-58

PROGRAMMER 'S PREPARAT]ON
INFORAMTION FOR FILE SUPPORTY

Ce 5=57

PROTECTION OF MASS STORAGE DURING
EXECUTION OF FILE SUPPORT Cy 4=70

RELEASE COMPLETE FILE TO UNUSED
STATE (MSREL)s 3«19

SEQUENTIAL FILE

CONSIDERATIONSs Ce=é

SEQUENTJAL FILE ORGANIZATIONy 2-8

SEQUENTIAL FILE USING PARTITIONING
OPTIONs Be=4

TAPE AND CARD FJILE

CONSIDERATIONS s 4«63

TYPEWRITER MESSAGES SPECIFIC TO
FILE SUPPORT C» 4=86

UNLOADING A DIRECT ACCESS

FILEs 5-57

UNLOADING A PARTITIONED SEQUENTIAL
FILEs 4=58

UNLQADING AN INDEXED SEQUENTIAL
FILEs 4=60

UNLOADING BY FILEs 4=58

FILE~EXPIRATION

FILE~EXPIRATION DATA
PARAMETERs 4=14

FILE=NAME

FILE-NAME PARAMETER, 4=12
4=29y 4=37

FILE~ORGANIZATION

FILE-ORGANIZATION PARAMETER, 4=12

INDEX

FILE=-RELATED
FILE=-RELATED CONDITIONSe 4«84

FILES

ACTION MACRO CALLS (FOR PARTITIONED
SEQUENTIAL FILES ONLY) s 3«17

ASSIGNMENT OF FILES TO BE PROCESSED
CONCURRENTLY s Ceé

CARD=IMAGE FILESe+ G=2

CLOSING FILES, 3-10

CLOSING INDEXED SEQUENTIAL AND
DIRECT ACCESS FILESs 3-10

CLOSING SEQUENTIAL AND PARTITIONED
SEQUENTIAL FILESe 3~-10

CREATION OF TERMINAL FILESs Gel

DELETING ITEMS FROM FILESe 3=21

DIRECT ACCESS FILESe 5=57

DIRECT ACCESS FILES AND KEYSe 2-24
INDEXED SEQUENTIAL FILESs 4=59
INSERTING ITEMS IN DIRECT ACCESS
FILESe 3«21

INSERTING ITEMS IN FILES, 3-20
INSERTING ITFMS IN INDEXED
SEQUENTIAL FILESs 3=20

JOB CONTROL STATEMENTS FOR
ALLOCATION OF FILESe 4«10

JOB CONTROL STATEMENTS FOR LOADING
AND UNLOADING FILESs 4=35

MAP EXPIRED FILESs 4~=6

OPENING DIRECT ACCESS FILESe 3»9

OPENING FILESs 3=6

OPENING PARTITIONED SEQUENTIAL
FILESe 3-8

OPENING SEQUENTIAL FILESs 3=¢

OPTIMUM RECORD SIZE = TYPE 261 OR
TYPE 262 DISK FILESs Ce7

PARTITIONED SEQUENTIAL FILESe 4=58

PRINT=-IMAGE FILESs G=2

PUTTING ITEMS TO SEQUENTIAL AND
PARTITIONED SEQUENTIAL

FILESe 317

RANDOM PLUS SEQUENTIAL FILESe C=2

RANDOM VERSUS SEQUENTIAL
FILESs C=2

REPLACING ITEMS IN DIRECT ACCESS
FILESe 3=16

REPLACING ITEMS IN FILESe 3-15

REPLACING ITEMS IN INDEXED
SEQUENTIAL FILESe 3=16

REPLACING ITEMS IN SEQUENTIAL AND
PARTITIONED SEQUENTIAL

FILESy 3-16

RETRIEVING ITEMS IN DIRECT ACCESS
FILESe 3-13

RETRIEVING ITEMS IN FILESs 3ell

RETRIEVING ITEMS IN INDEXED
SEQUENTIAL FILESs 3-12

RETRIEVING ITEMS IN SEQUENTIAL AND
PARTITIONED SEQUENTIAL

FILESy 3=11

SEQUENTIAL FILESe 5-57

SUMMARY OF MSGET MACRO FUNCTIONS
FOR DIRECT ACCESS FILESe 3=15
TERMINAL FILESs G-l

TYPEWRITER MESSAGES FOR CONDITIONS
RELATED TO NON=MASS STORAGE
FILESe 4-83

UNLOADING MASS STORAGE FILES ONTO
PRINTERs 4=67

FIXED
FIXED PERIPHERAL ADDRESS
ASSIGNMENT D~13

FOREGROUND /BACKGROUND
FOREGROUND /BACKGROUND PROCESSING OF

FILE SUPPORT Ce 4=l

FORMAT
FORMAT OF FILE SUPPORT C EXECUTE
STATEMENT s 4=8

FORMATS
1/72-INCH TAPE FORMATSs 4«63
CARD FILE FORMATS, 4=66

FORMATTING
FORMATTING AND VOLUME
PREPARATIONs 2-3

FUNCTION

ALLOCATE FUNCTIONs 4=9

DEALLOCATE FUNCTION, 4-28

FUNCTION STATEMENTs 4=124 4=299s
4=36y 4«51

JOB CONTROL LANGUAGE EXAMPLE FOR
ALLOCATE FUNCTION. 4=21

JOB CONTROL LANGUAGE EXAMPLE FOR
DEALLOCATE FUNCTIONe 4=3]

JOB CONTROL LANGUAGE EXAMPLES FOR
MAP FUNCTIONs 4=54

JOB CONTROL LANGUAGE FOR ALLOCATE
FUNCTIONs 4-10

JOg CONTROL. LANGUAGE FOR DEALLOCATE
FUNCTIONs 4-28

JOB CONTROL LANGUAGE FOR MAP
FUNCTIONy 451

JOB CONTROL STATEMENTS FOR
DEALLOCATE FUNCTIONs 4=28

LISTING OF SAMPLE UNLOAD~TO=PRINTER
FUNCTIONy 4=69

MAP FUNCTIONs 4=51

OWN=CODING COMMUNICATION WITH
LOAD-UNLOAD FUNCTIONs 4=62
SUMMARY OF JOB CONTROL STATEMENTS
FOR ALLOCATE FUNCTIONs 4-2%

SUMMARY OF JOB CONTROL STATEMENTS
FOR ALLOCATION FUNCTIONs 4«25

SUMMARY OF JOB CONTROL STATEMENTS
FOR DEALLOCATE FUNCTION.

4=33y 434

SUMMARY OF JOB CONTROL STATEMENTS
FOR MAP FUNCTIONs 4=55¢ 4=~56

FUNCTIONS

ACTION MACRO PROCESSING
FUNCTIONSe 3=4

FILE PROCESSING FUNCTIONSs 2-27
FUNCTIONS OF FILE SUPPORT Cs 4=2
JoB CONTROL LANGUAGE EXAMPLES FOR
LOAD AND UNLOAD FUNCTIONSe 4«45
JOB CONTROL LANGUAGE FOR LOAD AND
UNLOAD FUNCTIONSs 4=35

LAQD. AND UNLAOD FUNCTIONSs 4=-33

NUMBER. OF FUNCTIONS PERFORMED: 4=6
SUMMARY OF JOB CONTROL STATEMENTS
FOR LOAD AND UNLOAD

FUNCTIONS» 4=48

SUMMARY OF JOB CONTROL STATEMENTS
FOR LOAD/UNLOAD FUNCTIONSs 4«49
SUMMARY OF MSGET MACRO FUNCTIONS
FOR DIRECT ACCESS FILESe 3=15

GENERAL
ENTRANCE TO GENERAL OVERFLOW, 4=63
GENERAL DESCRIPTION OF FILE SUPPURT
Co 4=l
GENERAL FILE DESIGN
CONSIDERATIONSs C=2
GENERAL OVERFLOW PARAMETER, 4-13

GET
GET (MSGET)e 3=56

HALT
FILE SUPPORT DIAGNOSTICS FOR 5040
HALTy 4-74
HALT CODES FOR LOGICAL 1/0 Cs 3=78
JOB CONTROL HALT CODESs 4=73

INDEX

HALTS
EXITS AND HALTSs 3-72
FILE SUPPORT C HALTSs 478

HEADER
HEADER LABEL+ 4=63,y 4-66

TLLUSTRATION
ILLUSTRATION OF UNITS OF ALLOCATION
- TYPE 261 OR TYPE 262 DISK
FILEs 2=7

IMBED :
IMBED PARAMETERs 4=43

INDEX

ExIT AND RETURN CODES FOR MEMBER
INDEX EXITSs 3=75

FIELDS OF FIRST ITEM IN MEMBER
INDEX s B=2

F1ELDS OF LAST ITEM IN MEMBER
INDEX s B3

FIELDS OF MEMBER INDEX ITEMSe B=2
INDEX AREASs 2«11

INDEX REGISTERSs 3-69

MASTER/CYLINDER INDEX

PARAMETERs 4=-18

RELATIONSHIP BETWEEN ITEMS OF THE
MASTER AND CYLINDER INDEXs 2-14

RELATIONSHIP BETWEEN STRING INDEX
ITEMS AND THE DATA AREA OF A
CYLINDERs 2=15

TRACKS REQUIRED FOR MASTER/CYLINDER
INDEXes C=25

USE OF INDEX REGISTERSs D=13

INDEXED

ALLOCATING AN INDEXED SEQUENTIAL
FILEs 4=59

CLOSING INDEXED SEQUENTIAL AND
DIRECT ACCESS FILESe 3~10

DIRECTLY PROCESSING AN INDEXED
SEQUENTIAL FILEs 2«13
EXAMPLE=OPTIMIZATION FOR AN INDEXED
SEQUENTIAL FILEs C-23

INDEXED SEQUENTIALs 3-72
INDEXED SEQUENTIAL FILE
CONSIDERATIONS, C-17

INDEXED SEQUENTIAL FILE
ORGANIZATIONs 2-9

INOEXED SEQUENTIAL FILESe 4-59
INSERTING ITEMS IN INDEXED
SEQUENTIAL FILESe 3-20

LOADING AN INDEXED SEQUENTIAL
FILEs 4=59

OPENING AN INDEXED SEQUENTIAL
FILEs 3-8 ’
REPLACING ITEMS IN INDEXED
SEQUENTIAL FILES. 3-16
RETRIEVING 1TEMS IN INDEXED
SEQUENTIAL FILESs 3-12

UNLOADING AN INDEXED SEQUENTIAL
FILEy 4~60

INDEX=SIZE
INDEX=SIZE PARAMETERs 4=16

INDICATOR
ERROR TYPE INDICATOR (ERI)s D-19

INFORAMTION
PROGRAMMER 'S PREPARATION
INFORAMTION FOR FILE SUPPQRT
Cs 5=57

INFORMATION
PROGRAMMER 'S PREPARATION
INFORMATION FOR LOGICAL I/0
Cy 3=64
PROGRAMMER®S PREPARATION

4

INFORMATION FOR PHYSICAL 1/0
Ce D=12

INPUT~ONLY
INPUT=ONLY PROCESSING MODE+ 3=4

INPUT/0UTPUT
INPUT/0UTPUT CONTROL MACRO ROUTIEINE
(MIOC) e 3=26
INPUT/QUTPUT PROCESSING MODEs 3-4
MASS STORAGE INPUT/QUTPUT CONTROL
MACRO ROUTINE (MIOC)e 3-2

INQUIRIES
FILE INQUIRIESs C=}

IN/QUT ’
IN/QUT PARAMETERs 4-37

INSERT
INSERT (MSINS)+ 3-58

INSERTING
INSERTING ITEMS IN DIRECT ACCESS
FILESy 3=21
INSERTING ITEMS IN FILESe 3-20
INSERTING ITEMS IN INDEXED
SEQUENTIAL FILES. 3-20

INSERTION
INSERTION OF ITEMS INTO A
STRINGs 2-16

INSUFFICIENT
INSUFFICIENT SPACEs 4=62

INTRODUCTION
INTRODUCTION 1-1

INVALID
INVALID BUCKET ADDRESSES» 4-62

1/0

AVAILABLE MEMORY PER 1/0 MEDIA FOR
12K CONFIGURATIONs 4=7

CONSOLE TYPEWRITER PAUSE CODES AND
MESSAGES FOR LOGICAL 1/0 Ce 3-83

DETAILED DESCRIPTION OF PHYSICAL
1/0 C MACRO ROUTINESe D-3

HALT CODES FOR LOGICAL I/0 C,y 3-78

LANGUAGE ELEMENTS FOR LOGICAL [/0
Ce 3-23

LANGUAGE ELEMENTS OF PHYSICAL 1/0
Cs D=4

LOGICAL 1/0 Co 3~1

LOGICAL 1/0 C MEMORY
REQUIREMENTSs 3=64

LOGICAL 1/0 C PROGRAMs 1-4

OPERATING PROCEDURES FOR LOGICAL
1/0 Cy 377

OPERATING PROCEDURES FOR PHYSICAL
170 Co D=2l

PHYSICAL 1/0 C» D=1

PHYSICAL 1/0 C RELATIONSHIPS WITH
MCAs 3=69

PHYSICAL 1/0 C RELATIONSHIPS wlITH
MIOCe 3=-69

PROGRAMMER*S PREPARATION
INFORMATION FOR LOGICAL 1/0
Co 3=64

PROGRAMMER'S PREPARATION
INFORMATION FOR PHYSICAL I/0
Cs D=12

SUMMARY OF LOGICAL 1/0 C MACRO
ROUTINESy 3=24 3=3

USE OF PHYSICAL I[/0 Cs D-1

I1SSUE
ISSUE NEW ACTION MACRO CALLs De21

ITEM
DATA ITEM STATUS CHARACTER,

INDEX

2=20y 2-25

DELETION OF AN ITEM FROM A
STRINGs 2-21

FIELDS OF FIRST ITEM IN MEMBER
INDEXs B=2.

FIELDS OF LAST ITEM IN MEMBER
INDEXs B3

ITEM KEY SPECIFICATIONs 3=71
1TEM SEQUENCEs C=17

NONNUMERIC ITEM KEYSs E=5

USING THE ITEM POSITION OF A
DELETED ITEM, 2-22

I TEM=KEY
ITEM=KEY PARAMETER¢ 4«13

ITEM=LENGTH
ITEM=LENGTH PARAMETER, 4«15 4=39

1TEMS

DATA ITEMSe 4=67

DELETING ITEMS FROM FILES, 3-21

FIELDS OF MEMBER INDEX [TEMSs B-2
INSERTING ITEMS IN DIRECT ACCESS
FILESy 3«21

INSERTING ITEMS IN FILESe 3-20
INSERTING ITEMS IN INDEXED
SEQUENTIAL FILESes 3-20

INSERTION OF ITEMS INTO A

STRINGs 2-16

OMITTING ITEMS FROM THE OUTPUT
FILEs 4-62

PADDING ITEMSe 4«66

PUTTING ITEMS TO SEQUENTIAL AND
PARTITIONED SFQUENTIAL

FILESy 317

RELATIONSHIP BETWEEN ITEMS AND
RECORDSs 2-5

RELATIONSHIP BETWEEN ITEMS OF THE
MASTER AND CYLINDER INDEXe 2=-14

RELATIONSHIP BETWEEN ITEMS RECORDS
AND BLOCKSs 2<5

RELATIONSHIP BETWEEN ITEMS RECORDS
BLOCKS AND BUCKETSe 2-=24

RELATIONSHIp BETWEEN STRING INDEX
ITEMS AND THE DATA AREA OF A
CYLINDERs 2-15

REPLACING ITEMS IN DIRECT ACCESS
FILESe 3~-16

REPLACING ITEMS IN FILESs 3«15

REPLACING ITEMS IN INDEXED
SEQUENTIAL FILESs 3-16

REPLACING ITEMS IN SEQUENTIAL AND
PARTITIONED SEQUENTIAL

FILESs 3-16

RETRIEVING ITEMS IN DIRECT ACCESS
FILESy 3-13

RETRIEVING ITEMS IN FILESs 3~11

RETRIEVING TTEMS IN INDEXED
SEQUENTIAL FILESe 3-12

RETRIEVING ITEMS IN SEQUENTIAL AND
PARTITIONED SEQUENTIAL

FILESe 3=-11

JOB

JOB CONTROL FILE CONDITEIONSe
4=T24¢ 4=84

JOB CONTROL FILE CONSOLE TYPEWRITER
MESSAGESs 4«85

JOB CONTROL FOR A SEQUENCE OF
OPERATIONSy 4=9

JoB CONTROL FOR A SINGLE
OPERATIONs - 4=8

JOB CONTROL HALT CODESe 4=-73

JOB CONTROL LANGUAGE EXAMPLE FOR
ALLOCATE FUNCTIONy 4-21

JOB CONTROL LANGUAGE EXAMPLE FOR
DEALLOCATE FUNCTIONs 4=31

JoB CONTROL LANGUAGE EXAMPLES FUR
LOAD AND UNLOAD FUNCTIONSs 4=45

JOB CONTROL LANGUAGE EXAMPLES FUR
MAP FUNCTIONe 4=54

INDEX

JOB CONTROL LANGUAGE FOR ALLOCATE
FUNCTIONs 4=10
JOB CONTROL LANGUAGE FOR DATA
MANAGEMENT SUBSYSTEMs 1-6
JOB CONTROL LANGUAGE FOR DEALLOCATE
FUNCTIONs 4=28
JOB CONTROL LANGUAGE FOR FILE
SUPPORT Cs 4«8
JOB CONTROL LANGUAGE FOR LDAD AnD
UNLOAD FUNCTIONSe 4=35
JOB CONTROL LANGUAGE FOR MAP
FUNCTIONes 4=51
JOB CONTROL STATEMENTS FOR
ALLOCATION OF FILFSe 4=]10
JOB CONTROL STATEMENTS FOR
DEALLOCATE FUNCTIONs =28
JOB CONTROL STATEMENTS FOR LOADING
AND UNLOADING FILESs 4=35
SUMMARY OF JOR CONTROL STATEMENTS
FOR ALLOCATE FUNCTIONs 4=24
SUMMARY OF JOB CONTROL STATEMENTS
FOR ALLOCATION FUNCIION, 6=25
SUMMARY OF JOB CONTROL STATEMENTS
FOR 'DEALLOCATE FUNCTION,
4=33y 4=34
SUMMARY OF JOB CONTROL STATEMENTS
FOR LOAD AND UNLOAD
FUNCTIONSs 4=48
SUMMARY OF JOB CONTROL STATEMENTS
FOR LOAD/UNLOAD FUNCTIONSs 4=49
SUMMARY OF JOB CONTROL STATEMENTS
FOR MAP FUNCTION, 4=55, 4-56

KEY
ITEM KEY SPECIFICATIONs 3«71
KEY OUT OF SEQUENCF. 4=-63

KEYS
DIRECT ACCESS FILES AND KEYS, 2-24
MULTIFIELD KEYSs E=6
NONNJUMERIC ITEM KEYSs E=5

LABEL
HEADER LABELs 4=634s 4=66
TRAJLER LABEL+s 4=66¢ 4=67
VOLUME LABELe 2=3+¢ A=2
VOLUME LABEL AND VOLUME
DIRECTORY s A~}

LANGUAGE

JoB CONTROL LANGUAGE EXAMPLE FOR
ALLOCATE FUNCTION, 4=-21

JOB CONTROL LANGUAGE EXAMPLE FOR
DEALLOCATE FUNCTIONs 4=31

JOB CONTROL LANGUAGE EXAMPLES FUR
LOAD AND UNLOAD FUNCTIONSs 4=45
JOB CONTROL LANGUAGE EXAMPLES FUR
MAP FUNCTIONe 4=54

JOB CONTROL LANGUAGE FOR ALLOCATE
FUNCTIONs 4-10

JOB CONTROL LANGUAGE FOR DATA
MANAGEMENT SUBSYSTEM, =6

JOB CONTROL LANGUAGE FOR DEALLOCATE
FUNCTIONe 4-28

JOB CONTROL LANGUAGE FOR FILE
SUPPORT Cs 4=8

JOB CONTROL LANGUAGE FOR LOAD AND
UNLOAD FUNCTIONSs 4-35

JOB CONTROL LANGUAGE FOR MAP
FUNCTIONs 4=51

LANGUAGE ELEMENTS FOR LOGICAL 1/0
Ce 3=-23

LANGUAGE ELEMENTS OF PHYSICAL I/0
Ce D=t

OAD
LOAD AND UNLAQOD FUNCTIONS, 4-33
LINKING

HANDLING TRACK LINKING
RECORDSy D=18

1sT
FILE STATEMENT FOR THE LIST FILEs
4=204¢ 4=53

LISTING
LISTING OF SAMPLE UNLOAD=~TO=-PRINWTER
FUNCTIONs 4=69

LOAD

JOB CONTROL LANGUAGE EXAMPLES FOUR
LOAD AND UNLOAD FUNCTIONS. 4=4b
JOB CONTROL LANGUAGE FOR LODAD AWD
UNLOAD FUNCTIONSs 4=35

LOADs 6¢=2

MASS STORAGE LOAD COMMUNICATION
AREA MACRO CALL (MLCA)+ 3-51
SUMMARY OF JOB CONTROL STATEMENTS
FOR LOAD AND UNLOAD
FUNCTIONSs 4=48

LOADING

CUMULATIVE LOADING OF A DIRECT
ACCESS FILEs 2-25

JOB CONTROL STATEMENTS FOR LOADING
AND UNLOADING FILESe 4=35

LOADING A DIRECT ACCESS FILEs 5-57
LOADING A PARTITIONED SEQUENTIAL
FILEs 4=58

LOADING AN INDEXED SEQUENTIAL
FILEs 4~59

LOADING BY FILEs 4=58

LOADING FILE SUPPQRT Cs 4~8

LOADING FROM MASS STORAGE TO MASS
STORAGEs 4~-59

LOADING OR UNLOADINGs 4«60

LOADING SELECTED MEMBERSs 4-58

PROGRAM SEGMENT LOADINGs 3~-68

LOAD-UNLOAD
OWN=CODING COMMUNICATION WITH
LOAD~UNLOAD FUNCTIONs 4=62
PROTECTION DURING
LOAD=UNLOAD 4=70

LOAD/UNLOAD
SUMMARY OF JOB CONTROL STATEMENTS
FOR LOAD/UNLOAD FUNCTIONSe 4=49

LOCATION
SET LOCATION (SETL}e 3~62
SETTING PROCESSING TO A SPECIFItD
LOCATIONs 3=22

LOGICAL
CONSOLE TYPEWRITER FAUSE CODES AND
MESSAGES FOR LOGICAL 1/0 Cs 3-83
HALT CODES FOR LOGICAL 1/0 Cy 3-78
LANGUAGE ELEMENTS FOR LOGICAL I/U
Ce 323
LOGICAL BACKUP¢ 2«27
LOGICAL I/0 Cs 3-1
LOGICAL I/0 C MEMORY
REQUIREMENTS s 364
LOGICAL I1/0 C PROGRAM,y 1-4
OPERATING PROCEDURES FOR LOGICAL
1/0 Ce 3«77
PROGRAMMER*S PREPARATION
INFORMATION FOR LOGICAL 1/0
Co 3=64
SUMMARY OF LOGICAL 1/0 € MACRO
ROUTINESs 3=2+ 3=3

LOKDEV
LOKDEV ACTION MACRO ROUTINEs D=8

LOW=MEMORY=ADDRESS
LOWSMEMORY=-ADDRESS PARAMETER,s 4=45

MACRO
ACTION MACRO CALLSs 3«544 Del0O
ACTION MACRO CALLS FOR EACH FILE
TYPE IN EACH PROCESSING MODEe 3=6

()

ACTION MACRO CALLS (FOR PARTITIUNED
SEQJUENTIAL FILES ONLY)y 3=17

ACTION MACRO PROCESSING
FUNCTIONSy 3=4

ACTION MACRO ROUTINESs 3«24 D=4

COMMUNCATION AREA SERvICE MACRO
ROUTINES (MLCA ANC MUCA),s 3+50

COMMUNCATION AREA SERVICE MACRO
ROUTINES (MLCA AND MUCA), 3«2

COMMUNICATION AREA MACRQ CALL
(MPCA) s D=6

COMMUNICATION ARFA MACRQ ROUTINE
(MPCA) s D=3

COMMUNICATION AREA SERVICE MACRO
CALLS (MLCA AND MUCA)s D=3¢ D=9

CONSIDERATIONS FOR ACTION MACRO
ROUTINESs D=17

CONTROL MACRO CALL (MPJOC)y Cwa

CONTROL MACRO ROUTINE (MPIOC)s U=3

DETAILED DESCRIPTION OF PHYSICAL
170 € MACRO ROUTINESs D=3

FILE DESCRIPTION MACRO ROUTINE
(MCA)s 3=2, 3-38

INPUT/0UTPUT CONTROL MACRO ROUTINE
(MIOC) s 3=26

ISSJE NEW ACTION MACRO CALLe D=21

LOKDEV ACTION MACRO ROUTINEs D=18

MASS STORAGE INPUT/GUTPUT CONTROL
MACRO ROUTINE (MIOC)s 3=2

MASS STORAGF LOAD COMMUNICATION
AREA MACRO CALL (MLCA)s 3=5]

MASS STORAGE UNLOAD COMMUNICATION
AREA MACRO CAtL (MUCA) s 3-5)

MCA MACRO CALL+ 3-38

MIOC MACRO CALLs 3=26

OMISSION OF CONSECUTIVE PARAMETERS
FROM MACRO CALL+s 3=2%

OM]ISSION OF SINGLE PARAMETER FROM
MACRO CALL+ 3=25

PARAMETERS OF MCA MACRC CALLs 3-39

PARAMETERS OF MIOC MACRO CALL,
32274 3=3%

PARAMETERS OF MPCA MACRO

CALLs D=6,1

PARAMETERS OF MPIOC MACRO

CALLs D=4

PARAMETERS OF THE MPCA MACRO
CALLe D=6

READ ACTION MACRO CALLs D=10

READ ACTION MACRO ROUTINEs Del?7

RESTORE ACTION MACRO CALLe D~-11

RESTORE ACTION MACROC ROUTINE, D-l8

SEEK ACTION MACRO CALLs D-11

SUMMARY OF ACTION MACRO CALL
CODINGe 3=63

SUMMARY OF LOGICAL I/0 C MACRO
ROUTINESy 3«24 3=3

SUMMARY OF MSGET MACRO FUNCTIONS
FOR DIRECT ACCESS FILESs 3~15

VERIFY ACTION MACRO CALLe D-11

VERIFY ACTION MACRC RQUTINEs D-l8

WAIT ACTION MACRO CALLe« D=1}

WAIT ACTION MACRO ROUTINEs D18

WRITE ACTION MACRO CALLe De10

WRITE ACTION MACRO ROUTINEs D=17

MALTER

ALTER MEMBER (MALTER) s 3=60
ALTER STATUS OF MEMBER
(MALTER}+ 3=19

MANAGEMENT

DATA MANAGEMENT CONVENTIONS,
1=1s 2«]

EQUIPMENT REQUIREMENTS FOR DATA
MANAGEMENT SUBSYSTEMs 1=7

JoB CONTROL LANGUAGE FOR DATA
MANAGEMENT SUBSYSTEM, 1=6

JOB CONTROL LANGUAGE EXAMPLES FOR
MAP FUNCTIONs 4-54

MAR

JoB CONTROL LANGUAGE FOR MAP
FUNCTIONs 4=51

MAP ¢+ 4=2

MAP DESCRIPTION OF A FILEs 42
MAP EXPIRED FILESs 4=6

MAP FUNCTION» 4=51

MAP JUNUSED AREASs 4=b6

PROTECTION DURING MAPs 4=70
SUMMARY OF JOB CONTROL STATEMENTS
FOR MAP FUNCTIONes 4=55¢ 4=56

KS
TAPE MARKSes 4«66

MASS

LOADING FROM MASS STORAGE TQ MASS
STORAGEs 4=59 :

MASS STORAGE FILE PROTECTION, Fe}

MASS STORAGF INPUT/OUTPUT CONTROL
MACRO ROUTINE (MIOC)s 3=2

MASS STORAGE LOAD COMMUNICATION
AREA MACRO CALL (MLCA)+ 351
MASS STORAGE UNLOAD COMMUNICATION
AREA MACRQ CALL (MUCA)s 3-5]

MINIMUM DEVICE REQUIREMENTS FOR
MASS STORAGE FILE
ORGANIZATIONSs 4=39

PROTECTION OF MASS STORAGE DURING
EXECUTION OF FILE SUPPORT Co 4=T70

UNLOADING MASS STORAGE FILES ONTO
PRINTERs 4=67

MASTER

RELATIONSHIP BETWEEN ITEMS OF THE
MASTER AND CYLINDER INDEXs 2~14

MASTER/CYLINDER

MASTER/CYLINDER INDEX
PARAMETERs 4~18

TRACKS REQUIRED FOR MASTER/CYLINDER
INDEXs C=25

MCA

MED

FILE DESCRIPTION MACRO ROUTINE
(MCA)» 3-24 3-38
MCA MACRO CALL.+ 3-38
PARAMETERS OF MCA MACRO CALL+ 3-39
PHYSICAL 1/0 C RELATIONSHIPS WITH
MCAs 3«69
SUMMARY OF MCA PARAMETER
VALJESs 3=49

1A
AVAILABLE MEMORY PER [/0 MEDIA FOR
12Xk CONFIGURATIONs 4=7

MEMBER

ALTER MEMBER (MALTER)+ 3=60

ALTER STATUS OF MEMBER
(MALTER) » 3-19

END MEMBER (ENDM)s 3-60

EXIT AND RETURN CODES FOR MEMBER
INDEX EXITSs 3=75

FIELDS OF FIRST ITEM IN MEMBER
{NDEXs B=2

FIELDS OF LAST ITEM IN MEMBER
INDEX+ Be3

FI1ELDS OF MEMBER INDEX ITEMS, B2

MEMBER STATEMENT+s 4e=l9

MEMBER STATEMENTS, 4«44

PROCESSING A PARTITIONED SEQUENTIAL
FILE BY MEMBER NAMES+ 4=58

SET MEMBER (SETM)s 3=59

SET PROCESSING TO BEGINNING OF
SPECIFIED MEMBER (SETM), 3.17

MEMBER=LENGTH

MEMBER=LENGTH PARAMETER, 4=20

MEMBER=NAME

MEMBER=NAME PARAMETERs 4«19 4etd

MEMBERS
LOADING SELECTED MEMBERSs 4-58
UNLCADING SELECTED MEMBERS, 4-58

MEMEBER
END PROCESSING OF CURRENT MEMEBER
(ENDM) s 3-18

MEMORY
AVAILABLE MEMORY PER 1/0 MEDIA FOR
12K CONFIGURATIONs 4=7
BLOCK AND RECORD SIZES WITHIN 12K
MEMORY s 4=6
LOGICAL 1/0 C MEMORY
REQUIREMENTSy 3=64

MESSAGES

CONSOLE TYPEWRITER PAUSE CODES AND
MESSAGES FOR LOGICAL 1/0 Cs 3-83

JOB CONTROL FILE CONSOLE TYPEWRITER
MESSAGESs 4=85

OPERATOR CONTROL AND MESSAGES FOR
FILE SUPPORT Ce 4=-70

TYPEWRITER MESSAGES FOR CONDITIUNS
RELATED TO NON=MASS STORAGE
FILESy 4-83

TYPEWRITER MESSAGES SPECIFIC 71O
FILE SUPPORT Cs 4=86

MINIMUM
MINIMUM DEVICE REQUIREMENTS FOR
MASS STORAGE FILE
ORGANIZATIONSs 4=39

MI10C
INPUT/0UTPUT CONTROL MACRO ROUTINE
(MIOC)» 3-26
MASS STORAGE INPUT/OUTPUT CONTROL
MACRO ROUTINE (MIOC)s 3=-2
MIOC MACRO CALLs 3-26
MIOC RESTRICTIONSs 3=67
MI0C SEGMENTATIONs 3=654 3-66
PARAMETERS OF MIOC MACRO CALL,
3=27» 3=36
PHYSICAL 1/0 ¢ RELATIONSHIPS WITH
MIOCs 3~-69
SUMMARY OF M10C PARAMETER
VALUESs 3-36

MIXED
MIXED FILE ORGANIZATIONSs 4-60

MLCA
COMMUNICATION AREA SERVICE MACRO
ROUTINES (MLCA ANC MUCA)+ 3-50
COMMUNICATION AREA SERVICE MACRO
ROUTINES (MLCA AND MUCA)s 3«2
COMMUNICATION AREA SERVICE MACRO
CALLS (MLCA AND MUCA)s D=3s D=9
MASS STORAGE LOAD COMMUNICATION
AREA MACRO CALL (MLCA)s 3=-51
MNEMONIC DESIGNATORS FOR MLCA AWND
MUCA+ D=9

MNEMONIC
MNEMONIC DESIGNATORS FOR
COMMUNICATION AREA FIELDSs 3=52
MNEMONIC DESIGNATORS FOR MLCA AND
MUCAs D=~-9

MoD
MOD 1 (MSR) OPERATING SYSTEM, 4-68
MOD 1 (TR) OPERATING SYSTEMs 4=T0Q

MODE
ACTION MACRO CALLS FOR EACH FILE
TYPE IN EACH PROCESSING MODEs 3«6
ADDRESS MODEs 3=69s D=l2
INPUT-ONLY PROCESSING MODEs 3=4
INPUT/0UTPUT PROCESSING MODE+ 3=~4
MODE PARAMETER, 4=41
OUTPUT=ONLY PROCESSING MODEs 3-4

MODES
FILE PROCESSING MODESe 3-~4

PCA

COMMUNICATION AREA MACRO CALL
(MPCA) s D=6

COMMUNICATION AREA MACRO ROUTINE
(MPCA)y D=3

CONSIDERATIONS FOR MPCA PARAMETER
SPECIFICATIONs Dewl4

MPCA CONTROL UNIT CURRENT ADDRESS
AND STATUS FIELDs D=-lé6

PARAMETERS OF MPCA MACRO

CALLe D=6sl

PARAMETERS OF THE MPCA MACRO
CALLy D~é&6"

MPI0C
CONSIDERATIONS FOR MPI0QC PARAMETER
SPECIFICATIONs D~14
CONTROL MACRO CALL (MPIOC), Ce4
CONTROL MACRO ROUTINE (MPIOC)s L-3
PARAMETERS OF MPIOC MACRO
CALL e D~é
SUFFIX OF RELATED MPIOCs D~-15

MSCLOS
CLOSE (MSCLOS)+ 3e56

SDEL
DELETE (MSDEL)s 3-59

MSEEK
SEEK (MSEEK)s 3-62

MSGET
GET (MSGET)s 3-56
SUMMARY OF MSGET MACRO FUNCTIONS
FOR DIRECT ACCESS FILESs 3-15

SINS
INSERT (MSINS)e 3=58

MSOPEN
OPEN (MSOPEN)»s 3=55

MSPUT
PUT (MSPUT), 3=59

MSR
MOQ 1 (MSR) OPERATING SYSTEM, 4=-68

MSREL
RELEASE COMPLETE FILE TO UNUSED
STATE (MSREL)s 3-19
RELEASE (MSREL)+ 3=61

MSREP
REPLACE (MSREP)+ 3-58

MUCA

COMMUNCATION AREA SERVICE MACRO
ROUTINES (MLCA ANC MUCA) s 3-50
COMMUNCATION AREA SERVICE MACRO
ROUTINES (MLCA AND MUCA)s 3=2
COMMUNICATION AREA SERVICE MACRU
CALLS (MLCA AND MUCA)s D=3+ D=9
MASS STORAGE UNLOAD COMMUNICATIUN
AREA MACRO CALL (MyCA)s 3-5]

MNEMONIC DESIGNATORS FOR MLCA AnD
MUCAs D=9

MULTIFIELD
MULTIFIELD KEYSs E=-6

MULTIVOLUME
MULTIVOLUME FILE PROCESSINGs C=3

NAMES
PROCESSING A PARTITIONED SEQUENTIAL
FILE BY MEMBER NAMES, 4=58

Q@

v

NON=MASS
CONDITIONS RELATED TO NON=MASS
STORAGE FILEs 4=71
TYPEWRITER MESSAGES FOR CONDITIONS
RELATED TD NON=MASS STORAGE
FILESe 4=83

NONNUMERIC
NONNUMERIC ITEM KEYSs E=5

NUMBER
NUMBER OF FUNCTIONS PERFORMEDe 4=6
PRIME NUMBER DIVISIONe €=1

OMISSION
OMISSION OF CONSECUTIVE PARAMETERS
FROM MACRO CALLs 3=25
OMISSION OF SINGLE PARAMETER FRUM
MACRO CALLs 3=25

OMITTING
OMITTING ITEMS FROM THE OUTPUT
FILEs 4=62

PEN
OPEN (MSOPEN)s 3=55

OPENING

OPENING AN INDEXED SEQUENTIAL
FILE. 3-8

OPENING DIRECT ACCESS FILESe 3=9

OPENING FILES. 3=-6

OPENING PARTITIONED SEQUENTIAL
FILESe 3-8

OPENING SEQUENTIAL FILES. 3-6

OPERATING

CONSOLE TYPEWRITER OPERATING
PROCEDURESs 3-82

CONTROL PANEL OPERATING
PROCEDURESs 3-77

MOD 1 (MSR) OPERATING SYSTEMs =68

MOD 1 (TR) OPERATING SYSTEMs 4~70

OPERATING PROCEDURES FOR FILE
SUPPORT C» 4=68

OPERATING PROCEDURES FOR LOGICAL
170 Co 377

OPERATING PROCEDURES FOR PHYSICAL
1/0 C» D=21

OPERATION
JOB CONTROL FOR A SINGLE
OPERATIONs 4=8
OWN=CODING CONSIDERATIONS FOR
TAPE=RESIDENT OPERATIONs 4=61

OPERATIONS
JoB CONTROL FOR A SEQUENCE OF
OPERATIONSe 4<9

OPERATOR
OPERATOR CONTROL AND MESSAGES FUR
FILE SUPPORT Cs 4=70
OPERATOR CONTROL WITH CONSOLE
TYPEWRITERe 4=83
OPERATOR CONTROL WITH CONTROL
PANEL+ 4=-70

OPTIMIZATION
OPTIMIZATIONs C-18

OPTIMIZING
OPTIMIZING ACCESS TIMEe C=18
OPTIMIZING STORAGE CAPACITY, C-20

0PTIMUM
EXAMPLE=SUMMARY OF OPTIMUM
POINTSs C=23
OPTIMUM RECORD SIZE - TYPE 261 OR
TYPE 262 DISK FILESe C=7
OPTIMUM RECORD SIZE = TYPES 258 259
OR 259A DISK PACK DRIVESe C5

INDEX

OPTION
SEQUENTIAL FILE USING PARTITIONING

OPTION» B=4

ORGANIZATION
DIRECT ACCESS FILE
ORGANIZATIONs 2=20
FILE ORGANIZATION, 2-23
FILE ORGANIZATION CONVENTIONSs 2-8
INDEXED SEQUENTIAL FILE
ORGANIZATIONs 2-9
PROGRAM ORGANIZATIONs 3222+ 3«64
SEQUENTIAL FILE ORGANIZATIONe 2-8

ORGANIZATIONS
MINIMUM DEVICE REQUIREMENTS FOR
MASS STORAGE FILE
ORGANIZATIONS, 4-39 .
MIXED FILE ORGANIZATIONSs 4=60

QUTPUY
OMITTING ITEMS FROM THE OUTPUT

FILEs 4=62

OUTPUT=ONLY
QUTPUT-ONLY PROCESSING MODEs 3=4

OVERFLOw
BUCKET SIZE AND OVERFLOWs C=10
CyYLINDER OVERFLOW AS PERCENTAGE OF
DATA AREA+ C-12
ENTRANCE TO GENERAL OVERFLOwWs 4=63
GENERAL OVERFLOW PARAMETER, 4-13
OVERFLOW AREASs 2=12v 2-23
OVERFLOW PARAMETERe 4~18
OVERFLOW PROBABILITIESs C-11
TYPES OF OVERFLOWe C~17

OVERFLOwW=-SIZE
CYLINDER OVERFLOW=S1ZE
PARAMETER: 4~16

OWN=CODING

OWN=CODING COMMUNICATION WITH
LOAD=UNLOAD FUNCTION+ 4=62

OWN-CODING CONSIDERATIONSs 4=60
OWN-CODING CONSIDERATIONS FOR
TAPE-RESIDENT OPERATIONs 4=61
STRUCTURE OF OWN=COCING
ROUTINEs 4=61

PACK
DISK PACK CYLINDER CONCEPT - TYPE
259 OISk PACK DRIVES. 2-2
OPTIMUM RECORD SIZE - TYPES 258 59
OR 259A DISK PACK DRIVESe C=5

PADDING
PADDING ITEMSe 4=66

PADD ING=CHARACTER
PADDING=CHARACTER PARAMETER» 4=4l

PANEL
CONTROL PANEL OPERATING
PROCEDURESs 3=77
OPERATOR CONTROL WITH CONTROL
PANEL s 4=70

PARAMETER
BANNER-CHARACTFR PARAMETER, 4«40
BLOCK~SIZE PARAMETERe 4=16
BUCKET=ADDRESSING PARAMETER, 4=42
BUCKET=SIZE PARAMETER e 4=16
CONSIDERATIONS FOR MPCA PARAMETER
SPECIFICATIONe D=-16
CONSIDERATIONS FOR MPIOC PARAMETER
SPECIFICATIONs Dele
CYLINDER OVERFLOW=SIZE
PARAMETERe 4«16
DEVICE=ADDRESS PARAMETERs 4=14¢
4=30¢ 4=38y 4=52¢ 4=54

DEVICE-TYPE PARAMETERs 4=374 4=-5¢
EXPIRATION-DATE CHECK

PARAMETERs 4=29

FILE-EXPIRATION DATA

PARAMETERs 4=-14

FILE=-NAME PARAMETER, 4=12+

42299 4=37

FILE=ORGANIZATION PARAMETER, 4=i2
FROM PARAMETER, 4=19

GENERAL OVERFLOW PARAMETERs 4=-13
IMBED PARAMETER. 4-43

INDEX=SIZE PARAMETERe 4=16

IN/OJT PARAMETERs 4=37

ITEM=KEY PARAMETERs 4=-13
ITEM=LENGTH PARAMETER, 4=15, 4=39
LOW=MEMORY=ADDRESS PARAMETER, 4=4b
MASTER/CYLINDER INDEX

PARAMETERs 4-18
MEMBER=LENGTH PARAMETERs 4=20
MEMBER-NAME PARAMETERs 4«19y 444
MODE PARAMETERs 4=41

OMISSION OF SINGLE PARAMEYER FRUM
MACRO CALLy 3-25

OVERFLOW PARAMETER, 4=18
PADDING=CHARACTER PARAMETERy 4=41
PARITY PARAMETERe 4«40

PASSWORD PARAMETERs 4=13,

4=304 4=4]
PROGRAM=SEGMENT =NAME

PARAMETERs 4=45
PROTECTION=STATUS PARAMETERS
4elby 442
RECORD~LENGTH PARAMETER,

4=15y 4=39
RELEASE PARAMETER,s 4=43
REPORT=NUMBER PARAMETERY 64=43
STRING=SI1ZE PARAMETERy 4=17
SUMMARY OF MCA PARAMETER

VALUESs 3=49

SUMMARY OF MIOC PARAMETER

VALUESes 3=36

TO PARAMETERs 4=19
VOLUME=NAME PARAMETER,s 4=17,
4=29y 4=52

PARAMETERS

DEVICE=-ADDRESS PARAMETERSs 4=20

OMISSION OF CONSECUTIVE PARAMETEKS
FROM MACRO CALL+s 3-25

PARAMETERS OF MCA MACRO CALL,y 3-39
PARAMETERS OF MIOC MACRO CALL,
3=217s 3=-36

PARAMETERS OF MPCA MACRO
CALLs D=6s1

PARAMETERS OF MpIOC MACRO

CALLs D=0

PARAMETERS OF THE MPCA MACRO
CALLs D-6

SPECIAL CONSIDERATIONS FOR
SPECIFYING PARAMETERSs D=13

PARITY
PARITY PARAMETERs 4e40

PARTITIONED

ACTION MACRO CALLS (FOR PARTITIOUNED
SEQUENTIAL FILES ONLY)s 3-17

CLOSING SEQUENTIAL AND PARTITIONED
SEQJENTIAL FILESs 3-10

LOADING A PARTITIONED SEQUENTIAL
FILEy 4=58

OPENING PARTITIONED SEQUENTIAL
FILESes 3-8

PARTITIONED SEQUENTIAL FILESs 4=58

PROCESSING A PARTITIONED SEQUENTIAL
FILE BY MEMBER NAMESe 4~58

PUTTING ITEMS TO SEQUENTIAL AND
PARTITIONED SEQUENTIAL

FILESs 3-17

REPLACING ITEMS IN SEQUENTIAL AND
PARTITIONED SFQUENTIAL

FILESs 3=-16

INDEX

RETRIEVING ITEMS IM SEQUENTIAL AND
PARTITIONED SEQUENTIAL
FILESs 3=11
UNLOADING A PARTITIONED SEQUENTIAL
FILEy 458

PARTITIONING
PARTITIONING A SEQUENTIAL
FILEs B=1
SEQUENTIAL FILE USING PARTITIONING
OPTIONs B=4

PASSWORD
PASSWORD PARAMETER. 4=13,
4=300 4=4)
PASSWORD PROTECTIONs Fe=2

PAUSE
CONSOLE TYPEWRITER PAUSE CODES AND
MESSAGES FOR LOGICAL 1/0 Cy 3-83

PERCENTAGE
CYLINDER OVERFLOW AS PERCENTAGE UF
DATA AREAs C-13

PERJPHERAL

FIXED PERIPHERAL ADDRESS
ASSIGNMENTs D-13

PERIPHERAL ADDRESS
ASSIGNMENT . D~-14

PERIPHERAL ADDRESS ASSIGNMENT AND
RWC CONFIGURATION
CONSIDERATIONSy D-13

PERIPHERAL CONDITIONSs 4=71y 4=-83
VARIABLE PERIPHERAL ADDRESS
ASSIGNMENTs D=13

PHYSICAL

DETAILED DESCRIPTION OF PHYSICAL
[/0 C MACRO ROUTINESs D=3

LANGUAGE FLEMENTS OF PHYSICAL 1/0
Co D=4

OPERATING PROCEDURES FOR PHYS[CAL
1/0 Cs D=21

PHYSICAL BRACKUP, 2-27

PHYSICAL 1/0 Cs D=}

PHYSICAL 1/0 ¢ RELATIONSHIPS wlln
MCAs 3=69

PHYSICAL 1/0 C RELATIONSHIPS wWlin
MIOCs 3-69

PROGRAMMER?®*S PREPARATION
INFORMATION FOR PHYSICAL 1/¢
Ce D=12

USE UF PHYSICAL 1/0 C» D=t

PLUS
RANDOM PLUS SEQUENTIAL FILESs C=-2

POINTS
EXAMPLE=SUMMARY OF OPTIMUM
POINTSe C=-23

POSITION
USING THE ITEM POSITION OF A
DELETED ITEMe 2-22

PREFIX
FILE PREFIXs D-15

PREPARATION

FORMATTING AND VOLUME
PREPARATIONs 2-3

PROGRAMMER*S PREPARATION
INFORMATION FOR FILE SUPPORT
Ce 5=57

PROGRAMMER ¢S PREPARATION
INFORMATION FOR LOGICAL 1/0
Ce 3=b4

PROGRAMMER 'S PREPARATION
INFORMATION FOR PHYSICAL I/0
Cy D=~12

Q)

\D

PRIME
PRIME DATA AREAs 2~-]1
PRIME NUMBER DIVISIONs E-1

PRINTER
UNLOADING MASS STORAGE FILES ONTO
PRINTERs 4=67

PRINT=IMAGE
PRINT=]MAGE FILESs G=2

PROCEDURE
RE-EXECUTION OF CORRECTION
PROCEDURE+ D=20

PROCEDURES

BACKUP PROCEDURESe 2-27

CONSOLE TYPEWRITER OPERATING
PROCEDURESs 3=82

CONTROL PANEL OPERATING
PROCEDURESy 3=77

OPERATING PROCEDURES FOR FILE
SUPPORT Co 4-68

OPERATING PROCEDURES FOR LOGICAL
1/0 Co 3=77

OPERATING PROCEDURES FOR PHYSICAL
1/0 C» D=21

PROCESSED
ASSIGNMENT OF FILES TO BE PROCESSED
CONCURRENTLY s C=4

PROCESSING
ACTION MACRO CALLS FOR EACH FILt
TYPE IN EACH PROCESSING MODEs 3=6
ACTION MACRO PROCESSING
FUNCTIONSs 3=4
DIRECTLY PROCESSING AN INDEXED
SEQUENTJAL FILEs 2-~13
END PROCESSING OF CURRENT MEMEBER
(ENDM) ¢ 3~18
FILE PROCESSING FUNCTIONSs 2~27
FILE PROCESSING MODES+ 3-4
FOREGROUND/BACKGROUND PROCESSING OF
FILE SUPPORT Ce 4=l
INPUT=ONLY PROCESSING MODEs 3~4
INPUT/OUTPUT PROCESSING MODEs 3=4
MULTIVOLUME FILE PROCESSINGs C-3
OUTPUT=ONLY PROCESSING MODE+ 3=4
PROCESSING A PARTITIONED SEQUENTIAL
FILE BY MEMBER NAMES. 4-58
PROCESSING CONVENTIONSs 2-26
SEQUENTIAL OR DIRECT
PROCESSINGs 2-26
SET PROCESSING TO BEGINNING OF
SPECIFIED MEMBER (SETM)¢ 3«17
SETTING PROCESSING YO A SPECIFIED
LOCATIONs 3e22

PROGRAM
FILE SUPPROT C PROGRAMs 1~5
LOGICAL 1/0 C PROGRAM. 1-4
PROGRAM ORGANIZATION® 3=22+ 3=64
PROGRAM SEGMENT LOADINGs 3+68

PROGRAM=SEGMENT -NAME
PROGRAM=SEGMENT~NAME
PARAMETER s 4«45

PROGRAMMER*S

PROGRAMMER*S PREPARATION
INFORMATION FOR FILE SUPPORT
Ce 5=57

PROGRAMMER*S PREPARATION
INFORMATION FOR LOGICAL 1,0
Ce 3e60

PROGRAMMER 'S PREPARATION
INFORMATION FOR PHYSICAL 1/0
Ce Del2

PROTECTION
DEVICE PROTECTIONe D=14

INDEX

FILE PROTECTIONs Fa=l
MASS STORAGE FILE PROTECTIONs F=1
PASSWORD PROTECTIONe Fe2
PROTECTION DURING ALLOCATEe 4=70
PROTECTION DURING DEALLOCATE, 4=70
PROTECTION DURING
LOAD=UNLOADs 4=-70
PROTECTION DURING MAP, 4-70
PROTECTION OF MASS STORAGE DURING
EXECUTION OF FILE SUPPORT C4 4=70
WRITE PROTECTIONs F=-]

PROTECTION=STATUS
PROTECTION=STATUS PARAMETERS
bolby 4mb2

RADIX
RADIX CONVERSIONs E=4

RANDOM
RANDOM PLUS SEQUENTIAL FILESe C=2
RANDOM VERSUS SEQUENTIAL
FILESe Ce2

RANDOMIZING
RANDOMIZING ADDRESSINGs E~1
RANDOMIZING TECHNIQUESs E~1

READ
READ ACTION, D=2
READ ACTION MACRQ CALLs D=10
READ ACTION MACRO ROUTINEs D=-17
TYPE OF READ OR WRITE (TRW), D=15

READ/WRITE .
READ/WRITE CHANNEL UTILIZATION,
3=70+ D~12

RECORD

BLOCK AND RECORD SIZES WITHIN 12K
MEMORYs 4~=6

OPTIMUM RECORD SIZE - TYPE 261 UR
TYPE 262 DISK FILESe C=7

OPTIMUM RECORD SIZE - TYPES 258 259
OR 259A DISK PACK DRIVESs Ce5

RECORD<LENGTH
RECORD=-LENGTH PARAMETER,
4ul5y 4=39

RECORDS

BOOTSTRAP RECORDSy 2-3

DATA RECORDSs 4=65

HANDLING TRACK LINKING

RECORDSs D=-18

RELATIONSHIP BETWEEN ITEMS AND
RECORDSe 2-5

RELATIONSHIP BETWEEN ITEMS RECORDS
AND BLOCKS+ 2-5

RELATJONSHIP BETWEEN]JTEMS RECORDS
BLOCKS AND BUCKETS. 2-24
TRACK=LINKING RECORDS. 2~8

REGISTER
ADDRESS REGISTER CONTENTS AT TIME
OF ERROR EXIT (EDF)e+ D=20

REGISTERS
INDEX REGISTERSe 3wp9
USE OF INDEX REGISTERSs D-13

RE=EXECUTION
RE=EXECUTION OF CORRECTION
PROCEDUREs D=20

RELATED -

CONDITIONS RELATED 7O NON=MASS
STORAGE FILE. 4=71

FILE RELATED CONDITIONS, 4=72
SUFFIX OF RELATED MPJOCy D=15
TYPEWRITER MESSAGES FOR CONDITIONS
RELATED TO NON=MASS STORAGE

FILESe 4-83

RELATIONSHIP

RELATIONSHIP BETWEEN ITEMS AND
RECORDSs 2-5

RELATIONSHIP BETWEEN I1TEMS OF THE
MASTER AND CYLINDER INDEX, 2-14

RELATIONSHIP BETWEEN ITEMS RECORDS
AND BLOCKS, 2-5 -

RELATIONSHIP BETWEEN I1TEMS RECORDS
BLOCKS AND BUCKETSs 2-24

RELATIONSHIP BETWEFN STRING INDtX
ITEMS AND THE DATA ARBA OF A
CYLINDER, 2-15%

RELATIONSHIPS
PHYSICAL I/0 C RELATIONSHIPS wITH
MCAes 3-69
PHYSICAL 1/0 C RELATIONSHIPS WITH
MIOCs 369

RELEASE
RELEASE COMPLETE FILE TO UNUSED
STATE (MSREL)s 3-19
RELEASE PARAMETERs 4=43
RELEASE (MSREL)s 3«6l

REPLACE ,
REPLACE (MSREP)s 3-58

REPLACING

REPLACING ITEMS IN DIRECT ACCESS
FILESy 3~16

REPLACING ITEMS IN FILESe 3-15
REPLACING ITEMS IN INDEXED
SEQUENTIAL FILESy 3=-16

REPLACING ITEMS IN SEQUENTIAL AND
PARTITIONED SEQUENTIAL
FILESe 3el6

REPORT=NUMBER
REPORT«NUMBER PARAMETER, 4=43

RESTORE
RESTORE ACTIONs D=2
RESTORE ACTION MACRO CALLs D-ll
RESTORE ACTION MACRO ROUTINEs D-18

RESTRICTIONS
MIOC RESTRICTIONSs 3-67

RETRIEVING

RETRIEVING ITEMS IN DIRECT ACCESS
FILESs 3~13

RETRIEVING ITEMS IN FILES. 3-11

RETRIEVING ITEMS IN INDEXED
SEQUENTIAL FILESs 3-12

RETRIEVING ITEMS IN SEQUENTIAL AND
PARTITIONED SEQUENTIAL
FILESe 3«11

RETURN

EXIT AND RETURN CODES FOR DATA
EXITSs 3«75

EXIT AND RETURN CODES FOR DEVICE
EXITSs 3=76

EXJT AND RETURN CODES FOR MEMBER
INDEX EXITSs 3=75

EXIT AND RETURN CODES FOR VOLUME
DIRECTORY EXITSs 3«73

ROUTINE

COMMUNICATION AREA MACRO ROUTINE
(MPCA) » D=3

CONTROL MACRO ROUTINE (MPIOC)+ De3

CORRECTIVE ACTION FOR USER'S ERROR
ROUTINEs Dw21

FILE DESCRIPTION MACRC ROUTINE
(MCA)y 3=2, 3-38

INPUT/QUTPUT CONTROL MACRO ROUTINE
(MIOC) e 3-26

LOKDEV ACTION MACRQO ROUTINEe D=18

INDEX

MASS STORAGE INPUT/QUTPUT CONTRUL
MACRO ROUTINE (MIOC)s 3=2
READ ACTION MACRO ROUTINEs D-17
RESTORE ACTION MACRO ROUTINEs D-18
STRUCTURE OF OWN=-CODING
ROUTINEs 4=61
USER'S UNCORRECTABLE ERROR
ROUTINEs D-19
USER®*S UNCORRECTABLE ERROR ROUTINE
ENTRANCE (EAD)s D=-15
VERIFY ACTION MACRO ROUTINEs D-18
WAIT ACTION MACRO ROUTINEs D=18
WRITE ACTION MACRO ROUTINE,. D=17

ROUTINES
ACTION MACRO ROUTINESs 3=24 D=4
COMMUNICATION AREA SERVICE MACRO
ROUTINES (MLCA ANC MUCA),s 3=-50
COMMUNICATION AREA SERVICE MACRO
ROUTINES (MLCA AND MUCA)s 3-2
CONSIDERATIONS FOR ACTION MACRO
ROUTINESe D=17
DETAILED DESCRIPTION OF PHYSICAL
1/0 € MACRO ROUTINESs D~3
SUMMARY OF LOGICAL 1/0 C MaACRO
ROUTINESs 32+ 3=-3

RWC
PERIPHERAL ADDRESS ASSIGNMENT AND
RWC CONFIGURATION
CONSIDERATIONSe D-13

SAMPLE
LISTING OF SAMPLE UNLOAD=TO=PRINTER
FUNCTIONs 4=69

SEEK
SEEK ACTIONe D=2
SEEK ACTION MACRO CALL+s De-ll
SEEK (MSEEK) s 3=62

SEEKING
SEEKING A DESIRED CYLINDER,y 3-22

SEGMENT
"PROGRAM SEGMENT LOADING, 3-68

SEGMENTATION
MIOC SEGMENTATIONs 3=65+ 3-66

SELECTED
LOADING SELECTED MEMBERS. 4-58
UNLOADING SELECTED MEMBERSs 4~5u8

SEQUENCE
ITEM SEQUENCEs Ce17
JOB CONTROL FOR A SEQUENCE OF
OPERATIONS s 4=9
KEY OUT OF SEQUENCE,s 4=63

SEQUENTIAL

ACTION MACRO CALLS (FOR PARTITIONED
SEQUENTIAL FILES ONLY)s 3=17
ALLOCATING AN INDEXED SEQUENTIAL
FILEs 4=59

CLOSING INDEXED SEQUENTIAL AND
DIRECT ACCESS FILESe 3-10

CLOSING SEQUENTIAL AND PARTITIONED
SEQUENTIAL FILES, 3-10

DIRECTLY PROCESSING AN INDEXED
SEQUENTIAL FILEs 2«13
EXAMPLE~OPTIMIZATION FOR AN INDEXED
SEQUENTIAL FILEs C-23

INDEXED SEQUENTIAL+ 3-72

INDEXED SEGUENTIAL FILE
CONSIDERATIONS s C=17

INDEXED SEQUENTIAL FILE
ORGANIZATIONs 2-9

INDEXED SEQUENTIAL FILESs 4=59
INSERTING ITEMS IN INDEXED
SEQUENTIAL FILESe 3-20

LOADING A PARTITIONED SEQUENTIAL

()

¢

A

L 1Y

M

FILEs 4-58

LOADING AN INDEXED SEQUENTIAL
FILEs 4=59

OPENING AN INDEXED SEQUENTIAL
FILEs 3-8

OPENING PARTITIONED SEQUENTIAL
FILESy 3-8

OPENING SEQUENTIAL FILESs 3-6

PARTITIONED SEOQUENTIAL FILES, 4=58

PARTITIONING A SEQUENTIAL

FILEs B-1

PROCESSING A PARTITIONED SEGUENIIAL
FILE BY MEMBER NAMESs 4=58

PUTTING ITEMS TO SEQUENTIAL AND
PARTITIONED SEQUENTIAL

FILESs 3-17

RANDOM PLUS SEQUENTIAL FILESe C=2

RANDOM VERSUS SEQUENTIAL
FILESs C-2

REPLACING ITEMS IN INDEXED
SEQUENTIAL FILESs 3-16

REPLACING ITEMS IN SEQUENTIAL AND
PARTITIONED SEQUENTIAL
FILES. 3-16

RETRIEVING ITEMS IN INDEXED
SEQUENTIAL FILESe 312

RETRIEVING ITEMS IN SEQUENTIAL AND
PARTITIONED SEQUENTIAL
FILESs 3-11

SEQUENTIAL FILE
CONSIDERATIONS s Cwé

SEQUENTIAL FILE ORGANIZATION, 2-8
SEQUENTIAL FILE USING PARTITIONING
OPTIONs Besd

SEQUENTIAL FILESe 5=57

SEQUENTIAL OR DIRECTY
PROCESSINGs 2-26

UNLOADING A PARTITIONED SEQUENTIAL
FILEs 4=-58

UNLOADING AN INDEXED SEQUENTIAL
FILEs 4=60

SERVICE
COMMUNICATION AREA SERVICE MACRO
ROUTINES (MLCA ANC MUCA} s 3=50
COMMUNICATION AREA SERVICE MACRO
ROUTINES (MLCA AND MUCA)» 3=2
COMMUNICATION AREA SERVICE MACRO
CALLS (MLCA AND MUCA) s D=34 D=9

SET

SET LOCATION (SETL)s 3=-62

SET MEMBER (SETM)s 3=59

SET PROCESSING TO BEGINNING OF
SPECIFIED MEMBER (SETM)s 3-17

SETL
SET LOCATION (SETL)s 3-62

SETM :
SET MEMBER (SETM)s 3-59
SET PROCESSING TO BEGINNING OF
SPECIFIED MEMBER (SETM)+ 3-17

SETTING
SETTING PROCESSING TO A SPECIFIED
LOCATION, 3=22

S1ZE

BLOCK SI2Es C-2

BUCKET SIZE AND OVERFLOWe C=10

OpTIMUM RECORD SIZE - TYPE 261 OR
TYPE 262 DISK FILESe C-7

OPTIMUM RECORD SIZE =~ TYPES 258 259
OR 259A DISK PACK DRIVESs (=5

S1ZE STATEMENTs 4=15

SIZES
BLOCK AND RECORD SIZES WITHIN 12K
MEMORY s 4=6

INDEX

SPACE
INSUFFICIENT SPACEs 4«62

SPECIFIC
CONDITIONS SPECIFIC 10 FILE SUPPORY
Co 4=T77
TYPEWRITER MESSAGES SPECIFIC TO
FILE SUPPORT Cs 4-86

SPECIFICATION
CONSIDERATIONS FOR MPCA PARAMETER
SPECIFICATION, D=14
CONSIDERATIONS FOR MP1OC PARAMETER
SPECIFICATIONs D=14
ITEM KEY SPECIFICATIONs 3-71

SPECIFIED
SET PROCESSING TO BEGINNING OF
SPECIFIED MEMBER (SETM)e 3-17
SETTING PROCESSING TO A SPECIFIED
LOCATIONs 3=-22

SPECIFYING
SPECIAL CONSIDERATICNS FOR
SPECIFYING PARAMETEKSs D-13

SQUARE
SQUARE ENFOLD AND EXTRACT. E=-2

STATUS

ALTER STATUS OF MEMBER
(MALTER)+» 3-19 R

CONTROL UNIT CURRENT AUDRESS ANV
STATUSs D-16

DATA ITEM STATUS CHARACTERS
2~204¢ 2-25

MPCA CONTROL UNIT CURRENT ADDRESS
AND STATUS FIELDe D=-16

STORAGE

COMPRISING BETWEEN ACCESS TIME AND
STORAGE CAPACITYs (=22

CONDITIONS RELATED TO NON=MASS
STORAGE FILEe 4-T1

LOADING FROM MASS STORAGE TO MASS
STORAGEs 4~59

MASS STORAGE FILE PROTECTION, F=-]

MASS STORAGE INPUT/QUTPUT CONTROL
MACRO ROUTINE (MIOC)s 3=2

MASS STORAGE LOAD COMMUNICATION
AREA MACRO CALL (MLCA)s 3=5]1

MASS STORAGE UNLOAD COMMUNICATION
AREA MACRO CALL (MUCA)s 3-51

MINIMUM DEVICE REQUIREMENTS FOR
MASS STORAGE FILE
ORGANIZATIONSs 4=39

OPTIMIZING STORAGE CAPACITYs C=20

PROTECTION OF MASS STORAGE DURIING
EXECUTION OF FILE SUPPORT Co 4~70

TYPENRITER MESSAGES FOR CONDITIUNS
RELATED TO NON-MASS STORAGE
FILESe 4-83

UNLOADING MASS STORAGE FILES ONTU
PRINTERy 4=67

STRING

DELETION OF AN ITEM FROM A
STRINGs 2-21

INSERTION OF ITEMS INTO A
STRINGy 2-16

RELATIONSHIP BETWEEN STRING INDEX
ITEMS AND THE DATA AREA OF A
CYLINDER, 2-15

STRING=SIZE
STRING=SIZE PARAMETERs 4=17

STRUCTURE
DATA STRUCTURE, 2-9
FILE STRUCTURE, 2-11
STRUCTURE OF OWN=CODING
ROUTINEs 4=61

INDEX

SUBSYSTEM
CQUIPMENT RFOUIRFMENTS FOR CATA
MANAGEMENT SUPSYSTEMe 1-7
Jo8 CONTROL LANGUAGE FOR DATA
MANAGEMENT SUBRSYSTEMe 1=6

SUFFIX
SUFFIX CHARACTERs D~l4
SUFFIX OF RELATED MP10OCs D-15

SUMMARY
SUMMARY OF ACTION MACRO CALL
CODINGe 3-63
SUMMARY OF JOB CONTROL STATEMENIS
FOR ALLOCATE FUNCTIONs 4=24
SUMMARY OF JOB CONTROL STATEMENTS
FGR ALLOCATION FUNCTIONs 4«25
SUMMARY OF JOB CONTROL STATEMENIS
FUR OEALLOCATE FUNCTION,
4e33y 4=34
SUMMARY Of JOB CONTROL STATEMENTS
FGR LOAD AND UNLOAD
FUNCTIONSs 4-48
SUMMARY OF JOB CONTROL STATEMENIS
FOR LOAD/UNLOAD FUNCTIONSs 4=49
SUMMARY OF J0OB CONTKOL STATEMENIS
FOR MAP FUNCTIONs 4=55¢ 4=56
SUMMARY OF LOGICAL 170 C MACRO
ROUTINESe 3=2+ 3=3
SUMMARY OF MCA PARAMETER
VALUESs 3=49
SUMMARY OF MIQC PARAMETER
VALUESs 336
SUMMARY OF MSGET MACRO FUNCTIONS
FOR DIRECT ACCESS FILESe 3=15

SUPPORT

CONDITIONS SPECIFIC 1O FILE SUPPORT
Co 4=77

FILE SUPPORT Cy 4=1

FILE SUPPORT C HALTSs 4=-78

FILE SUPPORT DIAGNQOSTICS FOR 5040
HALTs 4=T74

FOREGROUND /BACKGROUND PROCESSING OF
FILE SUPPORT Ce+ 4=]

FORMAT OF FILE SUPPOFT C EXECUTE
STATEMENT s 4=8

FUNCTIONS OF FILE SUPPORT Co4 4=2

GENERAL DESCRIPTION UF FILE SUPKFURT
Cy G=]

JOB CONTROL LANGUAGE FOR FILF
SUPPORT Cs 48

LOADING FILE SUPPORT Co 4=68

OPERATING PROCEDURES FOR FILE
SUPPORT Co 4=~68

OPERATOR CONTROL AND MESSAGES FUR
FILE SUPPORT Cs 4=70

PROGRAMMER*S PREPARATION
INFORAMTION FOR FILE SUPPORT

Co 5=57

PROTECTION OF MASS STORAGE DURING
EXECUTION OF FILE SUPPQORT Cs 4=70

TYPEWRITER MESSAGES SPECIFIC 71O
FILE SUPPORT Ce 4-86

SUPPORT
FILE SUPPORT C PROGRAM, 1-5

SYSTEM)
MOD 1 (MSR) OPERATING SYSTEM, 4=68
MOD I {(TR) OPERATING SYSTEMe 4=70

TAPE ‘
1/2=INCH TAPE FORMATS, 4=63
TAPE AND CARD FILE

CONSIDERATIONSs 4=63
TAPE MARKS, 4=66

TAPE=-RESIDENT
OWN-CODING CONSIDERATIONS FOR
TAPE=RESIDENT OPERATIONs 4=gl

TECHNIQUES
RANDOMIZING TECHNIQUESe E=1

TERMINAL
CREATION OF TERMINAL FILES: G-1

TERMINAL FILESs G=)

TIME
ADDRESS REGISTER CONTENTS AT TIME
OF ERROR EXIT (EDF)e D=20
COMPRISING BETWEEN ACCESS TIME AND
STORAGE CAPACITYs (=22
OPTIMIZING ACCFSS TIMEs C~18

TR
MOD 1 (TR) OPERATING SYSTEMs 4=TC

TRACK
HANDLING TRACK LINKING
RECORDS+ D-18

TRACK~LINK ING
TRACK=LINKING RECORDSs 2-8

TRACKS
TRACKS REQUIRED FOR MASTER/CYLINDER
INDEXes C=25

TRAILER
TRAILER LABELs 4=669 4=67

TRwW
TYPE OF READ OR WRITE (TRW)s D=|5

TYPE

ACTION MACRO CALLS FOR EACH FlLc
TYPE IN EACH PROCFSSING MODEs 3-6

DISK PACK CYLINDER CONCEPT = TYPE
259 UISK PACK DRIVESe 2=2

ERROR TYPE INDICATOR (ERI)y D=19
ILLUSTRATION OF UNTITS OF ALLOCATION
= TYPE 261 OR TYPF 262 DISK

FILEs 2-7

OPTIMUM RECORD SIZF = TYPE 261 UR
TYPE 262 DISK FILESy Ca7

TYPE OF READ OR WRITE (TRW)s Deib

TYPES

OPTIMUM RECORD SIZE - TYPES 258 <59
OR 259A DISK PACK CRIVESe C=5

TYPES OF OVERFLOW. (=17

TYPEWRITER

CONSOLE TYPEWRITER OPERATING
PROCEDURES. 3-82

CONSOLE TYPEWRITER PAUSE CODES AND
MESSAGES FOR LOGICAL 1/0 Cs 3=-03
JOB CONTROL FILE CONSOLE TYPFWRITER
MESSAGESs 4-85

OPERATOR CONTROL WITH CONSOLE
TYPEWRITER, 4-83

TYPEWRITER MESSAGES FOR CONDITIUNS
RELATED TO NON-MASS STORAGE
FILESe 4-83

TYPEWRITER MESSAGES SPECIFIC YO
FILE SUPPORT C» 4-86

UNCORRECTABLE
USER'S UNCORRECTABLE ERROR
ROUTINEs D-19
USER'S UNCORRECTABLE ERROR ROUTINE
ENTRANCE (EAD)s D=-15

UNIT
CONTROL UNEIT CURRENT ADDRESS ANv
STATUSs D=-16
DATA UNIT OF ALLOCATION, 4-19
MPCA CONTROL UNIT CURRENT ADDRESS
AND STATUS FIELDe D=16

NITS
ASSIGNMENT OF UNITS OF

)

«

-

ALLOCATIONs C-3

ILLUSTRATION OF UNITS OF ALLOCATION
- TYPE 261 OR TYPE 262 DISK

FILEs 2«7

UNITS OF ALLOCATIONs 2=¢6

UNITS STATEMENTs 4=17

UNLOAD
LOAD AND UNLOAD FUNCTIONSe 4«33

UNLOAD

JOB CONTROL LANGUAGE EXAMPLES FuUR
1LOAD AND UNLOAD FUNCTIONS, 4«45

JOB CONTROL LANGUAGE FOR LOAD AND
UNLOAD FUNCTIONSs 4=35

MASS STORAGE UNLOAD COMMUNICATION
AREA MACKO CALL (MUCA) e« 351
SUMMARY OF JOB CONTROL STATEMENTS
FOR LOAD AND URLOAL

FUNCTIONSs 4=48

UNLQADs 4=2

UNLOADING
JOB CONTROL STATEMENTS FOR LCADING
AND UNLOADING FILESe 4=-35
LOADING OR UNLOADINGs 4«60
UNLOADING A DIRECT ACCESS

FILEs 5-57

UNLOADING A PARTITIONED SEQUENTIAL
FILEe 4=58

UNLOADING AN INDEXED SEQUENTIAL
FILEs 4=60

UNLOADING BY FILEe 4-53

UNLOADING MASS STORAGE FILES ONlU
PRINTERY 4=67

UNLOADING SFLECTED MEMBERS. 4«58

UNLOAD={0=PRINTER
LISTING OF SAMPLE UNLOAD-TO-PRINIER
FUNCTIONs 4=69

UNUSED
MAP UNUSED AREASs 4=6
RELEASE COMPLETE FILE TO UNUSED
STATE (MSREL)s 3-19

USABLE
ADDITIONAL USABLE EGUIPMENTs =7

USER*S
CORRECTIVE ACTION FCOR USER'S ERKROR
ROJTINEs D-21
USER*S UNCORRECTABLE ERROR
ROJTINEs D-19

USER*S UNCORRECTABLE ERROR ROUTINE
ENTRANCE (EAD)s D-1%

UTILIZATION
READ/WRITE CHANNEL UTILIZATION.
3-70s D-12

VALUES
SUMMARY OF MCA PARAMLTER
VALUESs 3-49
SUMMARY OF M10C PARAMETER
VALUESs 3-36

VARIABLE
VARIABLE PERIPHERAL ADDRESS
ASSIGNMENT . D-13

VERIFY
VERIFY ACTIONs D=2
VERIFY ACTION MACRO CALLs D-11
VERIFY ACTION MACRO ROUTINE,s D=i8

VOLATILITY
DISTRIBUTION AND VOLATILITY, C-17

VOLUME
EXIT AND RETURN CODES FOR VOLUME
DIRECTORY EXITS. 3-73

FORMATTING AND vOLuME
PREPARATIONs 2-3

VOLJME CONVENTIONSs 2-1

VOLUME DIRECTORYs 2=34 A=3

VOLUME LABELs 2-3¢ A=2

VOLUME LABFL AND VOLUME
DIRECTORY, A=)

VOLUME STATEMENT s 4<=294¢ 4-52

VOLUME =NAME
VOLUME=NAME PARAMETERs 4=17»
4=29s 4=52

WAIT
WAIT ACTIONs D=2
WAIT ACTION MACRO CALLs D=1l
WAIT ACTION MACRO ROUTINEs Dels8

WRITE
TYPE OF READ OR WRITE (TRW)s D=15
WRITE ACTIONs D=2
WRITE ACTION MACRO CALL4+ D=}0
WRITE ACTION MACRO ROUTINEs D=17
WRITE PROTECTIONs Fal

3

x

Ly

Honeywell

(7
e

«)

o

R
({
)
e

(

HONEYWELL
TECHNICAL PUBLICATIONS REMARKS FORM *

TITLE: MOD 1 (MSR) DATED: DECEMBER, 1968
EMENT
DATA MANAGEMENT SUBSYSTEM FILE NO: 123.6005.141C.5-618

ERRORS NOTED IN PUBLICATION:

Fold

Cut Along Line '

. p——

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION:

Fold

(Please Print)

FROM: NAME DATE

COMPANY

TITLE

ADDRESS

* Your comments will be promptly investigated by appropriate technical personnel, action will be taken as

required, and you will receive a written reply. If you do not require a written reply, please check here [1.

HONEYWELL
151 NEEDHAM STREET
NEWTON HIGHLANDS, MASS. 02161

ATT'N: MARKETING INFORMATION SERVICES, M$S 251

FIRST CLASS

PERMIT NO. 39531 .

NEWTON HIGHLANDS
MASS.

Honeywell

9un(RL%)

